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ABSTRACT

The grid overlay system model is a new technique for forming a grid computing model
for research computing. In this method we construct a grid that is dynamically allocated
from a set of resources in a unique and progressive manner. This new system model al-
lows for construction of virtual environments for execution of applications on many diverse
shared resources. The system can dynamically scale to create a range of resources from a
single machine to a virtual cluster of machines. This model provides a virtual container
that can run legacy and customized software in an emulated environment or directly on the
host’s hardware through virtualization. Using this model on current consumer hardware
allows for a unique blend of software containment with dynamic resource allocation. Our
model, in combination with commercial off the shelf (COTS) hardware and software, is
able to create a large grid system with multiple combinations of hardware and software
environments. In our model we propose a unique set of abstraction layers for systems. The
combination of our model with current consumer hardware and software provides a unique
design principle for addressing grid implementation, hardware reusability, operating sys-
tem deployment and implementation, virtualization in the grid, and user control techniques.
This provides a robust and simple framework that allows for the construction of computa-
tional research solutions in which performance can be traded for flexibility, and vice versa.
Our model can be applied to computational research grids, service oriented grids, and even
scales to collections of mobile or embedded system grids.
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INTRODUCTION

Large computational systems are located all over the world in places such as govern-

ments, universities, international businesses, and even small to medium sized businesses.

Most of these systems are excellent examples of computational resources that are idle for

most of their lives. Using these computational systems in a grid architecture will add re-

sources to current research at many institutions. Many of these institutions use a frequent

upgrade schedule that is on a triannual, biannual, or even annual replacement schedule.

With this short technology life cycle comes the application of exciting theories in computer

science. We can see these techniques being applied in technologies today, such as virtual

machines, computational grids, and virtual networks [13]. With the latest advances in elec-

tronic and microcomputer architecture, we have seen the addition of microprocessors in

everything from wi-fi capable wrist watches to IBM’s Roadrunner Cluster topping out with

over 1 petaflops [7]. The scalability of networked systems has evolved to an interconnec-

tion of all electronic devices through the Internet and wireless/wired providers and in return

created a global interconnection of systems of all sizes. These new technologies allow the

interconnection of remote locations of our solar system to even personal cellular telephones

and personal data assistants that we use every day. With these advancements, new systems

are being built around virtual operating systems and hardware technologies like Intel’s Vir-

tualization Technology(VT) and Analog Micro Device’s Virtualization (AMD-V) [2].

With the advent of the virtualized x86 architecture in hardware, which is in most of

today’s modern workstations and servers, we can now propose a new solution for extract-

ing unused cycles from idle workstations and servers, securely. We propose a simplified

process for harvesting the maximum use of computational resources at Montana State Uni-

versity from student labs across campus. In our solution we use grid computing software in
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combination with virtual networks and our proposed multi-layer grid technique. This tech-

nique allows one to run multiple operating systems on multiple architectures at the same

time with minimal overhead and in a more secure environment. The method proposed in-

cludes a simplified layering technique that might not be useful in just our example case, but

networked systems of any size. By using this method we believe one will be able to build

a network, or virtual network, of resources already in hand.

In developing our technique we recognized that freely distributed software is often a

requirement of the research community. Therefore we chose to use software that is freely

obtainable for non-profit and research use. By using this collection of proposed software,

one is able to build a sample network on a single workstation (or multiples) with an Intel or

AMD virtualization enabled processor with minimal system and software cost. Even if VT

or AMD-V is not available, one is still able to run the virtualized system. This method is

possible at the cost of a significant increase in running time and memory size. By utilizing

software packages such Condor, Sun Grid Engine, Kernel Virtualization Machine (KVM),

and QEMU, we are able to test our hypothesis without the need for expensive commercial

software.

Our method allows for design principles to be put in place at any institution that wishes

to harness the power of idle workstations and servers for computational research. Our

grid overlay technique allows for dynamic, secure, and flexible allocation of resources for

computational research. With our model we are able to construct large grid systems with

maximum software abstraction.

In the following sections we will discuss previous research in grid computing with

or without virtualization, our own formal problem definition, our proposed methodology,

results, and conclusions. In our final section we will go over possible future work that can

be based on this thesis.



3

PREVIOUS WORK

Grid computing in today’s environment is handled by customized middleware that is

complicated to run and requires a large group to administrate [12]. With the advent of

virtualization as a tool for grid system administrators, we are now able to deploy grids that

harvest resources in a virtualized hardware environment, thus increasing the complexity of

grids, also known as “The Grid” [13]. By using virtualization, virtual networks, and virtual

data storage, we are now able to build large autonomous systems that grow and shrink

dynamically to meet the resource demands required by a specific group or job. This method,

also known as “The Cloud,” is built of a collection of dynamic and statically allocated grids

that increase administration and implementation complexity to an interesting new level

[8]. With this automatic resource allocation method, one is able to add new services and

techniques that were not available before.

A great example of grid use today is the customized systems from companies and

researchers around the globe: Google File System, Bio Informatics Research Network

(BIRN), CERN, and many others [11]. This grid oriented architecture has allowed com-

panies such as Google to have large data farms with minimal overhead and simplicity in

administration [14]. Another company’s commercial software on the forefront of “The

Cloud”, is Amazon.com’s Elastic Compute Cloud (EC2). This grid based network of re-

sources allows Amazon.com to resell virtual server resources at the cost of use, such as

bandwidth, CPU cycles, and memory usage. This revolution in system service providers

has allowed many companies to cut expenses in server hosting costs and IT overhead.

With virtualization we are now able to emulate, and in some cases directly execute,

various different operating systems simultaneously on a single computer. Hardware virtu-

alization support has been added into many new CPU architectures such as Intel x86 and
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IA-64, AMD VT , and Power PC [6, 4, 5]. This new technology allows many institutions

to run multiple servers from one single resource, therefore saving money by consolidating

hardware. This helps in cutting cost and administration overhead as well as minimizing

down time and securing operating environments. With a minimal amount of memory and

CPU overhead, one is now able to run multiple services from these devices. By consolidat-

ing resources, virtualization has also allowed many companies to move to a more relaxed

and stable upgrade path for software. Since the addition of virtualization features to many

popular operating systems, many in the information technology area have viewed this move

as beneficial for upgrade paths and minimal down time of services. One is able to change

system services with minimal down time through live migration of virtual machines [3].

With the addition of hardware virtualization to architectures such as Intel’s Virtual

Technology for IA32, x86-64, and IA64, we are now able to have jobs that require high

performance computing contained in virtualized environments. By adding virtualization

features to the already famous x86 architecture, Intel has created a hardware solution for

institutions desiring to make use of virtual machines. This now allows institutions the abil-

ity to run performance software in static virtualized containers. This has allowed for the

harvesting of many idle CPU cycles in workstations and servers through grid networks. By

integrating the design techniques of grid computing with virtualization, one now has the

ability to queue on demand services based on resources needed by the applications at any

typically idle workstation or server [13].

Resource centric grid computing is a method of distributed computing that has been

researched for many years and is finally finding its place in consumer products, such as

Amazon EC2. Middleware for grid systems, such as the Condor project at The University

of Wisconsin-Madison, Sun Microsystems Grid Engine, BOINC, and the Globus Toolkit,

are solutions that many researchers have used in the past to build grid systems [1]. There are

also a variety of custom research applications such as SETI@Home and Folding@Home
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that use a screen saver, or a low priority background application, that runs on resources

in a pool [10]. All of these middleware control applications allow for harvesting of re-

sources by simply adding a customized tool set for grid administrators. Some of the basic

tools included are queue management, job preemption, resource management, and data

management. With these services one is able to implement high performance computing

on computational systems ranging from a simple workstation to complicated large system

clusters.

Combining virtual machines with grid management is a technique that is relatively new

to computer science, emerging in the past two decades. Other systems, such as the In-VIGO

system from the University of Florida, have integrated this technique into what they call

a "middleware solution" [13]. By adding this middleware solution, they are able to easily

administer virtual machines that are dynamically allocated from a pool of resources. By

keeping the individual resources as virtual machines they are able to start and stop a system

with minimal notice and migrate the system to a new resource by way of "snap shooting," a

novel technique that involves freezing the state of memory, CPU registers, interrupt vectors,

and the rest of the current system state by saving them to an instantaneous machine image.

By snap shooting, one can now easily migrate a virtual machine from one resource to

another with minimal down time. One can see the obvious values of this technique. For

example, if a workstation is not being used because the user is on a lunch break or home

for the evening, that workstation can be used for other purposes within the grid without

affecting the user’s experience on the resource. By developing rules for recognizing when

a workstation is available, such as keyboard and CPU idle time, one is able to schedule jobs

on resources securely in their own environment without adversely affecting users. Once a

user returns to their workstation, a snapshot of the virtual machine is taken and the virtual

machine is migrated to another free workstation or is put on hold until another workstation

becomes available.
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Although the combination of grid computing with virtual machines is powerful, many

have overlooked the simplicity in the abstraction it allows for resource allocation. The cur-

rent middleware systems are centralized for a single grid computing environment on a large

variable network. Until recently, virtualization in the grid environment has been minimal

and only being used in research and large corporations such as Google and Amazon.com

[14, 9]. In the next section we describe our approach to harvesting the unused CPU cy-

cles on the many public workstations in the Montana State University Global Student Labs

(MSU-GSL).
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METHODOLOGY

In this section we describe our problem by providing a formal problem definition and

describing our solution to this problem. Although our model is unique, the methods de-

scribed here include some that have been used in software engineering for the past decade.

The term cloud computing refers to a unique method specifically targeted at high perfor-

mance research computing. Although this model was designed for high performance re-

search computing, it’s possible to also apply this model in other areas that are outside the

scope of this thesis.

In the following we use the term resource to represent a single workstation. This re-

source may contain multiple processors or processing cores and large amounts of memory.

Problem Definition

One unique requirement of the Montana State University (MSU) Global Student Labs

(GSL) is that students must be given the highest priority for the resources they are using.

The GSL also has its own integrated network that spans across campus. This includes

specific network security restrictions, infrastructure equipment (routers, switches, servers,

etc), and physical network separation via its own fiber and wired infrastructure. Thus, if we

are to harvest unused computational cycles and memory from the GSL, we must be able

to queue jobs dynamically according to whether a resource is currently in use by a student

or not. We can determine whether a resource is in use or not based on the idle state of the

resource or other attributes of the resource. One possible solution is to queue jobs while the

student is at the resource, but restrict the amount of resources that can be used by a specific

job depending on specific resource attributes.

By using virtualization with grid computing techniques on the GSL we can harvest
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computing cycles that would otherwise be wasted. Use of the GSL for computational

research on campus is in increasing demand by the research staff of MSU.

To accomplish our goals we need to specifically define our problem. With the increased

network security, group and user policies, and unreliable system up-time or dedication of

each resource, we must be able to:

1. Suspend jobs according to the allocated resource state. (e.g. if a student logs onto

the resource while an external job is running).

(a) Can we base resource usage determination on human activity at the local side

of the resource?

2. Resume jobs without losing valuable data.

(a) Can we resume jobs depending on how long the resource has been idle?

3. Run any combination of selected hardware architectures and operating systems on a

GSL workstation according to application requirements.

(a) Are we able to queue jobs that can run on multiple hardware and software ar-

chitectures?

The above listed requirements and problem definition lead to our conclusion: there is an

underlying design principle that is missing that needs to be represented correctly. Cur-
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rent software engineering designs in grid computing and virtualization do not account for

the abstraction of multilayer grid systems that can run dynamically and be constructed re-

cursively while providing the most flexibility for an application’s required hardware and

software environments. There have been successful attempts at such systems, but their un-

derlying infrastructure is confusing and requires specific system administration knowledge

[13, 3, 9]. Dynamic and recursive grid layering is a concept that we propose will lead to

a solution. Our solution allows for the allocation of resources dynamically and recursively

according to the required application environment.

The Grid Overlay System Model

Our idea is to introduce the concept of a dynamically and recursively allocated grid

overlay system by connecting multiple middleware grid applications to form a dynamic

grid that is able to run according to all the requirements listed in the problem definition

section. With our solution, we are able to make the MSU-GSL available to researchers

on and off the MSU campus. We do this by using a combination of overlay layers that

we describe in the overlay layers section below. By using these techniques we are able to

complete the construction of another grid, which we will call the overlay grid, that is built

of virtual machines. The original grid is used to construct a dynamic allocation of virtual

machines which then connect to the overlay grid. This allows for dynamically allocated

virtual machines from the initial grid that are viewed as physical resources on the overlay

grid.

First we must define our layering technique. We borrow our basic concept of service

layering from the OSI networking model [15]. Our model (see figure 3.1) is similar to the

OSI model in that movement only occurs between adjacent layers. For example, skipping
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Figure 3.1: Grid Overlay System Model

the operating system (O/S) layer and going directly from the resource to the network layer

in the model does not make any sense. This is because we must have an operating system

present to be able to access network services and vise versa. Although we use the basic

layering concept inside each resource, there are also modifications to the OSI networking

model that need to be mentioned. The first difference between the OSI model and the

Grid Overlay System (GOS) model is that each collection of layers is not a system, but a

resource. The second that some of the layers in our model are recursive. These layers are

further referred to as overlay layers. By this we mean that specific layers in the model can

themselves be composed of other GOS models. These specific layers can be very detailed

in how they are implemented, but they still abide by the basic concept of moving from one

layer to another without skipping other layers.

By following each layer we are then able to consolidate complex processes into a single

layer for overall system simplification. For example, in the case of virtualization we can

view a single virtual machine as an overlay layer at the operating system layer (i.e. the vir-

tual machine is a service running on its host; this virtual machine has users, applications,

a network, an operating system, and a virtual resource). By having virtualization applica-

tions such as KVM or QEMU we are thus able to include a full GOS model at the operating

system layer via virtualization. By following this simplified systems engineering process

we are able to constrain individual problems to their respective layers. For example, we

may decide that we want to run a virtual machine that contains another emulated system.
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Figure 3.2: GOS Overlay Layers

This would mean that the original resource would contain 3 overlay operating system lay-

ers. Therefore, we see that we can have n operating system overlay layers may exist on the

host. One can now see that the depth of an overlay approach is unbounded and is limited

only to the physical resource’s assets, such as RAM, processor cycles, and disk space.

Overlay Layers

Overlay layers in the GOS model are defined to be abstraction points for possibly com-

plex systems that can be contained in a single layer. A good example of an overlay layer

is one in which a virtual machine is serving resources to the application layer by way of

dynamically allocated resources from the services layer. For example, a web server may be

dynamically allocated on a grid from an idle resource to serve a web application to its users

via a virtual machine. This would be considered a overlay layer because the web server

itself is a service that requires previous levels of network, operating system, and resource

layers. So by our definition of overlay layers we are logically able to conclude that the

operating system layer (through virtualization), the network layer (through Network Ad-

dress Translation(NAT) or Ethernet bridging and many other techniques), and the services

layer (by way of virtual machine spawning through grid services), are all layers that are

contained on a single resource.

The OS layer may contain multiple virtual machines through direct virtualization. In

modern systems, a single resource may have multiple operating systems installed and man-
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Figure 3.3: Example VLAN Topology (Red Nodes)

aged by a hypervisor. The hypervisor acts as a bottom level operating system. It contains a

scheduler for virtual machines that can be hosted at the operating system layer. The hyper-

visor is the master control mechanism for the resource that allows for containment of each

individual virtual machine and schedules their computational time, memory usage, and disk

usage on the single physical resource according to predefined configurations. Through this

method we view the operating system layer as a overlay layer.

We can view the network layer as an overlay layer through which many techniques

allow for virtual network systems. One example of virtual networks is the virtual local

area network topology. This topology allows for the creation of a virtual network that is

physically contained inside a larger physical network topology. One can imagine a phys-

ical network that connects multiple resources together. If we wanted to create a subset of

resources from that physical network, that are virtually connected through specific routing

techniques, this would be considered a VLAN (see figure 3.3) .

Another technique used commonly in network topologies is network address translation

(NAT). NAT is a topology in which one physical network is connected to another physical

network through a gateway. This means that all addresses on the two separate networks are

hidden from each other. In other words, the only way for two resources that are separated

in each of the physical networks to communicate is through their own gateways (see figure

3.4) .

Bridging is another example that is commonly used to assign multiple addresses in
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Figure 3.4: Example NAT Topology

Figure 3.5: Example Bridged Topology

a physical network to a single resource. This is very useful for virtual machines in that

a hypervisor can bridge network interfaces (through I/O redirection) directly to a virtual

machine from the physical network. This allows a virtual machine to appear as a unique

physical resource to the rest of the network (see figure 3.5) .

We are able to view the network layer as an overlay layer because of the capacity for

creating virtual machines that are viewed as individual physical resources to the network.

As one can see, the underling network structure can be very complicated in the network

layer. We hide this complex structure by using the network layer as an overlay layer as

well.

Viewing the service layer as an overlay layer allows for a unique way of building struc-

tures commonly referred to as the cloud or cloud computing. Using grid computing models

one can harvest idle resources from a group of resources, such as a cloud, and in return

use these resources according to their idle time, specific processor usage, memory usage,
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disk usage, and other resource specific statistics. One can see how it would be beneficial

to queue virtual machines on these idle resources for various uses by way of grid models.

Once a resource reaches an idle level that makes it available for grid computing use, a vir-

tual machine could be queued to it. Through this technique we view the service layer as an

overlay layer.

Resource Layer

Now that we have explained the basics of the layering technique, we can now provide

detail explaining each layer’s specific abstraction technique. In the case of the resource

layer we are considering a resource to be a physical, or virtual (in the case of a overlay

layer), computer. The resource layer therefore contains specific details about a resource,

such as its RAM size, RAM usage, CPU frequency, CPU usage, disk size, disk usage, and

many other resource statistics. By defining these statistics in the resource layer we are able

to abstract a full physical or virtual system with unbounded details as a single resource.

Each resource is treated as a separate entity, or in other words a single computer, which

may have multiple processors or cores. For example, in the GSL there will be more than one

resource present in each lab. In other words every physical computer is considered a single

entity, and therefore a single resource. In the MSU-GSL, one lab may have up to 70 or even

more resources in a single location, each with 1, 2, or more processors. This focus on each

individual resource allows for separation of resources at the physical hardware level and

will allow us to set specific rules for allowing external jobs to run on a workstation based

on individual workstation statistics.

We use the resource layer to define specifics about each workstation or server and to

identify not only the hardware statistics, but also the capabilities of the system and its day-

to-day use. A simple question and answer session, like the one described here, can be used

to describe each resource and therefore show specific characteristics about it.
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1. Statistical Questions

(a) How fast is the processor?

(b) How much Random Access Memory(RAM) does the resource have?

(c) How much disk space is available for use?

2. Use-case Questions

(a) What times of day is the resource available?

(b) Can the local user reboot the resource at will?

(c) Can the resource be used for computational research while a local user is using

the resource?

From these listed questions one is able to determine specifics about the individual resource

and make informed decisions about the remaining layers of the model based on this infor-

mation.

Another issue at hand is whether the resource is able to run a virtualized environment

with minimal overhead. For this to be possible the resource must have specific hardware

that is able to run another operating system in a virtualized environment with minimal

resource overhead. If the hardware supports VT, described earlier in the previous work

section, then minimal overhead will result by running multiple operating systems in virtual

environments on the resource. If the resource does not have VT it is treated as one that

may require an emulated environment and thus could result in a large amount of overhead
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Figure 3.6: Operating System Overlay Layer

when running a virtual machine. This overhead comes from the requirement to emulate

a hardware system in software. In such cases registers, I/O, and memory addresses that

are implemented in hardware a physical CPU need to be emulated in user space for the

virtual machine running on a system. An example of required emulation would be running

precompiled PowerPC software on a Intel x86 architecture. Since the PowerPC machine

code is different than the Intel x86 machine code, a program (emulator) must be available

(in Intel x86 machine code) that interprets the PowerPC machine code. Execution of the

interpreter program introduces substantial overhead.

Operating System Layer

In the operating system layer we specify what operating system is installed that has

direct access to the resource. This layer can be considered an overlay layer through which

access to virtual resources through virtualization or emulation may occur. Hence, with the

advent of virtualization, via a virtualized-based operating system (also known as the hy-

pervisor), we are now able to host multiple operating system environments on one physical

resource.

The operating system layer is intended to provide a simplified means for virtualiza-

tion by the hypervisor. Using a hypervisor to control the hosting of multiple virtualized

operating systems allows for many systems concurrently. This means that the resource’s

hardware registers, I/O, and memory can now be used by multiple virtual machines on a
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single hypervisor. This scheme allows a virtualized operating system to dynamically al-

locate processor cycles, RAM, and disk from the physical resource transparently via the

hypervisor Int [6], AMD [4].

A great example of service virtualization, controlled by a hypervisor, is a web server.

Most web hosting computers today host multiple websites on one physical resource at

the service layer using virtual hosts. Without virtualization, hosting multiple websites on

a single computer was in the past prone to security issues. For example, if an attacker

hijacked a single website because of a security flaw, it is also likely that the attacker could

affect other hosted websites because the entire server is now vulnerable. In the case of

virtualized operating systems, an attacker can now only affect a single web server because

the actions of the attacker are restricted to the single virtualized operating system.

Network Layer

The network layer can include many different details about a resource’s physical con-

nection and communication with other resources. This layer gives specifics on how data

is transferred between different resources, including virtual machines. In the case of non-

virtualized resources, one could envision a network that physically connects multiple re-

sources for communication. For example, in modern day networks the task of transferring

data on a network is handled by Ethernet and TCP/IP protocols. By using the network layer,

we are able to connect multiple resources. This collection of resources can be considered

as a pool of resources.

Through the common standard protocols TCP and IP we are able to interconnect virtual

machines and non-virtualized machines through various techniques. By using bridging,

NAT, VLANs, TCP hole punching, VPNs or other well-known techniques such as semantic

overlay networks, we are able to blur the distinction between virtual resources on a network

and physical resources. With these and other network techniques we can even break apart
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Figure 3.7: Network Overlay

the basic conception that a LAN must be contained inside a distinct physical space. With

NAT we can hide the fact that a single resource is running multiple virtual machines or even

multiple physical machines as a gateway or router. In return, this allows the network to be

available to not just one physical machine but an unbounded number of virtual machines

hosted on the same resource.

These techniques thus allows us to connect virtual machines directly to a network as if

they were individual physical resources, when in essence they are just a virtualized envi-

ronment running on a single physical resource. In recognizing that we are able to manage

data on multiple machines, whether they be physical or virtual, shows this is an overlay

layer in the GOS model. By incorporating virtual networks into today’s modern network

infrastructures we are now able to view virtual machines as equivalent to physical machines

when it comes to network topology. Because of techniques such as bridging, NAT, and in-

stallation of multiple physical network interface cards (NICs), we are now able to create

networks that involve not only physical machines but virtual machines as well. By keeping

our network layer as an overlay layer we can start using techniques such as self organizing

peer-to-peer overlay networks.

Services Layer

The services layer is a key layer in the GOS model and is where the “Grid” distinction

of GOS is initiated. This layer contains services such as grid control middleware, web ser-
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Figure 3.8: Service Overlay Layer

vices, file transfer services, and other required services to complete the task of organizing

the connection to previous layers to pass on to the application and user layers. This layer is

key to adding the overlay capabilities to the GOS model and is the last overlay layer in the

GOS model.

At the service layer we integrate simple tasks such as resource allocation, data handling,

and resource scheduling. This layer is where all middleware grid applications, mentioned

in the previous work section, exist. Here resources are pooled and services are extended to

the application layer for use by the user. This last level of recursive abstraction can be used

to queue virtual machines to specific resources based upon resource details outlined in the

resource layer section. This layer’s abstraction is used to create a large complex system

that appear simple on the surface.

By using grid middleware applications we are able to connect or reconnect a virtual

machine to the same grid network or a different network entirely through the overlay nature

of the network layer. This makes grid overlay possible. By dynamically allocating virtual
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machines we can use the service layer to run applications on virtual machines selected from

a dynamically allocated pool of virtual resources (see figure 3.8 for a visual representation).

This provides an advantage for systems that must dynamically change to match varying

resource loads and resource availability. With this technique a resource pool is directly

scalable to many changing factors in the physical computing environment in general. This

technique is referred to as Cloud Computing [8].

Application Layer

The application layer is targeted to a specific user or group of users of a specified ser-

vice that was defined in the service layer. This is where custom or prebuilt applications are

set to interact with the user directly. Examples of such applications in this layer include

web applications similar to G-Mail, Google Docs, or other control applications. All such

applications hide the underlying layered support structure from the user. Obviously, ab-

straction allows the underling system to be hidden from the user through the cloak of the

front-end application. This layer is very important in that it hides specific details of the

underlying implementation from the user and simplifies the design of the overall system.

User Layer

The user layer is specifically tuned for a user’s interaction with the GOS model. This

can be specified for human interface devices that allow the user to interact with the actual

applications. Examples of user layer interaction devices are cell phones, personal comput-

ers, workstations, and even dumb terminals. These “end of the line” devices allow users

to interact with grid resources through the proper layers of abstraction in the GOS model.

Through proper software development in the application layer, one could run any applica-

tion they would like on the grid without having to know the underling infrastructure and

complicated grid overlay system.
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RESULTS

The Montana State University Grid

The GOS model was first put into use when the dynamic grid for the Montana State

University Global Student Labs (MSU-GSL) was constructed. Our system model was used

to build a dynamic computational environment for use in both student and faculty research

on campus. By using idle time on workstations in student labs we were able to harness

the power of over 360 computers with multiple cores that have an overall floating point

operations per second (FLOPS) of 1.4 teraflops. This massive amount of computing power

allows for a range of valuable uses not only in research computing, such as is required by

the Colleges of Letters and Sciences and Engineering, but also as needed for render farms

that are in use by the College of Art & Architecture. We are able to demonstrate that the

GOS model works well in these environments.

Resources

The MSU-GSL contains many computers from Dell Inc. that are cutting edge worksta-

tions. The labs are also on an upgrade schedule that ensures that the computers are updated

every four years. Through this replacement strategy, we are able to keep our systems up

to date. The GSL has 13 labs, as well as randomly placed computers in the Student Union

Building (SUB). The labs contain a range of 15 to 70 workstations that can be used by any

enrolled student on campus. The labs resources are available both for students using them

for individual homework and assignments and for formal instruction.

Operating System Layer

MSU’s GSL provides a single operating system for student use. Given that Microsoft’s
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Windows XP operating system is widely used in work environments around the globe,

MSU-GSL has chosen this operating system as its main choice for students. This is a

common choice in academic institutions. Because of this choice, we are constricted to the

Windows XP operating system with KQEMU as our only possible open source solution for

running virtual machines in the GSL.

To take full advantage of the benefits offered by hardware virtualization, we have to

enable hardware virtualization through a plug-in technique, using Windows XP as the hy-

pervisor. To accomplish this task we use QEMU, which is an open source emulator that

has been modified to use kernel hardware virtualization in Windows XP. The hardware vir-

tualization method provided by QEMU is called KQEMU, where the K stands for kernel

level virtualization. By simply installing a dynamic linked library (DLL) file in Windows,

we now able to take full advantage of kernel based hardware virtualization. As explained

in the previous work section we are now able to use virtualization with minimal software

overhead. QEMU is used as the application interface for the virtualized container making

it the primary hypervisor interface.

Network Layer

The MSU-GSL network is a self contained network that connects multiple labs across

the MSU campus. Labs are distributed across campus housed in many different buildings.

This placement is intended for the convenience of faculty and students.

Since the GSL network is housed in separate buildings, an underlying network infras-

tructure must be present to allow for connection between resources. In the GSL case, all

labs are connected through a fiber network that returns to a central location on campus.

This network is a high-speed TCP/UDP/IP network with public IP addresses. This public

address space has advantages and disadvantages. One disadvantage is that with global IP

addresses there is a limit as to how many IPs are available. To handle our issue of installing
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multiple virtual machines on each physical resource in the GSL we decided to use simple

port redirection via our hypervisor’s control mechanism and scripting. In other words, if a

specific virtual machine needs access to specific TCP and/or UDP ports, then the hypervi-

sor is set to redirect these ports to the VM at VM boot time through command line options.

This technique requires that we redirect these ports ahead of the service layer integration

to allow for access to our VM from the public IP network. Our first proof of concept was

scheduling a Linux VM to open Secure SHell (SSH) access through TCP port 22 and at-

tempt to gain access to this virtual machine through the SSH client. This was a success and

showed that port forwarding was working properly in KQEMU. Since we are able to redi-

rect ports from the hypervisor to a VM, we are also able to add specific network services

to the service layer through this redirection technique.

Service Layer

The MSU-GSL service layer is completely handled by the grid application middle-

ware Condor from the University of Wisconsin Madison. This software package allows for

dynamic queuing of jobs through the simple grid architecture mentioned in the previous

work section. The software requirements for Condor include a master system that keeps

track of resources, queues, and jobs. With this software we are able to centrally locate all

applications, data files, and results for jobs, and allow access to every workstation on the

GSL network for computational needs. Using Condor we are able to queue multiple jobs

across our GSL network using simple grid queuing and management.

From this layer we recursively queue another resource layer using the techniques de-

scribed in the service layer section. By this method we are now able to queue multiple VMs

that have multiple emulated/hardware and software architectures. By utilizing the overlay

method at the service layer we are able to build another overlay grid by using Sun’s Grid

Engine (SGE). This allows us to create an entirely separate set of queue-able VMs con-
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nected by another middle-ware grid application for dynamic allocation of virtual resources

on multiple operating systems, including Ubuntu Linux, Windows 2003, and Windows XP.

In return this allows us to queue computational tasks via a second (virtualized) service

layer. By adding this second grid we are then able to queue multiple instances of applica-

tions, such as WU-BLAST, with different inputs for each job via SGE. Using the overlay

nature of the model, we found this option to be a very powerful one for running jobs that

require dynamic input. Using this queuing approach allows for a simplified user experi-

ence that is mentioned in the user layer section. In our approach we use scripts by way of

two features built into Windows XP: the DOS command line interface and the Visual Basic

Script engine. We are thus able to build a virtualized system at the services layer.

Application Layer

For the MSU-GSL grid we require the capability to queue multiple VMs that have

specific software requirements for each application. Because of the previous layers in our

model, we are able to meet most applications’ requirements by building specific application

environments through virtualization. This allows for maximum application compatibility

and simplified administration by abstracting the previous layers to the user through an

application’s natural interface. One is thus now able to build a virtualized container, and

using the service layer, queue multiple instances of the same VM. At the application layer,

scripting is used to tie each individual container to a larger system by connecting the service

layer to the user layer transparently.

User Layer

The user layer is specific to each application as described in the user layer section. For

example, our current implementation of 3D Studio Max’s Backburner render farm suite

uses specific application features to allow for dynamic rendering of data across the render
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Nodes Frames Resolution Format DPI Time
Building 1 1 1920x1280 TIFF 300 3:32:16
Building 25 1 1920x1280 TIFF 300 10:03:10

Robot 1 600 1920x1280 (1080p) AVI 75 2:34:12
Robot 25 600 1920x1280 (1080p) AVI 75 8:14:56
Simple 1 200 1920x1280 (1080p) AVI 75 0:21:32
Simple 25 200 1920x1280 (1080p) AVI 75 0:45:48

Table 4.1: 3D Studio Max Render Times

farm. This allows for simple integration into our computational grid without retraining the

user about how their application works. Through the Backburner Queue manager we are

able to have complete user control over the virtual cluster. This included all of the queuing

features that are associated with Backburner from Autodesk.

Run-time Statistics

After the creation of our overlay network we were able to run some basic tests using

the aforementioned application. The application that we tested with our overlay grid was

3D Studio Max with Backburner Manager from Autodesk. This application was installed

in its own virtual machine that was used to contain the execution environment. By using

the steps provided in the GOS model we were able to construct a render farm using non-

modified applications that were initially meant for cluster computing. For our tests we used

a very detailed still frame and a collection of two animations with different lengths. The

results for these renderings is shown in table 4.1 and are viewed in figure 4.1, figure 4.2,

and figure 4.3.
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Figure 4.1: Sample Building

Figure 4.2: Moving Robot

Figure 4.3: Simple Quick Scene
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CONCLUSIONS

Future Work

We can envision many features that would improve MSU-GSL. One would increase the

distribution speed of the virtual machine deployment by implanting new techniques in grid

overlay systems, such as P2P data transfer. This data transfer mechanism would minimize

the initialization time required for deploying multiple virtual machines across the network

all at once. This would be helpful, allowing the user to query virtual machines with minimal

wait time for the transfer process.

Another possible extension that could be made to the GOS model is that of virtual re-

source population on previously constructed systems such as Amazon’s EC2. The question

would be quite simple. Is one able to implement the GOS model on top of an existing

elastic architecture such as EC2?

As processors get smaller, they can be used in increasingly smaller devices, such as

cell phones. Wireless communications are now a part of our everyday lives. The GOS

model is a unique model that can be used in environments other than research computing.

For example, one could imagine using a P2P overlay network for data propagation on

wireless networks. Is it possible to implement the GOS model in a cellular network for

data transfer through the network layer’s recursive nature? It might be possible to identify

many techniques that are static in other models that could be dynamic in the GOS model.

A collection of specific applications could be examined further to see how they might fit

into the GOS model. For example, Message Passing Interface (MPI) applications were not

considered in our model. It might be possible to utilize these applications in the application

layer for multilayer communication techniques. For example, one could possibly use MPI

to handle communication between multiple resources at the application layer to create a
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virtual network layer through message passing.
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