
FP-TREE MOTIVATED SYSTEM FOR INFORMATION RETRIEVAL USING

AN ABSTRACTION PATH-BASED INVERTED INDEX

by

Richard Arthur McAllister

A thesis submitted in partial fulfillment
of the requirements for the degree

of

Master of Science

in

Computer Science

MONTANA STATE UNIVERSITY
Bozeman, Montana

August, 2009

c© Copyright

by

Richard Arthur McAllister

2009

All Rights Reserved

ii

APPROVAL

of a thesis submitted by

Richard Arthur McAllister

This thesis has been read by each member of the thesis committee and has been
found to be satisfactory regarding content, English usage, format, citations, biblio-
graphic style, and consistency, and is ready for submission to the Division of Graduate
Education.

Dr. Rafal A. Angryk

Approved for the Department of Computer Science

Dr. John Paxton

Approved for the Division of Graduate Education

Dr. Carl Fox

iii

STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfullment of the requirements for a master’s

degree at Montana State University, I agree that the Library shall make it available

to borrowers under rules of the Library.

If I have indicated my intention to copyright this thesis by including a copyright

notice page, copying is allowable only for scholarly purposes, consistent with “fair

use” as prescribed in the U.S. Copyright Law. Requests for permission for extended

quotation from or reproduction of this thesis in whole or in parts may be granted

only by the copyright holder.

Richard Arthur McAllister

August, 2009

iv

DEDICATION

To me - I rock!

v

ACKNOWLEDGEMENTS

I wish to thank my advisor, Dr. Rafal Angryk, for his outstanding leadership,

quick wit, and persistence. As well, I wish to thank my committee for their

advice, input, and mentoring. I would also like to thank Robbie Lamb, Monika

Akbar, and Mahmoud Shahriar Hossain for their support, both morally and sci-

entifically, and for their friendship. Steven Gertiser provided excellent advice,

support and encouragement which was valuable in seeing this project through

to completion. The group of former Montana State University computer sci-

ence graduate students collectively known as the “Pigeons” provided me with

an outlet full of friends all of whom understand computation and will go on

to do great things in the field. Most of all, I would like to thank my family

and especially my parents, Frank and Marcia, for their patience, support and

encouragement. My brother Francis must not escape mention here because it

was he who suggested that I get into this line of work in the first place.

Funding Acknowledgment

This work was kindly supported by RightNow Technologies and the National

Aeronautics and Space Administration.

vi

TABLE OF CONTENTS

1. INTRODUCTION ..1

Motivation..1
Scope ...2

2. BACKGROUND...3

Information Retrieval Background..3
Elementary Information Retrieval System Architecture5

Document Corpus..5
Parsing Linguistics...6
Word Vectors ..7
Indexers and the Inverted Index ...8
User Query and the Free Text Query Parser ..8
Scoring and Ranking and the Ranked Results.. 10

Construction of Inverted Indices ... 10
Evaluation of Information Retrieval Systems ... 11

Frequent Pattern Mining ... 14
Support .. 15
FP-Growth Frequent Itemset Mining .. 16

Taxonomies and Frequent Patterns in Text Processing 21

3. APPROACH .. 25

Overview .. 25
WordNet... 27

Synonomy ... 28
Hypernymy ... 28
Hyponymy .. 28
Polysemy .. 29

Abstraction Paths ... 30
Preprocessing of Documents .. 31

Word Vector Creation.. 32
Document Graphs ... 33
Discovery of Document Abstraction Paths .. 34

Construction of Document Graphs ... 35
Document Graph Construction for Document 1 35
Document Graph Construction for Document 2 40

The Master Document Graph .. 45
Document Abstraction Paths ... 45
Document Inverted Index... 53

vii

Mining the Master Document Tree ... 56
Minimum Support ... 56

Building Abstraction Path-Based Inverted Indices... 65
Indexing System Architecture .. 67
Processing of Queries .. 67

The Query Tree and Query Abstraction Paths....................................... 68
Selection of Related Documents from the Inverted Index 68
Ranking .. 68

4. EXPERIMENTAL EVALUATION... 70

Investigations .. 74

5. CONCLUSIONS AND FUTURE WORK ... 85

Future Work ... 85

REFERENCES CITED.. 88

APPENDICES .. 91

APPENDIX A: Symbols and Abbereviations .. 92

viii

LIST OF TABLES
Table Page

1 An Example of a Small Document Corpus ..6

2 A Word vector vable, denoted as T , with examples of tfidf values con-
structed for the document corpus in table 1 (stopwords included to
preserve simplicity)..9

3 A Database of Transactions [1] ... 18

4 Random Data. Each line represents a “document” with the “words”
represented as letters from a through g. .. 34

5 Example tfidf table based on the random data....................................... 35

6 All Newsgroups Included in the 20 Newsgroups Dataset......................... 70

7 10 Newsgroups Used for the Investigations .. 70

8 Queries Used for the Investigations... 71

ix

LIST OF FIGURES
Figure Page

1 Overview of an Information Retrieval System..6

2 Inverted Index Creation Process (stopwords included to improve sim-
plicity) ... 12

3 Precision vs. Recall: hypothetical... 14

4 FP-Tree After the Insertion of Transaction 1... 19

5 FP-Tree After the Insertion of Transaction 2... 20

6 The FP-Tree after all transactions have been inserted............................ 20

7 A Prefix Paths for Item p .. 22

8 A Conditional FP-Tree for 1-itemset p.. 22

9 The Ontology Abstraction-Based Information Retrieval System.............. 26

10 The types of relationships that compose WordNet 29

11 Time to create document graphs .. 43

12 Memory usage for creating document graphs... 44

13 The Master Document Graph... 45

14 Numbers of Paths and Numbers of Itemsets for 20,000 Document Set
for Support = 0.01 and Number of Original Keywords = 25083.............. 66

15 Changes to the Elementary Information Retrieval System Architecture... 67

16 Word Vector Graphical Representation ... 69

17 Path Length Investigation Results: Precision at k 75

18 Path Length Investigation Results: Recall at k...................................... 77

19 Number of Abstraction Paths in the Inverted Index and the Average
Inverted Index Row Length for Path Length Investigations 78

20 Path Popularity Investigation Results: Precision at k 79

21 Path Popularity Investigation Results: Recall at k................................. 80

22 Number of Abstraction Paths in the Inverted Index and the Average
Inverted Index Row Length for Path Popularity Investigations 81

x

23 Precision vs. Recall: misc.forsale (the worst results) and sci.med (the
best results) .. 82

24 Precision vs. Recall: Path Length Investigations 83

25 Precision vs. Recall: Path Popularity Investigations 84

xi

ABSTRACT

Language ontologies provide an avenue for automated lexical analysis that may
be used in concert with existing information retrieval methods to allow lexicographic
relationships to be considered in searches. This paper presents a method of informa-
tion retrieval that uses WordNet, a database of lexical ontologies, to generate paths of
abstraction via lexicographic relationships, and uses these relationships as the basis
for an inverted index to be used in the retrieval of documents from an indexed corpus.
We present this method as a entree to a line of research in using lexical ontologies to
perform graph analysis of documents, and through this process improve the precision
of existing information retrieval techniques.

1

INTRODUCTION

Information retrieval techniques relying on “bag of tokens” approaches, which

reduce both query and document representations to lists of words without regard to

position or cardinality, have done well with regard to generalized information retrieval,

and such success would indeed lead many laypersons to believe that information

retrieval no longer requires consideration. Practical examples of the success of the

“bag of tokens” approach are in the popular domain and, with all of their frustrating

exceptions considered, are very useful. This usefulness may be a function of ease of

use coupled with the flexibility of language and the multitude of ways to express a

single thought. In a search, one may attempt many combinations of words expressing

the same thought when trying to satisfy an information need. But in the end, domains

exist in which greater specificity is demanded in the result set.

Motivation

The situations that demand greater precision may be in engineering or the sciences,

where terminology often exhibits dynamic characteristics. With these considerations,

a probabilistic information retrieval approach taking into account words’ relationships

among each other with respect to common lexical ontologies is perhaps a prudent

method.

The use of lexical ontologies from computational lexicography and association rule

techniques from data mining provide the building blocks to the method described in

this investigation. Lexical ontologies provide a comprehensive framework for the

language used in the data under consideration in the vernacular of whoever has the

information need. For example, the lexical ontology WordNet provides a generalized

2

framework of the entire English language. This paper presents a method for using

this ontology, along with frequent pattern mining to perform information retrieval

via coupling abstract terms to terms that appear in the text.

Intersecting paths of term derivation may also be used to identify the proper

meanings of terms from their contexts. Terms appearing together in context may

lead to certain common abstractions having a greater degree of significance than

other abstractions. This may lead to the proper definition of a term being identified.

Scope

The following presents a detailed description of this work. The next section

presents a background on information retrieval that includes a general description of

the process for constructing an inverted index and methods for evaluating the effec-

tiveness of information retrieval systems. The next section describes frequent pattern

mining without candidate generation. After information retrieval systems have been

described generally, we then describe our system, its governing principles, and its

architecture. Following the system description, a survey of our experimentation and

results is given.

The main contribution of this work is a framework for an information retrieval

system that is based on frequent abstraction paths as opposed to a keyword-based

approach. To this end, we have created a frequent pattern-based mechanism for

frequent abstraction path discovery that takes advantage of hierarchically-organized

background knowledge. We present preliminary results as a “proof of concept.”

3

BACKGROUND

Before detailing our approach to information retrieval indexing several important

technologies should be discussed. Our approach was assembled using a combination

of these technologies, including elementary information retrieval methods, frequent

pattern analysis, and language ontologies.

Information Retrieval Background

Information retrieval is the process of locating information in a collection of doc-

uments (usually text) on a particular topic by using a system constructed to process

queries for that corpus. Commonly, search engines such as Google and Yahoo feature

familiar implementations of these systems and are used ubiquitously. Also, specialized

information retrieval systems, such as the INQUERY [2] system at the University of

Massachusetts are used in document control systems in corporate and research envi-

ronments that organize information regarding scientific research, safety procedures,

legal proceedings, and a variety of other topics.

To make a proper study of information retrieval we need to define exactly the

nature of the problem on which we are working. Manning [3] defines information

retrieval as:

Information retrieval (IR) is finding material (usually documents) of an

unstructured nature (usually text) that satisfies an information need from

within large collections (usually stored on computers). [3]

The term material of an unstructured nature, or more appropriately unstructured

data refers to data that does not have a clear, semantically overt, easy-for-a-computer

4

structure [3]. Due to the free structure of the spoken and written word, text docu-

ments fall into this definition of unstructured data. Even though there are semantic

and syntactic rules of grammar that govern the processes of speech and writing, these

rules yield structures that are unreliable and unpredictable with respect to compu-

tation. The dynamic nature of language, the misuse of rules in speech and writing,

and the sheer multiplicity of combinations that proper use of these rules may yield

are just three causes of this uncertainty.

The popularity and apparent effectiveness of web search engines such as the afore-

mentioned Google and Yahoo may lead laypersons to believe that IR is no longer a

problem that requires significant effort in research and that whatever anyone needs

can be found very quickly using a technology that has already been deployed in large

measure by these entities. But as these entities have created products that address the

general issue, namely that of web search (or information retrieval on the World Wide

Web) this conclusion is flawed. A major difference between these systems and their

domain-specific relatives can be explained in terms of the relative importance that

web search engines put on two measures of information retrieval, namely precision

and recall.

Given a query q performed on a collection of documents D, precision (p), the

ratio of relevant documents to retrieved documents, is a measure of what fraction

of the returned results Dq are relevant to the information need of the user [3]. An

information need is the topic about which the user desires to know more and is

codified, to the best of the user’s ability, in the query [3]. Recall (r), the ratio

of returned documents to all documents relevant in the collection, is a measure of

what fraction of the documents in the corpus that are truly relevant to the user’s

information need were retrieved [3]. Considering the problem that web search engines

have been engineered to solve, and considering the behavior of their clientele and an

5

operating environment consisting of a vast array of documents these systems have

been engineered to produce results that concentrate on high recall rather than high

precision. This is acceptable as the World Wide Web is characterized by a large

number of documents and search engine users who usually issue short queries and

only consider the first few pages of results [3]. Algorithms such as “Page Rank” [4]

also play a role in characterizing the relevance of result sets. In other domains, such

as in relatively mission-critical, domain-specific information retrieval systems this

emphasis would yield a product that is not acceptable, as the returned results, being

of low precision are likely to contain a lot of noise. It is the reduction of this noise,

i.e. an enhancement of precision with which we are concerned.

Elementary Information Retrieval System Architecture

Figure 1 shows the architecture of a fully functional information retrieval system.

The diagram is by no means exhaustive, since there may be some methods of machine

learning included to address index formation and scoring parameters as well as mech-

anisms that enable the environment to check the spelling of the queries and handle

other anomalies such as multiple-word phrases. The figure specifically depicts the

fundamental elements with which we are concerned. The following is a description of

these elements.

Document Corpus: This is the collection of documents, referred to henceforth

as the corpus of documents and denoted as D, that are to be indexed for the IR

system and for which queries will be processed. For our purposes this collection is

finite, although some collections, such as the World Wide Web, expand without limit.

An example of a tiny document corpus can be seen in table 1.

6

Figure 1: Overview of an Information Retrieval System

Document
Corpus

Parsing
Linguistics

Word
Vectors

Ranked
Results

Free Text
Query Parser

Scoring and
Ranking

Indexers

Inverted
Index

User
Query

Table 1: An Example of a Small Document Corpus

doc text
1 I did enact Julius Caesar: I was killed i the Capitol: Brutus killed me.
2 So let it be with Caesar. The noble Brutus hath told you Caesar was ambitious.
3 I told you Brutus killed the ambitious Julius Caesar.

Parsing Linguistics: This component includes the processes that parse words,

word fragments, and phrases. This module may become rather complex, as it may

be desired that some terms that include numbers or other non-letter characters be

included in the indices. The parsing linguistics include mechanisms for discerning

what types of tokens are included in these indices.

Included in these linguistics is the heuristic method for removing stopwords. Dur-

ing this process every document is compared with a list of known stopwords (e.g., a,

an, the, his, her) that comes from an authoritative lexicographic body [5]. If a word is

7

found in this list then that word is discarded and is not considered in the calculation

and construction of an index.

Another portion of the parsing linguistics module may include the procedure for

word stemming [6]. It is common for an IR system to convert the words it indexes

into as close a canonical representation of that word as is possible to determine

using linguistic heuristics. For example, a properly stemmed version of the words

“prevents”, “prevented”, “preventing”, and “prevention” is the word “prevent.” It

is assumed that when a document uses one of the non-stemmed versions of the word

“prevent” that the document is referring to the general concept embodied in the

stemmed version of the word. Some stemming algorithms in popular usage are the

Lovins, Porter, and Snowball stemmers [7].

Word Vectors: Word vectors, denoted as T , contain measures of importance of

each word w in every document (d) in a corpus (D) to each individual document.

The vectors may be a normalized measure of importance such as the Term Frequency

Inverse Document Frequency (tfidf) measure [8]. Equations 1 through 3 depict the

calculation of tfidf values. Term Frequency (tf) divides the number of times a word is

found in a document, denoted as aw,d, by the total number of words in that document

(see equation 1). Inverse Document Frequency (idf) divides the number of documents

in the corpus by the number of documents in the corpus that contain a particular

word (see equation 2). idf uses the log of the aforementioned calculation for normal-

ization, since the product of the number of documents and the number of documents

containing a particular word may be greater than 1. It is important that a normalized

measure be used because non-normalized term frequency measurements favor longer

documents because they have a higher likelihood of having a greater multiplicity of

words. In equations 1 through 3 awd,dj
equals the number of occurrences of term wk

8

in document dj, awk,dj
is the number of occurrences of term wk in document dj, |D| is

the number of documents in the entire corpus and | {dj : wk ∈ dj} | is the number of

documents from that corpus in which term wk occurs. Table 2 shows the word vector

for the small document corpus in table 1.

∀dj ∈ D, ∀wk ∈ dj, tfwk,dj
=

awk,dj∑
wk∈dj

awk,dj

(1)

∀wk ∈ D, idfwk
= log

|D|
| {dj ∈ D ∧ wk ∈ dj} |

(2)

tfidfwk,dj
= tfwk,dj

· idfwk
(3)

Indexers and the Inverted Index: This module is charged with the construction

of the inverted index, which is the mechanism that relates words to the documents in

which they occur. The inverted index module contains the aforementioned inverted

index against which queries will be processed.

User Query and the Free Text Query Parser: This is the point of entry for the

user. It consists of an unformatted user query that is then submitted to the IR system

through its user interface. The free text query is the common query processing method

that involves the user submitting an input that is an unstructured set of words that

may include repetitions [3]. It is the query parsing method that is used in web search

9

Table 2: A Word vector vable, denoted as T , with examples of tfidf values constructed
for the document corpus in table 1 (stopwords included to preserve simplicity)

term Doc 1 Doc 2 Doc 3
ambitious 0 0.03 0.05

be 0 0.08 0
Brutus 0 0 0
capitol 0.08 0 0
Caesar 0 0 0

did 0.08 0 0
enact 0.08 0 0
hath 0.08 0 0

I 0.03 0 0.05
i’ 0.08 0 0
it 0 0.08 0

Julius 0.03 0 0.05
killed 0.06 0 0.05

let 0 0.08 0
me 0.08 0 0

noble 0 0.08 0
so 0 0.08 0

the 0 0 0
told 0 0.03 0.05
you 0 0.03 0.05
was 0.03 0.03 0

with 0 0.08 0

engines without the so-called “advanced search” option enabled. Other query engines

offer the option of using regular expressions or markup characters that clarify what

is being sought.

Normally a free text query is an ordered set of words that may contain stopwords.

Since the IR system that is under consideration here treats the query as a bag of words,

or an unordered set of words without duplicates [3], the query must be handled in a

way that facilitates this treatment. It is the responsibility of this module to perform

this function.

10

Scoring and Ranking and the Ranked Results: This module contains the logic

and attendant mechanisms for determining an order of precedence with regard to

relevance for the documents that have been returned by the query. The ranked list

of results and methods for accessing the documents in this list is returned to the user

upon completion of the search process.

Construction of Inverted Indices

An effective, but horribly inefficient method of information retrieval would be to

scan the entire dataset for the appearance of the words in each query every time a

query is issued. Such a system would clearly be unreasonable as it would require

reading each document in the entire corpus upon each query and comparing each

term in each document to each term in the query. This operation would have a

time complexity of O(|D||W ||Wq|) where |D| is the number of documents |W | is the

average number of words in each document and |Wq| is the number of words in a

query. If an IR system is to be effective there must be an efficient mechanism that

uses the words from the document corpus as an index to the documents in which

they appear. If this mechanism is not used it will be necessary for the IR system to

traverse each document upon each query, collect references as each desired word is

encountered, and then to merge the results. To this end we create an inverted index.

An inverted index is a structure used in IR systems that maps words to the

documents in which they occur. It receives the ‘inverted’ designation because usually,

when considering a document, the document may be viewed as an index that maps

documents to words, not words to documents. An inverted index facilitates efficient

keyword searches since it provides an efficient secondary access path to the documents

via their constituent words. For a set of words, a multiplicity of documents in the

corpus may contain the same set of words. Using this idea, commonalities among

11

these word uses may be exploited to facilitate the retrieval of documents addressing

common subject matter, or at least refer to their disparate subject matter in similar

ways.

The creation of an inverted index proceeds as detailed in algorithm 1. The process

consists of a collection phase, a sort phase and finally a collapse phase. Figure 2

depicts the results from each of these three steps. The document corpus, in this case,

consists of the two documents at the top of the figure; Doc 1 and Doc 2. The first

two columns show the collection of terms (“term” in figure 2) and their associated

document identifications (“docID” in figure 2) after the indexing of both documents.

The next two columns show the alphabetical ordering of the terms with duplicate

terms appearing consecutively. The final two columns show the completed inverted

index with each term, the term’s frequency and the term’s postings list. As may be

seen from the example in figure 2 the inverted index allows a user to locate a document

based upon the occurrence of a word or an assemblage of words. For example, it can

be determined from the inverted index that the word “Caesar” appears in documents

1 and 2. Furthermore, all that is required to obtain results from a query containing

a multiplicity of words would be to collect the references in the postings list for each

term and perform a join on each of these collections.

Evaluation of Information Retrieval Systems

A standard measurement of the quality of an IR system is the somewhat etherial

concept of user happiness [3]. This is a concept that codifies the recognition that

an exhaustive search of a document corpus with an eye towards achieving high recall

will not always return results to the user in an acceptable time frame or, depending

on the search logic, will contain erroneous entries due to overfitting of the data. The

user would most likely be happier with a system featuring lower precision, higher

12

Figure 2: Inverted Index Creation Process (stopwords included to improve simplicity)

Doc 1: I did enact Julius Caesar: I was killed i’ the Capitol: Brutus killed me.
Doc 2: So let it be with Caesar. The noble Brutus hath told you Caesar was ambitious.
term docID
I 1
did 1
enact 1
Julius 1
Caesar 1
I 1
was 1
killed 1
i’ 1
the 1
capitol 1
Brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
Caesar 2
the 2
noble 2
Brutus 2
hath 2
told 2
you 2
Caesar 2
was 2
ambitious 2

⇒

term docID
ambitious 2
be 2
Brutus 1
Brutus 2
capitol 1
Caesar 1
Caesar 2
Caesar 2
did 1
enact 1
hath 1
I 1
I 1
i’ 1
it 2
Julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

⇒

term:freq. → postings
ambitious:1 → 2
be:1 → 2
Brutus:2 → 1 → 2
capitol:1 → 1
Caesar:2 → 1 → 2
did:1 → 1
enact:1 → 1
hath:1 → 2
I:1 → 1
i’:1 → 1
it:1 → 2
Julius:1 → 1
killed:1 → 1
let:1 → 2
me:1 → 1
noble:1 → 2
so:1 → 2
the:2 → 1 → 2
told:1 → 2
you:1 → 2
was:2 → 1 → 2
with:1 → 2

recall, and a short query time, relying on their instincts to perform refinements on

the results once they have been returned [3]. Furthermore, sometimes the priorities

of the user base favor higher recall and a willingness to wait longer for it. In sum,

13

Algorithm 1: Creating an Inverted Index [3]

input : D where d is a document in corpus D
output: Ω where ω is an inverted index entry in inverted index Ω

begin1

forall d ∈ D do2

Create Wd, the list of words in document d.3

Add Wd to the term-document list L.4

Sort L according to the alphabetical order of W , where W =
⋃
d∈D

Wd
5

forall w ∈ L do6

Create inverted index entry ωw with postings list πw a reference to all of7

the documents in which w is found

end8

user happiness is highly dependent upon the behavior of the users and the size and

behavior of the corpus.

Depictions of the way that precision and recall vary in relation to one another are

important in order to conduct measurable, scientific investigations into the quality

of an IR system. Figure 3 shows two plots; one where the results of a hypothetical

information retrieval are perfect, and one more realistic depiction. For the perfect

results, the precision vs. recall plot does not deviate from a precision of 1 for all

recall levels. For the other results (Path Length <12, 12>, to be discussed in the

chapter entitled “Experimental Evaluation”), it can be seen that when the results

are not perfect but do exhibit a distribution of relevant documents that has more

relevant documents positioned near the top of the results, for greater recall levels a

corresponding decrease in precision will occur.

14

Figure 3: Precision vs. Recall: hypothetical

Frequent Pattern Mining

Frequent Pattern Mining has its genesis in commercial market basket analysis. In

this domain commercial entities, such as stores seeking to optimize product placement

and/or procurement, attempt to maximize the utility of an array of business factors

by analyzing which products are sold together, i.e., appear in the same “basket.” The

objective of frequent itemset generation is to find all of the items that occur together,

i.e. are purchased in the same transaction, in a frequency that satisfies a minimum

support threshold [9]. Using this information, the business may be able to optimize

their supply strategy, store product placement, etc.

15

The relationship between transactional frequent pattern mining and textual fre-

quent pattern mining becomes readily apparent when one considers a document to be

analogous to a commercial transaction and the words in the document to be the items

within this transaction. Hierarchical clustering for text documents using frequent sets

of co-occurring terms was introduced into data mining literature by Fung, et al. [10].

Their method reduces the dimensionality of the word space in which documents are

represented by performing the clustering based on frequent itemsets discovered in the

documents, instead of using the space consisting of all individual words.

An intuitive way of obtaining frequent patterns would be to generate singular

candidate items, check them against the minimum support threshold to see if they can

be added to the list of frequent itemsets as 1-itemsets, and from these results generate

their 2-combinations and again check the dataset to see if they can be added to the list

of frequent itemsets as 2-itemsets, repeating this process of candidate generation and

verification until the frequent combinations are exhausted. This is called the Apriori

method [9], and is generally referenced as frequent itemset generation with candidate

generation, since a set of candidates is generated at each step. Since text corpora

tend to be very large, with large numbers of frequent itemsets, this method is very

expensive since it requires a complete search through the corpus at each iteration.

Instead we prefer a method that does not require this time consuming process of

candidate generation and stepwise verification. The method we have chosen is called

FP-Growth (Frequent Pattern Growth) and will be discussed in the section entitled

”FP-Growth Frequent Itemset Mining.”

Support

Before presenting FP-Growth we want to introduce support, which is a measure

that is commonly used in frequent pattern mining. Since we are concerned with text,

16

this could translate to the certainty that any two words appear together. Support

is the probability that a transaction in the set of transactions contains the union of

items A and B. Equation 4 shows that the support of the implication A ⇒ B (the

presence of A implying the presence of B) equals the probability of the appearance

of the union of items A and B in a transaction. To be designated frequent, the

individual items have to have been present in a frequency that exceeds a pre-specified

threshold. We call this the minimum support threshold.

support(A,B) =
count(A ∩B)

total number of transactions
(4)

FP-Growth Frequent Itemset Mining

FP-Growth [1] is a method of mining frequent patterns in a dataset without

generating candidates, as is done in the popular Apriori method [9] [1]. For example,

consider the test data in table 3. The first column represents the ID number of the

transaction. The second column represents the items in the transaction. The third

column represents the items in that transaction that have been found to be frequent,

for a support threshold of 3, in an aggregation of the transactions in an order based

on their popularity among the buyers. This total ordering is obtained by traversing

the entire dataset and tallying the occurrence of each item, then sorting this list by

the aggregate item frequency.

Algorithm 2 shows the pseudocode for the construction of an FP-Tree. It makes

use of algorithm 3 to perform insertion of frequent items into the proper locations in

the tree. The FP-Tree consists of several structure types. The first are the vertices,

which each consist of a label and a support value. The labels correspond to the

frequent items under consideration along with the support levels of the items in the

17

Algorithm 2: Construction of an FP-Tree [1]

input : ∆, the database of transactions.
output: An FP-Tree Ξ depicting the aforementioned frequent items

accordingly.

begin1

Scan ∆ collecting the set δ.2

Sort δ in support count descending order as L, the list of frequent items.3

Create the root Ξ and label it “null.”4

for each transaction δ in ∆ do5

let P be the sorted list of elements in δ.6

for each p in P do7

call insert tree(P,Ξ)8

end9

Algorithm 3: Insert a frequent item into the tree (insert tree) [1]

input : P , the sorted transaction database entry containing only frequent
items and Ξ, an FP-Tree

output: The FP-Tree Ξ with each element p in P inserted

begin1

forall p in P do2

if Ξ has a child N such that N.label = p.label then3

increment N ’s count by 14

else5

create a new node N6

set N ’s count to 17

link N to the previous node evaluated8

end9

18

Table 3: A Database of Transactions [1]

TID Items Bought (Ordered) frequent items
100 f,a,c,d,g,i,m,p f,c,a,m,p
200 a,b,c,f,l,m,o f,c,a,b,m
300 b,f,h,j,o f,b
400 b,c,k,s,p c,b,p
500 a,f,c,e,l,p,m,n f,c,a,m,p

dataset when arranged in accordance with the construction algorithm. The second,

and most obvious structure is the tree itself. The tree is a monotonic structure, which

means that as any leaf is traced to the root of the tree, the supports of the nodes are

strictly non-decreasing. This is a property that is vital to the mining of the FP-Tree

the reason for which will become clear when we discuss mining the FP-Tree. The

third structure is the header table. This table includes all of the unique labels in the

tree along with their aggregate supports. It is sorted by these aggregate supports.

This allows the algorithm to locate the leaves of the tree without having to traverse

the entire tree structure.

Figure 4 depicts the construction of the FP-Tree after the first transaction has

been processed. It is here where the total ordering becomes important. If this total

ordering of frequent items is not used for the sorting of the items in each transaction

before the insertion into the FP-Tree then the algorithm may not construct a tree

that exhibits a property of monotonicity. The items in the transaction are added to

the tree in this order with each successive member of the transaction attached to its

antecedent item.

Figure 5 depicts the construction of the FP-Tree after the second transaction has

been processed. Since items f , c, and a are common to both the first and second

transactions, the construction proceeds down the same path, increasing the support

19

Figure 4: FP-Tree After the Insertion of Transaction 1

header table

f

c

a

m

p

root

f:1

c:1

a:1

m:1

p:1

of each by 1 until there is a difference in transactions. At this point a new branch

is formed and the construction proceeds as an extension of this branch. Also, links

are added between vertices with the same label on different branches of the tree to

facilitate linkage from the corresponding item in the header table through all vertices

with that label.

Figure 6 depicts the completed FP-Tree for this example. Notice that the tree is

monotonic in the supports of each individual node. This is an important feature of

this structure and indeed facilitates the next step: mining the FP-Tree.

The purpose of algorithm 4 is to mine the FP-Tree, generating the frequent pat-

terns. Simply, this proceeds by successively mutating the tree into two alternating

forms; the prefix paths and the conditional FP-Tree. Prefix paths are the paths that

contain a specific item at the end of their paths. They are arranged as a tree that

is generated by collecting all of the paths in the tree that end with a specific item.

20

Figure 5: FP-Tree After the Insertion of Transaction 2

header table

f

c

a

b

m

p

root

f:2

c:2

a:2

m:1

p:1

b:1

m:1

Figure 6: The FP-Tree after all transactions have been inserted

header table

f

c

a

b

m

p

root

f:4

c:3

a:3

m:2

p:2

b:1

m:1

b:1

c:1

b:1

p:1

Figure 7 depicts the prefix paths for item p. If an item is found to be frequent in this

configuration, then it is added to the list of frequent items. The conditional FP-Tree

21

depicts the prefix paths with the item characterizing the prefix paths removed and the

weights adjusted. The construction of the conditional FP-Tree starts with the prefix

paths and adjusts it for the items that are conditional upon the itemset for which the

prefix paths were obtained. If an item is found to be infrequent in this configuration,

it is deleted. Figure 8 depicts the conditional FP-Tree for the 1-itemset p.

Algorithm 4: Mining of an FP-Tree [1]

input : Ξ, an FP-Tree and φcondition, an itemset upon which Ξ is conditioned.
output: [φ | Φ] where φ is a frequent pattern in the set of frequent patterns Φ

begin1

if Ξ contains a single path P then2

forall combinations β of the nodes in path P do3

Generate pattern β ∪ βcondition with4

support count = minimum support count of nodes inβ

else5

Generate pattern φ = βcondition ∪ βcondition with6

support count = βcondition.support count
Construct β’s conditional pattern base and then β’s conditional7

FP-Tree Ξβ

if Treeβ 6= � then8

call FP-growth(Ξβ, β)9

end10

Taxonomies and Frequent Patterns in Text Processing

Pedersen, Banerjee, and Patwardhan [11] presented a method of word-sense disam-

biguation based on assigning a target word the sense that is most related to the senses

of its neighboring words. Their methodology was based on finding paths in concept

networks composed of information derived from the corpus and word definitions.

Wan and Angryk [12] proposed using WordNet to create context vectors to judge

relationships between semantic concepts. Their measure involves creating a geometric

22

Figure 7: A Prefix Paths for Item p

header table

f

c

a

m

p

root

f:4

c:3

a:3

m:2

p:2

c:1

b:1

p:1

Figure 8: A Conditional FP-Tree for 1-itemset p

header table

f

c

a

m

root

f:2

c:2

a:2

m:2

c:1

b:1

vector representation of words and their constituent concepts and using the cosine of

the angle between concepts to measure the similarity between them.

23

Perhaps one of the most relevant ideas comes from Resnik [13] who created a

measure of semantic similarity in an IS-A taxonomy based on shared information

content. The relevance comes from the IS-A taxonomy idea, since this betrays the

use of subclass/superclass relationships within the measure.

Measuring semantic distance between network nodes for word-sense disambigua-

tion was addressed by Sussna [14], who also clarified the perils of inaccuracy in key-

word search.

Jiang and Conrath [15] combined lexical taxonomy structures with statistical in-

formation hewn from the corpus. In doing so they were not reliant on either of the

methods for a measure of semantic similarity, but rather both. An essential idea to

them was that words used in a subject-specific corpus would be more likely to mean

some things based on how they are normally used in relation to the subject address

in the corpus.

Lin [16] proposed a measure of similarity of words based on the probability that

they contain common independent features.

Widdows and Dorow [17] presented a graph method for recognizing polysemy.

Word-sense disambiguation provided motivation for the technique, which is based on

creating graphs of words, using the words’ equivalence relations as the connections.

Hossain and Angryk [18] created a system (GDClust) to perform document clus-

tering based on frequent senses. Their work used the Apriori paradigm to identify

frequent subgraphs of document graphs created using WordNet in a manner similar to

the way we use it. Akbar and Angryk [19] used the FP-Growth algorithm to organize

documents in a corpus hierarchically.

Qian et. al [20] developed an algorithm for text categorization using hyperclique

patterns, which are association patterns that contain items that are “highly affiliated”

with each other. “Highly affiliated” in this context means that the presence of any

24

item in a transaction “strongly implies the presence of every other item that belongs

to the same hyperclique pattern.” [20]

Document clustering using frequent itemsets was explored by Fung, Wang, and

Ester [10]. Their work aimed to address specific problems in text document cluster-

ing, including high dimensionality, high volume, and the facilitation of use. They

used frequent itemset mining to discover these itemsets and use them to create a

hierarchical topic tree.

25

APPROACH

Our approach required the construction of a complete information retrieval sys-

tem. This chapter provides a description of the principles of operation of the con-

stituent pieces of this system along with a description of the system’s operation.

Overview

Our approach is based on the concept of an abstraction path, which is a path of

term derivation, from most general to most specific, that corresponds to a taxonomy

of terms. For our purposes, the WordNet hypernym/hyponym relationship of nouns

form this taxonomy. We restricted our analysis to nouns to simplify the relationships

in order to save processing time and storage space.

Figure 9 shows the relationships of the artifacts of the entire system. All of the

items in this figure will be described in this section.

The following list is an overview of the important systems and data structures

that make up our approach:

• Graphing Module: It is the responsibility of this module to accept word vector

input for any number of documents, create document graphs which are depic-

tions of the taxonomic relationships among words in the document, create the

corresponding document trees which are tree-representations of the aforemen-

tioned document graphs, and extract the abstraction paths, the unique paths

that make up a document tree, from the document trees.

• Master Document Tree Miner: This module performs the mining of the master

document tree, which represents a combination of all of the document trees,

26

Figure 9: The Ontology Abstraction-Based Information Retrieval System

27

and produces connected frequent paths, which are connected paths found to be

frequent through frequent pattern analysis.

• Frequent Abstraction Path Table: Frequent abstraction paths, which are con-

nected frequent paths that are extended to the root vertex, from the graphing

module are converted into a frequent abstraction path hash table, which is a

data structure that is compatible with the document abstraction path inverted

index for the purposes of taking an intersection of both.

• Document Abstraction Path Table: This is an inverted index that is created

from the abstraction paths taken from each individual document tree.

• Inverted Index: This inverted index is the intersection of the index based upon

frequent abstraction paths and the index based upon the document abstraction

paths.

WordNet

WordNet is an on-line lexical reference system created by a group of lexicogra-

phers [21]. The creators of this system intended to create an exhaustive ontology of

the English language that depicts words in their environment of mutually defined re-

lationships. With respect to the relationships with which we are concerned, WordNet

forms a directed acyclic graph (a hierarchy) of relationships among words.

In WordNet, words are related as a collection of synsets, which are groups of

words that all carry a meaning that is similar enough to render each word in the

synset interchangable to some degree, i.e., they are synonyms. The relationships

among these synsets are then identified and the synsets are placed in the hierarchies

and graphs that depict broader relationships. These relationships include synonomy,

meronymy, hypernymy, hyponymy, polysemy and others of greater complexity. We

28

have chosen to exploit the following subset of all of the WordNet relationships for our

approach.

Synonomy: Synonymy is conveniently tracked through the use of the aforemen-

tioned synsets. Items in the same synset have meanings that are the same or are

very close to each other. When a word is profiled in WordNet it essentially loses its

identity as a lexeme and exists in the system in its corresponding synsets. Since words

sharing a common synset have the same meaning, the rest of the dynamics exhibited

by any word in the synset hold for any other word in the synset.

Hypernymy: A hypernym of a word is a superordinate form of that word.

Being like a parent object, in object-oriented parlance, the word bestows upon all

of its children its own attributes. An example of this is the relation ship between

the words “cat” and “animal.” “Animal” being the hypernym of “cat.” Since there

could conceivably exist repeating cycles of tautologies, WordNet limits itself to 18

levels of hypernymy, so there is never a distance greater than 18 from any synset and

the synset that represents the word “entity.” Being the most general and abstract

hypernym, the word “entity” does not convey much information at all besides being

a convenient moniker for anything in existence. However, a hypernym may be used

in place of any of its children with perhaps some loss of specificity but without loss

of accuracy.

Hyponymy: Hyponymy is the opposite of hypernymy. Exhibiting a greater

degree of specificity, a hyponym carries more information than its hypernym. In

reference to the previous example, “cat” is a hyponym of “animal.” Unlike a word’s

hypernym, a hyponym may not be substituted for its hypernym without the loss of

accuracy due to the additional constraints that are imposed by the higher degree of

29

specificity. Also, with respect to the word ‘entity’ as the most general hypernym,

there is clearly a multiplicity of terms in the category of “most specific.”

Polysemy: If a word appears in more than one synset, that word is said to

be polysemous. By definition, polysemous words have more than one meaning, and

therefore belong in a multiplicity of synsets. For example, the word ‘box’ is polyse-

mous in that it describes a type of container as well as the pugilistic sport of ‘boxing.’

This is a source of great ambiguity, and the consequent categorization difficulties, in

the computational processing of language.

Consider the hierarchy in figure 10 as an example of the aforementioned relation-

ships as they exist in WordNet. Vertex A represents the most abstract concept in

the hierarchy, and is located at the top. This figure captures all of the important

types of relationships with which we are concerned including polysemy (e.g. node

F’s relationships to nodes B and C), hypernymy (e.g. node A’s relationship to node

C), and hyponymy (e.g. node C’s relationship to node A). Node A is analogous

to the most abstract term in WordNet (‘Entity’). We present this hierarchy as a

representation of an ontology for a vocabulary over the tokens {A,B,C,D,E, F,G}.

Figure 10: The types of relationships that compose WordNet

A

B

F

C D

G

E

hypernymy

hyponymy

synonymy

polysemy

30

Abstraction Paths

To illustrate the idea of an abstraction path, the WordNet-derived abstraction

path corresponding to a sense of the word ‘basketball’ is:

entity

physical entity

object, physical object

whole, unit

artifact, artefact

instrumentality, instrumentation

equipment

game equipment

basketball

most abstract (general)

most specific

The term ‘entity’ is the most general noun in WordNet, therefore all abstraction

paths include this word.

Nouns in WordNet have a subclass/superclass relationship which may be exploited

to create these relationships. Therefore, when an assemblage of these paths, in tree

form, is created, the resultant data structure is available for association rule discovery

via the FP-Growth algorithm. The mining of this structure will produce frequent

paths which, when converted to their corresponding abstraction paths, may be used

to create an inverted index for information retrieval from an indexed corpus. This

approach involves the use of several established mechanisms of text analysis.

31

Preprocessing of Documents

It is the responsibility of the preprocessing subsystem to condition each document

for processing by the main system. The structure suitable for processing is the word-

vector, which is a depiction of how important each term is to each document. The

conditioning includes:

1. Removing stopwords.

2. Checking for the existence of each remaining word as a noun in WordNet and

discarding the words that are not identified as being such.

3. Creating the word vectors.

Step 2, detailed in algorithm 5, represents a departure from the modus operandi

of information retrieval systems. This is normally where word stemming would occur.

However, since we use WordNet to resolve word forms, we do not stem the words,

but instead rely on WordNet to resolve word forms into synsets. Furthermore, in

early experimentation, stemming proved detrimental to our procedure because the

use of the extant stemming algorithms produced word lemmas that were unusable

for querying WordNet. For example, the word ‘swimming’ would be stemmed to the

pseudo-word ‘swimm’ which does not exist in WordNet but may be a word that is

critical to identifying the character of a document. In contrast, WordNet’s synsets

contain the majority of the words in their un-stemmed form and therefore offers a

convenient alternative to stemming. In this example, the gerund ‘swimming’ is stored

in the same synset as its canonical lexeme ‘swim’ or, if appropriate, retained in its

gerund form.

32

Performing lexeme to synset resolution via WordNet is not the ideal situation, as,

for example, there are several forms of the word ‘swim’ that can be treated as nouns.

For example, ‘going for a swim,’ ‘your swimming is excellent,’ and ‘I took several

swims’ are all noun forms of the word ‘swim’ that would perhaps lead in different

directions where the WordNet hierarchy is concerned. Ideally, these would all resolve

to the same noun, but as of now we have no way to guarantee this.

Algorithm 5: Preprocessing a Document Corpus

input : d | D where d is a document in document corpus D.
output: t | T where t is a file containing word vector entries tw where w is a

word in document d.

begin1

forall d ∈ D do2

Remove the stopwords.3

Check for the existence of a corresponding noun in WordNet.4

Calculate the Term Frequency (tf) information.5

Calculate the Term Frequency Inverse Document Frequency (tfidf)6

information
forall d ∈ D do7

Read the word vector output into td.8

end9

Word Vector Creation

A word vector is a structure that maps each word to the documents in which each

word appears, assigning an importance measure to this word/document pairing. In-

tuitively, the cardinality of a word with respect to a document would be the indicator

of the importance of that word to that document. But this simple measure fails to

account for documents that have a higher total number of words or how important

any word is to an entire corpus. Larger documents may contain a greater diversity

of words, thereby skewing the results of this simple term frequency measure in their

33

favor. To mitigate this effect we use a normalized measure of term importance, namely

the tfidf measure.

The tfidf-based word vector excels as an importance measure because, in addition

to being normalized with respect to the number of words in the file, the importance

of a word is determined as an inverse to its prevalence in the entire corpus. In other

words, to be weighted high, a word must have a high normalized term frequency (tf)

value and a high normalized document frequency (df) value, meaning that its non-

inverse document frequency is high and its corresponding inverse document frequency

(idf) value is low. As an example, the existence of stopwords provides a good analogy

because the word “the” is present in a very high proportion of documents and will

therefore have a very low idf value while also having a very high tf value. These

properties of the word “the” will combine to produce a very low tfidf value. In

contrast, if there exists a word that is only contained in one document out of the entire

corpus, the tf value will be high for that document, indicating a high importance

of this word for the document, but the idf value will be very low, increasing the

importance of this rare word to the entire corpus.

Document Graphs

Using WordNet we create Document Graphs, which are hierarchical representa-

tions of each document’s relevant subgraph, which is the subgraph of the WordNet

hierarchy that contains the synsets whose words are found in the document and the

hypernyms of those words. The words that are found in the documents are called

keywords and the hypernyms of those words are called implicit words. The construc-

tion of the document graphs for all of the documents in the corpus culminates in the

creation of the Master Document Graph [18], which is the subgraph of the WordNet

34

hierarchy that contains all of the synsets and synset relationships found in the entire

corpus.

To create a document graph, for each word in the document, WordNet’s hypernym

paths are traced through the hierarchy to the top-most hypernym, which is the word

‘entity’. By design, each of these path will eventually intersect. This intersection

may occur anywhere between the term and the term ‘entity.’ Each document graph

emerges as the “fingerprint” of the document in relation to the language ontology,

meaning that it is a somewhat unique representation of each document’s profile in re-

lation to the WordNet ontology. Furthermore, the master document graph represents

the fingerprint of the entire corpus in relation to the ontology.

Discovery of Document Abstraction Paths

Consider the example in table 4. In this data each letter may be considered as

a unique word in an example document. We proceed in creating a master document

graph as follows:

Table 4: Random Data. Each line represents a “document” with the “words” repre-
sented as letters from a through g.

Doc Items
d1 b f f b f f f e e g g b g
d2 f b f b f b b
d3 g b e b e f f e b g e f b e g e e e e b f b f g g b b b b b
d4 f g b g f g f f g f g g g

1. Create a word-vector representation for each of the documents as each of their

components of the vector space model using each letter’s tfidf value (table 5).

2. Construct the document graphs and the master document graph.

35

Table 5: Example tfidf table based on the random data

PPPPPPPPPdoc
word

b e f g

d1 0.231 0.154 0.385 0.231
d2 0.571 0.0 0.429 0.0
d3 0.367 0.300 0.167 0.167
d4 0.077 0.0 0.385 0.538
4∑
i=1

1.246 0.454 1.364 0.936

Construction of Document Graphs

Document graphs contain the synset correlates of the words that are found in

the documents. Again, we call these synsets the keywords and the synsets that

are discovered via the document graph creation process are called implicit words.

Initially, the synsets found in the document, along with their weights, are placed

into an empty graph representation of the taxonomy. The document graph is then

created by propagating the words’ weights up to the root vertex. Using the graph in

the following example as an analogy to the WordNet hierarchy, the construction of

individual document graphs proceeds as detailed in algorithm 6.

Document Graph Construction for Document 1:

1. Assign a weight to each node in the hierarchy whose corresponding token is

also found in document 1’s word-vector, based on the TF value. In the case of

document 1 the document contains only B, F, G and E. The new weights can

be seen in bold:

36

Algorithm 6: Creation of Document Graphs

input : Set of vectors T = {t1 . . . t|D|}, where |D| is the number of documents
and ti denotes the vector representing the ith document, and tij
contains the tfidf value for the jth word in the ith document vector.
(i = 1 . . . |D| and j = 1 . . . |W |, where |W | is the number of words in
the corpus.)

output: A collection of document graphs DG = {dgd1 . . . dgd|D|} where
dgdi

(V,E) is a document graph corresponding to document i.

begin1

let DG = {∅}2

for i = 1 to i = |D| do3

let dgdi
= a new, initially empty, document graph corresponding to4

document di
for j = 1 to j = |W | do5

if tij > 0 then6

Fetch the S, the set of synsets corresponding to tij from7

WordNet
while S 6= {∅} do8

Process Synset Hypernyms (see algorithm 7)9

DG = DG ∪ dgdi
10

end11

A

B:0.231

F:0.385

C D

G:0.231

E:0.154

keywordsimplicit words

2. Proceeding from the bottom-most leaf vertices, propagate the value of each

vertex upward to the edge connecting it to it’s parent, weighting the incom-

ing connections by using equation 5 to distribute the vertex’s weight among

37

Algorithm 7: Process Synset Hypernyms

input : A document graph dg = {V,E}, where V is a set of vertices that
contains pairs of elements: { synset id, vertex weight } and E is a set
of directed edges, where each edge is a triple: { hypernym, weight,
hyponym } a synset s and a word vector t where ts is the vector entry
for synset s in t.

output: A document graph dg with all of the partial tfidf values assigned.

begin1

let vs be a vertex corresponding to synset s.2

if vs /∈ V then3

add vertex vs to dg and set its weight to ts4

fetch S ′, the set of hypernyms of s from WordNet5

forall s′ ∈ S ′ do6

if vs′ /∈ V then7

add vertex vs′ to dg and set its weight to ts′ .8

add an edge from vs to vs′ .9

increase vs′ by ts
|S′| .10

S = S ∪ S ′11

else12

increase the weight of vs by ts.13

increase the weight of all hypernyms of vs by propagating its fractional14

weight upwards through the graph.

remove s from S15

end16

these connections. The bold values represent the newly calculated connection

strengths:

item support

degree of incoming connections
(5)

38

A

B:0.231

F:0.385

0.193

C D

G:0.231

0.077

E:0.154

0.193 0.077 0.077

3. Proceeding from the bottom-most leaf nodes, propagate the value of each node

upward to the edge connecting it to it’s parent. Since all relevant outgoing

connections out of nodes B and E have been assigned weights, we may increase

the weights of these nodes with the sum of the weights of the edges incident

to B and E respectively. No other vertices have this condition satisfied and so

may not be updated at this time:

A

B:0.423

F:0.385

0.193

C D

G:0.231

0.077

E:0.231

0.193 0.077 0.077

4. Proceeding from the bottom-most leaf nodes, propagate the value of each node

upward to the edge connecting it to it’s parent. Nodes B and E now propagate

their weights to all of their incoming edges. Since B only has one incoming

edge, this edge will be assigned the full value of B’s weight. E has two incoming

edges so therefore has its weight divided between these edges:

39

A

B:0.423

F:0.385

0.193

0.423

C D

G:0.231

0.077

E:0.231

0.115

0.193 0.077 0.077

0.115

5. Proceeding from the bottom-most leaf nodes, propagate the value of each node

upward to the edge connecting it to it’s parent. In this case D may now be

assigned a weight. Interestingly D was not originally in the document but is

now in the abstraction profile of the document since one or more hyponyms of

D are in the document:

A

B:0.423

F:0.385

0.193

0.423

C D:192

G:0.231

0.077

E:0.231

0.115

0.193 0.077 0.077

0.115

6. Proceeding from the bottom-most leaf nodes, propagate the value of each node

upward to the edge connecting it to it’s parent. C now gets its weight from its

hyponyms D, G and F:

A

B:0.423

F:0.385

0.193

0.423

C:0.365 D:192

G:0.231

0.077

0.096

E:0.231

0.115

0.193 0.077 0.077

0.096 0.115

40

7. Proceeding from the bottom-most leaf nodes, propagate the value of each node

upward to the edge connecting it to it’s parent. C propagates its weight to its

incoming edge, completing all weight prerequisites for the super-hypernym, A:

A

B:0.423

F:0.385

0.193

0.423

C:0.365

0.365

D:192

G:0.231

0.077

0.096

E:0.231

0.115

0.193 0.077 0.077

0.096 0.115

8. Proceeding from the bottom-most leaf nodes, propagate the value of each node

upward to the edge connecting it to it’s parent. The value of A is now equal to

the sum of all TFxIDF values assigned at the beginning of the analysis:

A:1.000

B:0.423

F:0.385

0.193

0.423

C:0.365

0.365

D:192

G:0.231

0.077

0.096

E:0.231

0.115

0.193 0.077 0.077

0.096 0.115

Note that only values from the original keywords need to be propagated. Since the

abstract terms that do not belong to the set of keywords appearing in the tfidf table

do not have their own tfidf values, propagation of tfidf values ceases when the most

abstract implicit word in the hierarchy has been updated. As a result, the document

graphs end up representing a very small subset of the entire ontology.

Document Graph Construction for Document 2: The graph construction for

document 2 is different from that of document 1 in that it involves less of the entire

41

ontology. Since this is the case, we create the associated document graph using

only the relevant vertices and not the entire hierarchy. This example illustrates the

property of this system that it only uses the relevant portion of the entire WordNet

hypernym/hyponym hierarchy for document graphing and not the entire hierarchy.

Such a parsimonious use of the entirety of WordNet is important to the conservation

of memory and processor resources.

1. Assign a weight to each node in the hierarchy based on the TF value:

A

B:0.571

F:0.429

C

2. Edges C,F and B,F now both receive half of F’s node weight, since they are the

only two incoming connections:

A

B:0.571

F:0.429

0.214

C

0.214

3. Since there is only one outgoing edge for both nodes B and C, and in both cases

this edge has been assigned a weight, their respective weights are increased by

the value of the weights of these outgoing edges:

42

A

B:0.786

F:0.429

0.214

C:0.214

0.214

4. B and C, having only one incoming edge each propagate their full node weights

to these incoming edges:

A

B:0.786

F:0.429

0.214

0.786

C:0.214

0.214

0.214

5. Finally we have the nodes’ full TFxIDF value at A:

A:1.000

B:0.786

F:0.429

0.214

0.786

C:0.214

0.214

0.214

To test the resource usage of the document graph creation process we collected

time and memory usage numbers for the procedure running from 1000 to 20,000 doc-

uments, with an interval of 1000. Figures 11 and 12 show the time and memory usage

43

for creating document graphs. These charts show that as the number of document

graphs to create increases, the time to create the graphs has a tendency to increase

in a polynomial fashion and the memory used in their creation increases in a linear

fashion. The polynomial nature of the time increase is slight, but still exhibits poly-

nomial characteristics. One may surmise that this may be due to the idiosyncrasies

of the implementation. These efficiency properties are important because they show

that document graph construction is a process that does not grow in its resource

usage in a way that introduces intractability issues, rendering the system viable in

terms of computational resources.

Figure 11: Time to create document graphs

44

Figure 12: Memory usage for creating document graphs

45

The Master Document Graph

An empty master document graph (MDG) is created at the beginning of the

DG creation process and is updated with new information (vertices, weights, and

connections) during the creation of each document graph. This is because, in order

to enforce universally unique labeling for the vertices, the labels are created first in

the MDG and given a sequential numerical label. Then the corresponding vertex

labeling is used on the DG being created. Such system-wide unique vertex identifiers

allow coherence within the entire system as they enforce unity in synset reference.

This will become important in the extraction of frequent abstraction paths.

During the construction of each document graph the Master Document Graph

(MDG) is incrementally updated. This results in the weighted hierarchies below. The

MDG will represent the fingerprint of an entire corpus in relation to the ontology.

Figure 13 shows the completed document graph for the running example.

A:4.000

B:1.928

F:1.364

0.682

1.928

C:1.342

1.342

D:695

G:0.936

0.312

0.347

E:0.766

0.383

0.682 0.312 0.312

0.347 0.383

Figure 13: The Master Document Graph

Document Abstraction Paths

Upon creating the document graphs, the document trees (DTs), which are derived

from each document graph are created. These structures facilitate matching which

46

abstraction paths correspond to which document. These abstraction paths are the

main entity upon which our information retrieval system is created.

It is important to note that order of vertex splitting is important to our process,

since an error in this order may result in the misrepresentation of the weights of some

vertices in the resulting tree. For our purposes, we use a variation on a depth-first

strategy that favors splitting vertices with an out-degree of zero before all others. The

next priority is to split vertices whose children have already been split. Algorithm 8

shows the pseudocode for this tree creation process.

Algorithm 8: Create a Document Tree

input : A document graph dg = {V,E}.
output: A document tree DT .

begin1

let STACKv be a stack of vertices from dg2

push the root vertex of dg on to the stack3

while STACKv is not empty do4

pop v from STACKv5

if v has unmarked children then6

push v on to STACKv7

push the unmarked children of v on to STACKv8

else if in-degree(v) > 1 then9

split v into in-degree(v) vertices10

mark all new vertices11

clear the marks of all of the children of v12

push all of the children of v on to STACKv13

else14

mark v15

end16

The following example shows the document tree creation algorithm (algorithm 8)

at work on our running example. The illustrations corresponding to each step show

the hierarchy’s transformation (the graph), the vertex currently being evaluated

(“Pop”) and the state of the stack after the current iteration (“Stack”):

47

1. The root of the hierarchy is pushed on to the stack, only to be popped at the

first iteration and evaluated. Since none of its children are marked it is pushed

back on to the stack, followed by each of its children (vertices B, C, D, and E).

A:1.000

B:0.423

F:0.385

C:0.365 D:0.192

G:0.231

E:0.231
Pop: A

Stack

E

D

C

B

A

2. Vertex E is popped from the stack and found to have multiple incoming edges.

However it also has an unmarked child, so it is pushed back on to the stack,

followed by its child vertex G.

A:1.000

B:0.423

F:0.385

C:0.365 D:0.192

G:0.231

E:0.231
Pop: E

Stack

G

E

D

C

B

A

3. G is popped from the stack and found to have both multiple incoming edges

and no children and consequently is split into three vertices, each having one

third of the original weight of vertex G. Each of these vertices is marked.

48

A:1.000

B:0.423

F:0.385

C:0.365

G1: 0.077X

D:0.192

G2:0.077X

E:0.231

G3:0.077X

Pop: G

Stack

E

D

C

B

A

4. Vertex E is now popped from the stack. Since its only child (G3) is marked, E

is now split. G3, being the child of a split vertex is pushed on to the stack.

A:1.000

B:0.423

F:0.385

C:0.365

G1: 0.077X

D:192

G2:0.077X

E1:0.116X

E2:0.116X

G3:0.077

Pop: E

Stack

G3

E

D

C

B

A

5. Being childless, G3 is immediately split and the resulting new vertices are

marked.

A:1.000

B:0.423

F:0.385

C:0.365

G1: 0.077X

D:192

G2:0.077X

E1:0.116X

G31 :0.039X

E2:0.116X

G32 :0.039X

Pop: G3

Stack

E

D

C

B

A

49

6. E is then popped from the stack. Nothing happens at this point because it no

longer exists.

A:1.000

B:0.423

F:0.385

C:0.365

G1: 0.077X

D:192

G2:0.077X

E1:0.116X

G31 :0.039X

E2:0.116X

G32 :0.039X

Pop: E

Stack

D

C

B

A

7. D is now popped and split, resulting in the marks of vertices E1 and G2 being

cleared. As a result E1 and G2 are both pushed on to the stack.

A:1.000

B:0.423

F:0.385

C:0.365

D1:0.096X

E1:0.116

G31 :0.039XG1:0.077X

D2:0.096X

G2:0.077

E2:0.116X

G32 :0.039X

Pop: D

Stack

E1

G2

C

B

A

8. E1 is now popped and split, resulting in the marks of vertices G31 and G2 being

cleared. As a result G31 and G2 are both pushed on to the stack.

50

A:1.000

B:0.423

F:0.385

C:0.365

D1:0.096X

E11 :0.058X

G31 :0.039G1:0.077X

D2:0.096X

E12 :0.058X

G2:0.077

E2:0.116X

G32 :0.039X

Pop: E1

Stack

G31

G2

C

B

A

9. G31 is now popped off of the stack and split.

A:1.000

B:0.423

F:0.385

C:0.365

D1:0.096X

E11 :0.058X

G311
:0.020XG1:0.077X

D2:0.096X

G2:0.077

E12 :0.058X

G312
:0.020X

E2:0.116X

G32 :0.039X

Pop: G31

Stack

G2

C

B

A

10. G2 is now popped off of the stack and split.

51

A:1.000

B:0.423

F:0.385

C:0.365

D1:0.096X

G21 :0.039X

E11 :0.058X

G311
:0.020XG1:0.077X

D2:0.096X

G22 :0.039X

E12 :0.058X

G312
:0.020X

E2:0.116X

G32 :0.039X

Pop: G2

Stack

C

B

A

11. The next diagram shows that when C is popped off of the stack and evaluated

the algorithm finds that one of its children, F, is not marked. As a result C is

pushed back on to the stack, followed by F. When F is popped it is split.

A:1.000

B:0.423

F1:0.193X

C:0.365

F2:0.193X D1:0.096X

G21 :0.026X

E11 :0.058X

G311
:0.020XG1:0.077X

D2:0.096X

G22 :0.026X

E12 :0.058X

G312
:0.020X

E2:0.116X

G32 :0.039X

Pop: F

Stack

C

B

A

12. The algorithm now pops the rest of the stack and, finding no condition to push

anything back on to the stack, finishes.

For each of the leaf nodes a path is traced from the leaf to the root node. This

path forms the abstraction path. The abstraction paths produced for this DT are:

52

abstraction paths weight

A, B, F 0.193

A, B 0.423

A, C, F 0.193

A, C, G 0.077

A, C, D, G 0.026

A, C, D, E, G 0.020

A, C, D, E 0.058

A, C, D 0.096

A, C 0.365

A, D, G 0.026

A, D, E, G 0.020

A, D, E 0.058

A, D 0.096

A, E, G 0.039

A, E 0.116

A 1.000

The situation is much simpler for document 2:

A:1.000

B:0.786

F:0.429

0.214

0.786

C:0.214

0.214

0.214

...which becomes the DT:

53

A:1.000

B:0.786

F:0.214

C:0.214

F:0.214

The abstraction paths produced for this DT are:

itemsets support

A, B, F 0.214

A, C, F 0.214

A, B 0.786

A 1.000

The reason path A, B is included and path A, C is not is that there is no change

in the weight values between A, C, F and A, C. Therefore, no new information is

gained by including the abstraction path for A, C in the set of abstraction paths for

document 2.

Document Inverted Index

To create the document inverted index, which is a primary index and is not used for

information retrieval, each of these abstraction paths is related back to the document

from which it came. Using this method we obtain abstraction paths for each synset

that is represented in each document and a reference from the abstractions back to

the document in which it occurs. The uniqueness of these abstraction paths in their

database structures is maintained through the use of a standard hashing function

(algorithm 9). The order of the paths is enforced by the hypernym order in WordNet.

1. Extract a tree from the DG:

54

Algorithm 9: Compute Abstraction Path Hash Code

input : an abstraction path
output: a hash code

begin1

let hash = 12

let synsetSum = 03

forall synset offset ∈ abstraction path do4

let synsetSum = synsetSum+ synset offset5

let hash = hash× 31 + synsetSum6

let hash = hash× 31 + end synset offset7

end8

A

B

F

C

F

G

D

G

E

G

D

G

E

G

E

G

The abstraction paths created by this DT are:

A, B, F

A, C, F

A, C, G

A, C, D, G

A, C, D, E, G

A, D, G

A, D, E, G

A, E, G

55

2. Assign to each node in the tree the weight corresponding to it’s node sum

divided by the cardinality of that node’s label:

A:4.000

B:1.928

F:0.682

C:1.342

F:0.682

G:0.156

D:0.347

G:0.156

E:0.255

G:0.156

D:0.347

G:0.156

E:0.255

G:0.156

E:0.255

G:0.156

The weighted abstraction paths now become:

Path support

A, B, F 0.682

A, C, F 0.682

A, C, G 0.156

A, C, D, G 0.156

A, C, D, E, G 0.156

A, D, G 0.156

A, D, E, G 0.156

A, E, G 0.156

3. Create a master document tree:

56

A 4.000

B 1.928

C 1.342

D 0.695

E 0.766

F 1.364

G 0.936

A:4.000

B:1.928

F:0.682

C:1.342

F:0.682

G:0.156

D:0.347

G:0.156

E:0.255

G:0.156

D:0.347

G:0.156

E:0.255

G:0.156

E:0.255

G:0.156

Mining the Master Document Tree

Minimum Support: In frequent pattern mining, minimum support is a necessary

dimension to which attention must be paid. The significance of minimum support in

frequent pattern mining is that it is the threshold above which items are considered

frequent. In this case, minimum support corresponds to the degree of scrutiny that is

applied to the admission of a path to frequent status, and hence that path’s inclusion

in the inverted index. An adjustment of this value upwards, for example, would have

the effect of shrinking the inverted index.

The MDTis mined using the procedure detailed in algorithm 10.

The changes to the original FP-Growth algorithm are all made so that the re-

sult achieved from mining the MDT is a set of frequent abstraction paths that are

connected with respect to the WordNet ontology. The steps taken to this end include:

1. only generating prefix path trees for the header table entries corresponding to

vertices that have an outdegree of 0. This is an effective pruning step because,

it can be claimed, the vertices in a conditional tree that have an outdegree of

57

Algorithm 10: Mining of a master document tree

input : An FP-Tree Ξ, α
output: [φ | Φ] where φ is a frequent pattern in the set of frequent patterns Φ

begin1

let Ψ equal a stack of prefix path trees2

forall header table entries r in header table R do3

generate a prefix path tree for r4

push the prefix path tree on to Ψ5

while Ψ is not empty do6

pop Ξr off of Ψ7

if Ξr contains a single path P then8

if path P is connected then9

generate pattern β ∪ α with10

support count = minimum support count of nodes inβ

else11

if path αi ∪ α is connected then12

generate pattern β = αi ∪ α with13

support count = ai.support count
convert Ξr into its conditional FP-Tree14

forall λ in Λ with an outdegree of 0 do15

generate a prefix path tree corresponding to the header table16

entry for λ
push the prefix path tree on to Ψ17

end18

58

0 can be said to have direct connections in at least one instance to the items

upon which the conditional tree is conditioned.

2. checking for connectivity when the frequent paths are accumulated.

Frequent path discovery for the running example are generated in the following

example.

1. G:

(a) Gather all prefix paths containing node G:

Threshold: 0.500

Itemsets:

A 4.000

C 1.342

D 0.695

E 0.766

G 0.936

A:4.000

C:1.342

G:0.156

D:0.347

G:0.156

E:0.255

G:0.156

D:0.347

G:0.156

E:0.255

G:0.156

E:0.255

G:0.156

(b) Derive the support count by adding the support counts associated with

nodes labeled with G. If this support count is above the minimum support

threshold, declare the item G-conditionally frequent:

Threshold: 0.500

Itemsets: {G:0.936}

59

A 4.000

C 1.342

D 0.695

E 0.766

G 0.936

A:4.000

C:1.342

G:0.156

D:0.347

G:0.156

E:0.255

G:0.156

D:0.347

G:0.156

E:0.255

G:0.156

E:0.255

G:0.156

(c) Convert the prefix paths into a conditional prefix tree:

i. Update the support counts, taking into account that some of the tallied

transactions do not include the item G.

Threshold: 0.500

Itemsets: {G:0.936}

A 1.390

C 0.659

D 0.695

E 0.766

G 0.936

A:1.390

C:0.659

G:0.156

D:0.347

G:0.156

E:0.255

G:0.156

D:0.347

G:0.156

E:0.255

G:0.156

E:0.255

G:0.156

ii. Remove the nodes for G:

Threshold: 0.500

Itemsets: {G:0.936}

60

A 1.390

C 0.659

D 0.695

E 0.766

A:1.390

C:0.659

D:0.347

E:0.255

D:0.347

E:0.255 E:0.255

iii. Remove the items that are no longer frequent after the previous two

updates:

Threshold: 0.500

Itemsets: {G:0.936}

A 1.390

C 0.659

D 0.695

E 0.766

A:1.390

C:0.659

D:0.347

E:0.255

D:0.347

E:0.255 E:0.255

(d) Gather all prefix paths containing nodes EG:

Threshold: 0.500

Itemsets: {G:0.936}

A 1.390

C 0.659

D 0.695

E 0.766

A:1.390

C:0.659

D:0.347

E:0.255

D:0.347

E:0.255 E:0.255

61

(e) Derive the support counts as before with EG:

Threshold: 0.500

Itemsets: {G:0.936, EG:0.766}

A 1.390

B 1.928

C 0.659

D 0.695

E 0.766

A:1.390

C:0.659

D:0.347

E:0.255

D:0.347

E:0.255 E:0.255

(f) Convert the prefix paths into a conditional prefix tree:

i. Update the support counts:

Threshold: 0.500

Itemsets: {G:0.936, EG:0.766}

A 1.234

B 1.928

C 0.503

D 0.695

E 0.766

A:1.234

C:0.503

D:0.347

E:0.255

D:0.347

E:0.255 E:0.255

ii. Remove the E nodes:

Threshold: 0.500

Itemsets: {G:0.936, EG:0.766}

62

A 1.234

B 1.928

C 0.503

D 0.695

A:1.234

C:0.503

D:0.347 D:0.347

iii. Remove items that are no longer frequent:

Threshold: 0.500

Itemsets: {G:0.936, EG:0.766}

A 1.234

B 1.928

C 0.503

D 0.695

A:1.234

C:0.503

D:0.347 D:0.347

(g) Gather all prefix paths containing nodes DEG:

Threshold: 0.500

Itemsets: {G:0.936, EG:0.766}

A 1.234

B 1.928

C 0.503

D 0.695

A:1.234

C:0.503

D:0.347 D:0.347

(h) Derive the support counts as before with DEG:

Threshold: 0.500

Itemsets: {G:0.936, EG:0.766, DEG:0.695}

63

A 1.234

B 1.928

C 0.503

D 0.695

A:1.234

C:0.503

D:0.347 D:0.347

(i) Convert the prefix paths into a conditional prefix tree:

i. Update the support counts:

Threshold: 0.500

Itemsets: {G:0.936, EG:0.766, DEG:0.695}

A 1.234

B 1.928

C 0.503

D 0.695

A:1.234

C:0.503

D:0.347 D:0.347

ii. Remove the D nodes:

Threshold: 0.500

Itemsets: {G:0.936, EG:0.766, DEG:0.695}

A 1.234

B 1.928

C 0.503

A:1.234

C:0.503

iii. Remove items that are no longer frequent:

Threshold: 0.500

Itemsets: {G:0.936, EG:0.766, DEG:0.695}

A 1.234

B 1.928

C 0.503

A:1.234

C:0.503

64

(j) Gather all prefix paths containing nodes CDEG:

Threshold: 0.500

Itemsets: {G:0.936, EG:0.766, DEG:0.695}

A 1.234

B 1.928

C 0.503

A:1.234

C:0.503

(k) Derive the support counts as before with CDEG:

Threshold: 0.500

Itemsets: {G:0.936, EG:0.766, DEG:0.695, CDEG}

A 1.234

B 1.928

C 0.503

A:1.234

C:0.503

(l) Convert the prefix paths into a conditional prefix tree:

i. Update the support counts:

Threshold: 0.500

Itemsets: {G:0.936, EG:0.766, DEG:0.695, CDEG}

A 0.886

B 1.928

C 0.503

A:0.886

C:0.503

ii. Remove C:

Threshold: 0.500

Itemsets: {G:0.936, EG:0.766, DEG:0.695, CDEG}

A 0.886 A:0.886

65

iii. Remove items that are no longer frequent:

Threshold: 0.500

Itemsets: {G:0.936, EG:0.766, DEG:0.695, CDEG}

A 0.886 A:0.886

(m) Gather all prefix paths containing nodes ACDEG:

Threshold: 0.500

Itemsets: {G:0.936, EG:0.766, DEG:0.695, CDEG}

A 0.886 A:0.886

(n) Gather all prefix paths containing nodes ACDEG:

Threshold: 0.500

Itemsets: {G:0.936, EG:0.766, DEG:0.695, CDEG, CDEG:0.886}

A 0.886 A:0.886

Building Abstraction Path-Based Inverted Indices

With the information gathered, the construction of an inverted index proceeds in

a way that has a more complicated structure than standard inverted indices, using

entire abstraction paths instead of keywords. Algorithm 11 shows the pseudocode

for this inverted index construction. It shows the process of taking the intersection

of the frequent abstraction paths and the document abstraction paths and using the

resulting abstraction paths’ document abstraction path records as the inverted index.

Figure 14 shows the difference between the number of itemsets and the number of

abstraction paths. From this data it is clear that using abstraction paths will result

66

Algorithm 11: Create Abstraction Path-Based Inverted Index

input : APfrequent: the frequent abstraction paths, APdocument: the document
abstraction paths, and Ωdocument: the document inverted index

output: Ωapfrequent
, an inverted index based on APfrequent ∪ APdocument

Let Ωapfrequent
be a new inverted index1

begin2

forall apfrequent ∈ APfrequent do3

if apfrequent ∈ APdocument then4

Let ωdocument equal the document inverted index entry5

corresponding to apfrequent
Add ωdocument to Ωapfrequent

6

end7

Figure 14: Numbers of Paths and Numbers of Itemsets for 20,000 Document Set for
Support = 0.01 and Number of Original Keywords = 25083

67

in a data space that has dimensionality far smaller than one based on frequent all

itemsets.

Indexing System Architecture

Figure 15 shows the changes we have made to the elementary retrieval system

architecture (see 1). The three main areas in which these changes were implemented

were in the indexers, the free text query parser, and the inverted index.

Figure 15: Changes to the Elementary Information Retrieval System Architecture

!"#$%&'(
)"*+$,

-.*,/'0
1/'0$/,(/#, 2"*3

4&#("*,

5.'6&3
5&,$7(,

8#"*/'09.'3
5.'6/'0

!"#$%#&'
()*'"+,'-.&/0+'1

2&3#4#"

!"#$%#&'
()*'"+,'-.&/0+'1

2&5#"'#3
2&3#4

:,&*
;$&*<

6%#"7
()*'"+,'-.&/0+'1

0".,#**."

Processing of Queries

Upon acceptance of a plain-text query, several actions proceed in sequence:

1. The query undergoes the same preprocessing as the documents.

(a) A query graph and query tree are constructed.

68

(b) Query abstraction paths are harvested.

2. Selection from of relevant documents is performed using the inverted index and

the query abstraction paths.

3. Ranking of the documents, selected above, is performed using the cosine simi-

larity measure.

The Query Tree and Query Abstraction Paths: A query tree is generated in the

same way as a document tree. It allows us to perform standard comparisons between

queries and documents as if we were comparing only documents. To facilitate the

search through the collection of abstraction paths that came from the document

analysis, the same structures are obtained from the query tree.

Selection of Related Documents from the Inverted Index: The hash codes of

the query’s abstraction paths are used to query the inverted index for relevant post-

ings. Postings relevant to any of the query’s abstraction paths are considered as

relevant documents.

Ranking: The ranking procedure uses the cosine similarity measure [3]. Each

document in the result set, generated above, is compared against the query using this

measure. The results are then sorted by descending order of cosine similarity and

the results are presented to the user. Equation 6 depicts the calculation of the cosine

similarity between the query and document d1 in figure 16. For this figure, the cosine

similarity will be calculated between the query and all three documents. This will

dictate the order of the results.

sim(query, d1) =
~V (query) • ~V (d1)

|~V (query)||~V (d1)|
(6)

69

abs. path 1

abs. path 2

abs. path 3

d1

d2

d3

query

Figure 16: Word Vector Graphical Representation

70

EXPERIMENTAL EVALUATION

For our experimentation we used the 20 Newsgroups dataset [22]. This dataset

contains almost 20,000 newsgroup documents from 20 different newsgroups, about

1000 per newsgroup. The newsgroups included are:

comp.graphics sci.electronics
comp.os.ms-windows.misc sci.med
comp.sys.ibm.pc.hardware sci.space

comp.sys.mac.hardware misc.forsale
comp.windows.x talk.politics.misc

rec.autos talk.politics.guns
rec.motorcycles talk.politics.mideast

rec.sport.baseball talk.religion.misc
rec.sport.hockey alt.atheism

sci.crypt soc.religion.christian

Table 6: All Newsgroups Included in the 20 Newsgroups Dataset

A template for our experimentation was taken from the work of Ido Cohn and

Amit Gruber [23]. Following these authors, we used a subset of the 20 Newsgroups

dataset. The purpose of this truncation was to pick the newsgroups that were most

distinct from each other:

comp.sys.mac.hardware sci.med
rec.autos sci.space

rec.sport.hockey misc.forsale
sci.crypt talk.politics.guns

sci.electronics alt.atheism

Table 7: 10 Newsgroups Used for the Investigations

Each newsgroup in this subset has all of its original 1000 documents, making a

total of 9580 documents for the entire subset when duplicates and documents that

contain only header information are removed. The newsgroup subset was selected for

71

their mutually distinctive subject character according to Slonim and Tishby [24]. The

queries we used were the queries published by Cohn and Gruber [23] in their survey

of information retrieval techniques. Table 8 is a list of these queries along with each

query’s corresponding target newsgroup.

Table 8: Queries Used for the Investigations

Query Target Group

1 device board video signal window RGB driver machine

cache software processor scanner scsi port powerbook

cable apple mac modem laptop client hardware mem-

ory buffer chip chips simm pcb dram monitor drive disk

vram ram

comp.sys.mac.hardware

2 auto automobile engine wheel steering steer trunk truck

speed drive road tire crash front speedometer gear shift

brake brakes clutch stereo window condition door model

engines flat ticket highway cop tires chassis steering liter

liters throttle clutch automatic manual

rec.autos

3 league hockey player trophy ice skate goal keeper mask

puck trade goal goals offense offensive defense defensive

team score speed injury zone assist assists rookie rook-

ies game playoff playoffs pass coach crowd goaltender

goaltenders draft center

rec.sport.hockey

Continued on Next Page. . .

72

Table 8 – Continued

Query Target Group

4 cryptography algebra boolean group code password hack

hacker crack encrypt encrypted encryption public safety

decode decoding military espionage security nsa crypto

cryptosystem cryptology clipper chip device transmit

protocol key value secret sequence agent bit bits function

hash algorithm protect

sci.crypt

5 antenna circuit design component components electronic

electric electronics video audio intel memory output pcb

net component filter chip mixer mixers current socket

tape wire wires analog digital signal

sci.electronics

6 psychology fatal adult child patient doctor pain opera-

tion paralyze blood pressure antibiotics clinic clinical

advice advise paralyze paralyzed medical oral condi-

tion symptom symptoms health healthy disorder surgery

medicine drug syndrome cure phobia hospital hospitals

allergy trauma mental test sleep

sci.med

7 space planets planet shuttle mission star astronaut ship

rocket speed light gravity satellite earth orbit nasa mars

saturn venus moon world pressure thrust lunar probe

spacecraft radio launch system life support navigate

project missle missles temperature atmosphere earth

sci.space

Continued on Next Page. . .

73

Table 8 – Continued

Query Target Group

8 trade internet web complete buying buy wanted afford

stereo information includes sell sale sales benefit price

need needed call mail bought refund advise lease avail-

able interested quality shipping include including model

useful pricing

misc.forsale

9 revolver crime crimes illegal amendment gun guns sniper

snipers fire firearm firearms regulation regulations reg-

ulate regulated firepower weapon weapons violence pos-

session law laws handgun handguns pistol pistols kill

killed posses

talk.politics.guns

10 religious flyer spirituality separation church preacher

atheism atheist christian christians bible saint faith re-

ligion christ god secular muslim islam fanatic fanatics

theist theists deity

alt.atheism

Each of the queries was run against the entire set of 10,000 documents (see table 4).

If a document from a particular target group was returned in response to the related

query (see table 8), it was interpreted as a match. If it was a document from any other

group (e.g. non-target groups), then we interpretd such a response as non-matching.

This experimental scenario follows that of Cohn and Gruber [23]. In keeping with

74

this scenario, we also used the measures of precision and recall. Like the Cohn and

Gruber experiments our results were truncated to the top 500 documents.

Investigations

The results from our procedure are influenced by several parameters that can be

manipulated to adjust the efficacy of our approach. These are:

1. Path length lower limit : The minimal length of a path (i.e. the distance from

the most abstract level to the terminating vertex). For example, a path length

lower limit of 5 would only allow abstraction paths with a length of 5 and higher

to be included in the inverted index.

2. Path length upper limit : The maximal length of the paths to be included in

the inverted index. By constraining the length of the paths to shorter ones the

inverted index will include only the abstraction paths that correspond to the

more abstract words in the WordNet hierarchy.

3. Path length range: Specifies both minimal and maximal limits for path lengths

included in the inverted index.

4. Path popularity lower limit : The minimal number of documents in which an

abstraction path must be found in order to be included in the inverted index.

5. Path popularity upper limit : The maximal number of documents in which an

abstraction path can be found in order to be included in the inverted index.

6. Path popularity range: Specifies both minimal and maximal limits on the num-

ber of documents in which an abstraction path can be found in order to be

included in the inverted index.

75

We ran several experiments using several different scenarios. Figures 17 through

21 depict the results of the best of these configurations with respect to precision and

recall. Each point represents the precision (figures 17 and 20) and recall (figures 18

and 21) for a specific number of documents retrieved. Specifically, using a path length

ranges of 1 through 9, 9 through 18, 0 through 18, and using single path lengths of 8

and 12. Also using the path popularities of 10 through 100, 100 through 1000, 1000

through 2000, 1 through 5000, 7000 through 9000, and 9000 through 10,000.

Figure 17: Path Length Investigation Results: Precision at k

Figure 17 depicts the precision at several document retrieval intervals for the

path length investigations. The chart shows, for example, at a level of 10 documents

retrieved the path length configuration of<12, 12> (only abstraction paths 12 vertices

long were included in the inverted index), the precision achieved was 0.77. At a level

76

of 20 documents the same configuration produced a winning precision of about 0.79.

Included in this chart are depictions of a sample of the path length configurations that

represent a variety of abstraction levels. Since an abstraction path length is always

measured from the root of the WordNet hierarchy (i.e. the word “entity”), a longer

abstraction path represents words of greater specificity and, conversely, a shorter

abstraction path represents words of greater generality. As can be seen, the use of

longer path lengths in the inverted index, corresponding to paths of greater specificity,

resulted in better precision levels than those of low specificity (see plot <9, 18> vs.

plot <0, 9> in figure 17). The best results for the path length investigations, and

indeed the entire set of all investigations, were achieved using a path length of 12 for

all paths. For k = 10 the precision for this path length being 0.77 means that about

77% of all documents returned at that level were relevant.

The corresponding recall levels for the path length investigations are shown in

figure 18. In the figure, the plot for the path length of <12, 12> shows a recall level

of less than 0.01 for k = 10. This means that when the first 10 documents retrieved

are evaluated, the search obtained greater than 9% of all relevant documents in the

corpus.

Figure 19 shows the sizes of the inverted indices for each of the path length

investigation configurations using a logarithmic scale. As can be seen, the average

number of abstraction paths for each individual document profile in the inverted

index is the smallest for the path length <12, 12> configuration at fewer than 10

abstraction paths per document profile. Also, in this configuration there were only

about 100000 total records in the inverted index.

Figure 20 depicts the precision at several document retrieval intervals for the path

popularity investigations. These investigations represented an attempt to reduce the

length of the inverted index by imposing a limit on how many documents in which

77

Figure 18: Path Length Investigation Results: Recall at k

any abstraction path may be present. The idea that generated this line of reasoning

is that using words that are less common to the entire corpus may expose deviations

in the lexica of the various groups therein. As can be seen by comparison to figure 17

the results did not appear as favorable as the results that were obtained using the

path length limitations, though the dynamic property of the average precision with

respect to path popularity was clearly demonstrated. That we discovered the greatest

precision level for k = 10 at a document popularity of <9000, 10000> is interesting

because at this level of popularity the abstraction paths contained in the inverted

index appear in nearly all of the documents. The reason for this remains undiscovered,

but one may surmise that it is because at this popularity level, there is more of a

chance for the cosine similarity to calculate relevant similarities since the values for

78

Figure 19: Number of Abstraction Paths in the Inverted Index and the Average
Inverted Index Row Length for Path Length Investigations

most abstraction paths in the inverted index are non-zero. The corresponding recall

levels for the path popularity investigations are shown in figure 21.

Figure 22 shows the sizes of the inverted indices for each of the path popularity

investigation configurations using the same logarithmic scale as was used for the

chart showing the same for the path length experiments. As can be seen, the average

number of abstraction paths for each individual document profile in the inverted

index is the smallest for the path popularity <9000, 10000> configuration at little

more than 10 abstraction paths per document profile. Also, in this configuration

there were only about 100,000 total records in the entire inverted index.

79

Figure 20: Path Popularity Investigation Results: Precision at k

80

Figure 21: Path Popularity Investigation Results: Recall at k

There was a dissimilarity in the results of the investigations with respect to the

target newsgroup that deserves mention. Some groups, such as sci.med fared consis-

tently well, sometimes achieving a precision of 1.0 for 10 documents retrieved. For

other groups, such as misc.forsale, the precision was never greater than 0.4 for any

retrieval level. Figure 23 shows the best and the worst of these differences. As can be

clearly seen, sci.med produced results whose worst results were better than the best

results achieved for the misc.forsale group. One may surmise that this is because of

the greater variability exhibited by the lexicon characterizing the misc.forsale group

that that exhibited by the sci.med group.

Figures 24 and 25 depict precision vsṙecall for the path length and path popular-

ity investigations depicted above (FAP), along with an approximation of Cohn and

81

Figure 22: Number of Abstraction Paths in the Inverted Index and the Average
Inverted Index Row Length for Path Popularity Investigations

82

Figure 23: Precision vs. Recall: misc.forsale (the worst results) and sci.med (the best
results)

Gruber’s TFIDF results [23]. In both cases, though our results were not as good as

the results achieved using the TFIDF inverted index, we did achieve results that show

that the use of abstraction path based inverted indices for information retrieval is a

viable alternative to keyword indexing, producing results that approach precision and

recall figures for TFIDF indexing. Furthermore, we have identified many parameters

that influence the results of our experiments. The viability of our methodology will

depend on the identification of optimal values for these parameters.

83

Figure 24: Precision vs. Recall: Path Length Investigations

84

Figure 25: Precision vs. Recall: Path Popularity Investigations

85

CONCLUSIONS AND FUTURE WORK

In this paper we present an implementation of an information retrieval system

that discovers/creates and uses FP-Tree motivated, ontologically-enhanced data rep-

resentations (i.e. frequent abstraction paths) instead of the commonly used “bag of

words” model. The major contribution of this thesis is the development of a system

that quickly discovers frequent abstraction paths and uses them to perform informa-

tion retrieval on using a finite corpus. As a demonstration of the effectiveness of our

system we performed information retrieval experiments on 10 newsgroup subset of

the 20 Newsgroups dataset. We are pleased with the operation of this system and

intend to build upon it to enhance its effectiveness. The characterization of documents

via frequent abstraction paths and the creation of a retrieval mechanism that uses

them contribute a lot to our knowledge in this domain. Although, similarly to many

information retrieval systems, our results were not perfect, we did achieve promising

results and successfully completed a solid computer system for further investigation

based on this reasoning.

Future Work

In all of the approaches that use frequent items to characterize data the problem is

the massive number of discovered frequent itemsets that leads to high dimensionality

of the data space, which in our case also transfers to the length of the inverted

index that is generated by using the frequent abstraction paths. In our preliminary

investigation we tried to limit the impact of both issues by picking abstraction paths

within certain ranges of popularity among the characterized documents or within

certain length ranges. There are far more complex (and accurate) methodologies

86

to reduce data dimensionality (e.g. latent semantic analysis, principal component

analysis, etc.) and we plan to investigate their applicability in the future.

In the future, we intend to investigate the ramifications of each of the parametric

considerations in all of their permutations to see how each parameter affects the

efficacy of the system. The parameters we have identified are those of abstraction

path popularity thresholds and ranges, abstraction path length thresholds and ranges,

minimum support threshold, and dimension collapse via a common hypernym substi-

tution strategy.

Some promising results were generated by picking specific abstraction levels. We

want to take advantage of these results when building a ”recommender” system in

an information retrieval system. For example; we can envision an application that

replaces the current list of likely searches that drops from the bottom of the text

boxes on search engine pages. Our version would be some form of a tree based on

lexical abstractions, rather than the current list. This tree would not only be based

on spelling, but on subjects that are related through the ontology.

Another avenue of future work that we wish to pursue is the creation of a frame-

work by which other ontologies may be adapted. Since there exist many domains

that have produced these ontologies, e.g. the medical industry [25], we hope to use

this system to resolve disparate lexica that differ with respect to time or region. An

example of this may be if someone is performing a search for “potentiometer,” which

also may be referred to as a “voltage divider,” or a “potential divider.” We hope to

discover whether or not such vernaculars may be resolved through the use of these

ontologies.

Lastly, an important part of this investigation was in the choosing of a suitable

dataset for analysis. The 20 Newsgroups dataset was chosen for its open availability,

compactness and its convenient, if fundamentally flawed, relevance judgement mech-

87

anism. However, a 20,000 document dataset comes short of our expectations with

regard to size. In the future, we hope to move to a larger (and more expensive)

dataset, such as the TREC Ad-Hoc collection [26], for which relatively exhaustive

relevance judgements have been made. We were prevented from using this dataset in

this phase due to cost constraints.

88

REFERENCES CITED

[1] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation: a frequent-pattern tree approach,” SIGMOD Rec., vol. 29, no. 2, pp.
1–12, June 2000. [Online]. Available: http://dx.doi.org/10.1145/335191.335372

[2] E. M. Voorhees, “Question answering in trec,” in In TREC: Experiment and
Evaluation in Information Retrieval. MIT Press, 2005.

[3] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Re-
trieval. Cambridge University Press, July 2008.

[4] T. Mitchell, Machine Learning. McGraw-Hill Education (ISE Editions),
October 1997. [Online]. Available: http://www.amazon.com/exec/obidos/
redirect?tag=citeulike07-20&path=ASIN/0071154671

[5] (2009, March) University of glasgow stop word list. [Online]. Available:
http://www.dcs.gla.ac.uk/idom/ir resources/linguistic utils/stop words

[6] M. Konchady, Text Mining Application Programming (Programming Series).
Rockland, MA, USA: Charles River Media, Inc., 2006.

[7] M. Wurst. (2009, June) The word vector tool and the rapidminer text plugin.
GNU Public License. [Online]. Available: http://wvtool.sf.net

[8] R. Feldman and J. Sanger, The Text Mining Handbook: Advanced Approaches in
Analyzing Unstructured Data. Cambridge University Press, December 2006.

[9] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. ADDI-
SON WESLEY PUBLI, June 2006.

[10] B. C. M. Fung, K. Wang, and M. Ester, “Hierarchical document clustering using
frequent itemsets,” in Proc. of the 3rd SIAM International Conference on Data
Mining (SDM). San Francisco, CA: SIAM, May 2003, pp. 59–70.

[11] T. Pedersen, S. Banerjee, and S. Padwardhan. (2009, February) Maximizing
semantic relatedness to perform word sense disambiguation. [Online]. Available:
citeseer.ist.psu.edu/pedersen03maximizing.html

[12] S. Wan and R. Angryk, “Measuring semantic similarity using wordnet-based
context vectors,” Proceedings of the IEEE International Conference on Systems,
Man & Cybernetics, 2007.

[13] P. Resnik, “Semantic similarity in a taxonomy: An information-based measure
and its application to problems of ambiguity in natural language,” Journal of
Artificial Intelligence Research, vol. 11, pp. 95–130, 1999.

http://dx.doi.org/10.1145/335191.335372
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0071154671
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0071154671
http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words
http://wvtool.sf.net
citeseer.ist.psu.edu/pedersen03maximizing.html

89

[14] M. Sussna, “Word sense disambiguation for free-text indexing using a massive
semantic network,” Proceedings of the 2nd International Conference on Infor-
mation and Knowledge Management, pp. 67–74, 1993.

[15] J. J. Jiang and D. W. Conrath, “Semantic similarity based on corpus statis-
tics and lexical taxonomy,” Proceedings of International Conference Research on
Computational Linguistics, 1997.

[16] D. Lin, “An information-theoretic definition of similarity,” Proceedings of the
15th International Conference on Machine Learning, pp. 296–304, 1998.

[17] D. Widdows and B. Dorow, “A graph model for unsupervised lexical acquisi-
tion,” 19th International conference on Computational Linguistics, pp. 1093–
1099, 2002.

[18] M. S. Hossain and R. A. Angryk, “Gdclust: A graph-based document clustering
technique.” in ICDM Workshops. IEEE Computer Society, 2007, pp. 417–422.
[Online]. Available: http://dblp.uni-trier.de/db/conf/icdm/icdmw2007.html#
HossainA07

[19] M. Akbar and R. A. Angryk, “Frequent pattern-growth approach for
document organization.” in ONISW, R. Elmasri, M. Doerr, M. Brochhausen,
and H. Han, Eds. ACM, 2008, pp. 77–82. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/cikm/onisw2008.html#AkbarA08

[20] T. Qian, H. Xiong, Y. Wang, and E. Chen, “On the strength of hyperclique
patterns for text categorization,” Inf. Sci., vol. 177, no. 19, pp. 4040–4058, 2007.

[21] G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. J. Miller,
“Introduction to wordnet: An on-line lexical database*,” Int J Lexicography,
vol. 3, no. 4, pp. 235–244, January 1990. [Online]. Available: http:
//dx.doi.org/10.1093/ijl/3.4.235

[22] (2009, May) Home page for 20 newsgroups data set. [Online]. Available:
http://people.csail.mit.edu/jrennie/20Newsgroups/

[23] I. Cohn and A. Gruber. (2009, May) Information retrieval experiments. [Online].
Available: http://www.cs.huji.ac.il/∼ido cohn

[24] N. Slonim, N. Friedman, and N. Tishby, “Unsupervised document classification
using sequential information maximization,” 2002. [Online]. Available:
citeseer.ist.psu.edu/article/slonim02unsupervised.html

[25] (2009, August) Unified medical language system (umls). [Online]. Available:
http://www.nlm.nih.gov/research/umls/

http://dblp.uni-trier.de/db/conf/icdm/icdmw2007.html#HossainA07
http://dblp.uni-trier.de/db/conf/icdm/icdmw2007.html#HossainA07
http://dblp.uni-trier.de/db/conf/cikm/onisw2008.html#AkbarA08
http://dblp.uni-trier.de/db/conf/cikm/onisw2008.html#AkbarA08
http://dx.doi.org/10.1093/ijl/3.4.235
http://dx.doi.org/10.1093/ijl/3.4.235
http://people.csail.mit.edu/jrennie/20Newsgroups/
http://www.cs.huji.ac.il/~ido_cohn
citeseer.ist.psu.edu/article/slonim02unsupervised.html
http://www.nlm.nih.gov/research/umls/

90

[26] E. M. Voorhees and D. K. Harman, TREC: Experiment and Evaluation in
Information Retrieval, ser. Digital Libraries and Electronic Publishing. MIT
Press, September 2005. [Online]. Available: http://www.amazon.com/exec/
obidos/redirect?tag=citeulike07-20&path=ASIN/0262220733

[27] B. C. M. Fung, K. Wang, and M. Ester, The Encyclopedia of Data Warehousing
and Mining. Hershey, PA: Idea Group, August 2008, ch. Hierarchical Document
Clustering, pp. 970–975.

[28] R. Agrawal and T. Imielinski, “Mining association rules between sets of items in
large databases,” 1993, pp. 207–216.

[29] R. A. McAllister and R. A. Angryk, “An efficient abstraction-based data model
for information retrieval,” in The 22nd Australasian Joint Conference on Artifi-
cial Intelligence (to appear), 2009.

[30] W. Li, J. Han, and J. Pei, “Cmar: Accurate and efficient classification based on
multiple class-association rules,” Data Mining, IEEE International Conference
on, vol. 0, p. 369, 2001.

[31] (2009, July) Jgrapht. [Online]. Available: http://jgrapht.sourceforge.net/

[32] (2009, July) Word vector tool. [Online]. Available: http://sourceforge.net/
projects/wvtool/

[33] A. K. McCallum. (1996) Bow: A toolkit for statistical language modeling,
text retrieval, classification and clustering. [Online]. Available: http:
//www.cs.cmu.edu/∼mccallum/bow

[34] P. Bednar. (2007) Jbowl. [Online]. Available: http://sourceforge.net/projects/
jbowl

[35] Wordnet: a lexical database for the english language. [Online]. Available:
http://wordnet.princeton.edu/

[36] Postgresql: the world’s most advanced open source database. [Online]. Available:
http://www.postgresql.org/

http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0262220733
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0262220733
http://jgrapht.sourceforge.net/
http://sourceforge.net/projects/wvtool/
http://sourceforge.net/projects/wvtool/
http://www.cs.cmu.edu/~mccallum/bow
http://www.cs.cmu.edu/~mccallum/bow
http://sourceforge.net/projects/jbowl
http://sourceforge.net/projects/jbowl
http://wordnet.princeton.edu/
http://www.postgresql.org/

91

APPENDICES

92

APPENDIX A

SYMBOLS AND ABBEREVIATIONS

93

Wstop stopwords

wstop stopword

W words

w word

Wq words in a query

D a document corpus

d a document

|D| number of documents

T word vector files

t word vector file

tw word vector entry

tf term frequency value

idf inverse document frequency value

tfidf term frequency × inverse document frequency value

DG the document graphs

dg a document graph

MDG the master document graph

s a synset

Vnot propagated the non-propagated master document graph vertices

DT a document tree

MDT a master document tree

H a hash table

h a hash table entry

m the number of vertex labels

τ a partial tfidf table

94

p a precision variable

r a recall variable

α the recall weight

S a set of synsets

s a synset

v a vertex

e an edge

q a query

Dq the documents returned from a query

Ω an inverted index

ω an inverted index entry

π the postings list

Ξ an FP-Tree

Φ a set of frequent patterns

φ a frequent pattern

	Titlepage
	Copyright
	Approval
	Permission
	Dedication
	Acknowledgements

	Table of Contents
	List of Figures

	Abstract
	Chapter 1 — Introduction
	Motivation
	Scope

	Chapter 2 — Background
	Information Retrieval Background
	Frequent Pattern Mining
	Taxonomies and Frequent Patterns in Text Processing

	Chapter 3 — Approach
	Overview
	Preprocessing of Documents
	Document Graphs
	Discovery of Document Abstraction Paths
	Building Abstraction Path-Based Inverted Indices
	Indexing System Architecture
	Processing of Queries

	Chapter 4 — Experimental Evaluation
	Chapter 5 — Conclusions and Future Work
	Future Work

	References Cited
	APPENDICES
	APPENDIX A: Symbols and Abbereviations

