
Loving to Learn Theory

Active Learning Modules for the Theory of Computing1

Michael T. Grinder, Seong B. Kim, Teresa L. Lutey, Rockford J. Ross, and Kathleen F. Walsh

Computer Science Department

Montana State University

Bozeman, MT 59717

ross@cs.montana.edu

1 Introduction

Can students love to learn the theory of computing?
This topic is, after all, probably the most challenging in
the computer science curriculum. The academic struc-
ture in the United States from grade school on is not
particularly good at preparing students to deal with
mathematical abstractions in any case, and the kinds
of abstractions that permeate the theory of comput-
ing are unlike any encountered in other math courses:
strings, formal languages, and models of computation.
Furthermore, there is often little correlation provided
in a standard theory textbook between the theory and
the real world of software development; students wonder
just what the point of the course is. It is no surprise,
then, that most students struggle with learning the the-
ory of computing.
It is tempting to forego teaching the theory of com-

puting, since students not only struggle with it, but
they often retain so little of it. This would be a mis-
take. Done properly, the theory course puts the “sci-
ence” into computer science, giving aspiring practition-
ers a basis for understanding the fundamental laws that
govern their discipline: there are problems that cannot
be solved, there are intractable problems, there are lim-
itations on the efficiency of the solutions to problems,
and so on. Students not only need to know these fun-
damental truths about their field, but they also need to
be able to apply this knowledge to their everyday work
of programming.
In this paper we describe recent advances in our long-

term efforts in the Webworks Laboratory at Montana

1Support for some of the work described here has come
from the National Science Foundation, grant number NSF-
0088728.

State University to make the theory of computing ac-
cessible to students through active learning modules de-
signed for use on the web. While we won’t be so bold
as to say that students will actually love to learn the
theory of computing as a result of having access to these
modules, we can confidently say from our own experi-
ence that they will find learning the theory to be more
fun. And that, we would all agree, is a big step towards
helping students learn.

2 Some Background

Interactive computer-based instruction has tantalized
educators since at least the advent of computer video
monitors, which made individual instructional delivery
possible [4]. However, in spite of the fact that many
good interactive educational systems have been devel-
oped for various topics in computer science, it is well
known that these systems are not widely used. This
problem and possible solutions have been discussed in
the literature before (see, for example, [2]). The two
most important issues are

• platform independence

• courseware integration

If active learning software is developed for a specific
platform (e.g., Windows XP on a PC) it automatically
excludes users who have a different platform (e.g., Mac
OS on a Macintosh). If the software is a standalone
tool for one specific, isolated topic, such as an anima-
tion of the red-black tree abstract data type, then the
instructor must go to the effort of locating the software,
learning to use it, fitting it into her course, and teach-
ing the students to use it, all for a one- or two-lecture
sequence. Each different software module would require
the same effort, which most instructors are not willing
to expend.
The solution we use in the Webworks Laboratory to

these problems is to (1) design all active learning soft-
ware as applets that run in standard browsers, and (2)
integrate the applets into a comprehensive teaching and



Figure 1: The finite state automaton applet

learning resource (e.g., a hypertextbook) that can aug-
ment or supplant a standard textbook as a primary re-
source for the class.

3 Active Learning Theory Applets

A standard first chapter in a traditional theory of com-
puting course covers three equivalent representations of
regular sets: finite state automata, regular expressions,
and regular grammars. We have developed active learn-
ing applets for each of these models to incorporate into
a hypertextbook which we call Snapshots of the Theory
of Computing (we have reported on the hypertextbook
and some of these applets earlier [2], but all have since
undergone substantial revision and enhancement). We
discuss each applet below, and then we describe how
these are to be integrated into a comprehensive teach-
ing and learning resource.

3.1 A Finite State Automaton Applet

The oldest of our applets is the finite state automaton
(FSA) applet, the work of the first author. This ap-
plet has undergone a complete rewrite and several re-
visions as we have continued to explore more effective
ways to reach students and better ways to incorporate
active learning applets into a comprehensive teaching
and learning resource, such as a hypertextbook.

Figure 1 gives a snapshot of this applet in action.
The FSA illustrated is one that recognizes integer, fixed
point, and floating point numbers. It is nondeterminis-
tic. At the point shown, the automaton has processed
the prefix 173.5 of the input string and is about to
consume the next input symbol (6) as seen on the input
tape. Current states are marked with a disk (colored red
on a computer monitor); state transitions are animated
in that the red disks move from each current state to the
next states in a smooth motion along the appropriate
edges as an input symbol is consumed. Rudimentary
sound effects accompany the moves. If there is no tran-
sition for a given input, the disk turns gray and then
disappears. The user has complete control over the an-
imation of the actions of the automaton.
The automaton of this example was constructed to

nondeterministically check for an integer, fixed point,
or floating point number. At the point illustrated in
figure 1, the branch checking for an integer has died be-
cause a decimal point was encountered in the input; the
branches checking for fixed and floating point numbers
are still alive, as seen by the shaded states.
Active learning on the part of the student is promoted

throughout. The student must supply input strings and
orchestrate the actions of the automaton. Processing
can be directed one step at a time through mouse clicks,



Figure 2: The context free grammar applet

or set to run continuously. The automaton can be edited
arbitrarily by the student as well.
Most useful, perhaps, are special features built into

the applet for use in exercises. For instance, an exercise
can be designed that requires a student to construct an
FSA to recognize a particular language. Known prop-
erties of FSAs are then exploited to provide feedback
to the student as the exercise is attempted. This is
accomplished by requiring that the instructor who cre-
ates the assignment also supply a correct FSA at the
time of creation. The language of the student’s FSA is
then compared to the language recognized by the cor-
rect FSA. If the languages are not the same, a sample
string is given that the student’s FSA accepts or rejects
in error, and the student can try again.
More about this particular applet can be found at the

Webworks web site:
www.cs.montana.edu/webworks

A further description can also be found in [2].

3.2 A Context Free Grammar Applet

The second applet in our theory repertoire is the con-
text free grammar animator of figure 2. This, too, has
undergone a complete rewrite (by the third author) as
we have learned more about active learning applets.
There are currently three possible ways to use the

grammar applet. The first is in demonstrating how a

parse tree for a string is constructed. In this case, the
applet is preloaded with a grammar and a string. The
student directs the parsing to proceed one step at a time
by clicking on the “EXPAND” button. Explanations of
what is occurring at each step appear in the upper left
pane (these explanations will eventually also be pro-
vided in an audio file as well). In this mode the applet
can be used to introduce the concept of grammars and
parsing to novices.
A second use of the applet is to require the student

to produce a parse of a given string as an exercise. In
this case, the grammar to be used is either preloaded
into the applet, or the student selects the appropriate
grammar from a list. Then the student clicks on the
nonterminal node to expand (in the bottom pane), the
rule to use in expanding this node (in the top right
pane), and then the “EXPAND” button to complete
the expansion. Note that there is a button for selecting
the type of parse to perform; the options are leftmost,
rightmost, or arbitrary.
A third use of the applet is to require students to

construct their own context free grammar within the
applet and then perform parses of various strings us-
ing this grammar. The applet flags problems with the
submitted grammar, allowing students to correct errors.
In every case, there are features that aid active learn-

ing. Rule expansions are done in a smooth fashion; that



Figure 3: The regular expression applet

is, the applet actually draws the lines from the nonter-
minal being expanded to the symbols on the right hand
side of the rule being applied one at a time in a manner
similar to how it would be done by hand. The speed
with which this drawing occurs can be controlled with
the slider bar. A student can also back up in a parse one
rule at a time to try different rules (through the “Undo
Last Expansion” button), or an entire branch can be
pruned (through the “Collapse Node” button).

3.3 A Regular Expression Applet

The final entry in our current repertoire of active learn-
ing theory applets is the regular expression animator
(the work of the last author) shown in figure 3. It pro-
vides features similar to those of the other applets.
The regular expression applet can be used to intro-

duce novices to the concept of regular expressions in
that the applet can be preloaded with the description
of a set (regular language) for which a regular expres-
sion is to be constructed. Then, a regular expression
is constructed a step at a time each time the student
presses the “step” button: the language in question is
given in the top right pane, the bottom right pane shows
the portion of the regular expression constructed so far,
and the bottom left pane gives an explanation of how
this partial expression was constructed from the previ-
ous partial expression. Since there is no single unique
or correct way to produce a regular expression, it is up
to the instructor who creates the animation and accom-

panying explanations to provide good insight into this
process.
A second use for this applet is in exercises. In these

cases, the applet is preloaded with a description of a
regular language in the upper right pane and a (hidden)
correct regular expression. The student is responsible
for constructing a regular expression in the lower right
pane that denotes the given regular language. Using
known properties of regular expressions, the language
represented by the student’s regular expression is com-
pared with the language denoted by the correct regular
expression and feedback is given to the student about
whether his or her regular expression is correct or not2.

4 Integrating the Applets

As we discussed earlier, there are two major issues that
need to be addressed in order to make active learning
applets widely used in the curriculum: platform in-
dependence and integration with course teaching and
learning resources. We have met the challenge of plat-
form independence by creating our applets to run in the
most common web browsers (i.e., Netscape and Inter-
net Explorer) as long as the most recent versions of the
Java Virtual Machine are installed.
Integrating the applets into regular course teaching

and learning resources is a separate matter. We are
tackling this issue on two fronts. First, we are ensur-

2This feature is still under construction at the time of
this writing.



ing that the applets work with each other. Second, we
are creating a hypertextbook that incorporates these
applets and can be used to augment or supplant the
traditional textbook used in a class.

4.1 Coupling the Applets

All three of the applets described above are being de-
veloped to work together (this work is in progress). As
described, known properties of FSAs are already uti-
lized in the FSA applet to determine whether a student
has constructed a correct automaton in an exercise and
to provide feedback to the student. This work is be-
ing extended to ensure that a constructed automaton is
deterministic, minimal, and/or completely specified, if
any of these things are required in the exercise.
The same properties that allow two automata to be

checked for equivalence can be applied for checking and
providing feedback in the context free grammar and the
regular expression applets. Algorithms exist for con-
verting regular grammars and regular expressions to
FSAs, so the grammar or regular expression supplied by
a student in response to an exercise can be checked for
correctness using the same process as described for the
FSA applet. The only requirement is that the instruc-
tor creating the exercise also supply a correct grammar
or regular expression, respectively.
The applets are also being extended to encompass

all aspects of the theory of finite automata and regu-
lar languages, including active learning demonstrations
and exercises for

• the conversion of nondeterministic FSAs to equivalent
deterministic FSAs

• the conversion of deterministic FSAs to their minimal
forms

• the conversion of regular expressions to and from
FSAs

• the conversion of regular grammars to and from FSAs

• the pumping lemma for regular languages

to name a few.
Finally, the applets are being extended to include

other models. The FSA applet will eventually be able to
animate any of the usual models of computation up to
Turing machines, and the context free grammar applet
will be able to function with arbitrary grammars.

4.2 Courseware Integration

As applets, each of the animation systems described
above can be embedded directly into comprehensive
learning resources designed for the web. We have
started this process in the form of the Snapshots hy-
pertextbook mentioned earlier. There is not room in
this paper to describe the hypertextbook project, but

it can be found at the Webworks web site and in [1, 2].
Briefly, it presents the theory of computing in a way that
allows learners with different academic needs to progress
through the material at a comfortable level. At points
where a traditional textbook would have examples of
models of computation, conversion algorithms, and so
forth, Snapshots instead includes the active learning ap-
plets described here.
The Snapshots hypertextbook is being released a por-

tion at a time, as each portion becomes ready (hence the
title, Snapshots of the Theory of Computing). As a com-
prehensive teaching and learning resource for the web,
Snapshots solves the problems of platform dependence
and non-integrated resources, and thus promises to be a
useful active learning resource for teaching and learning
the theory of computing.

5 Summary

Other researchers have produced some effective stand-
alone applets for some of the components of the theory
of computing discussed above. There is not room to
cite each of these other efforts here, but references can
be found in [2] and on the Webworks web site. Few
others are developing the kinds of integrated, compre-
hensive, web-based, active learning teaching and learn-
ing resources of the kind we describe here. One other
project of note is the Ganimal project, which does in-
clude an online textbook on finite state automata [3].
We have used our applets successfully in pilot form

in courses at Montana State University, and they have
been used at a few other institutions as well. We hope
that our work will prove useful and encourage others to
create such integrated active learning resources for the
web as well.

References

[1] Boroni, C. M., Goosey, F. W., Grinder, M. T.,
Lambert, J. L., and Ross, R. J. Tying it All To-
gether Creating Self-Contained, Animated Interac-
tive, Web-Based Resources for Computer Science
Education. In Thirtieth SIGCSE Technical Sym-
posium on Computer Science Education (SIGCSE
Bulletin) (Mar. 1999), vol. 31, number 1, pp. 7–11.

[2] Boroni, C. M., Goosey, F. W., Grinder, M. T., and
Ross, R. J. Engaging Students with Active Learning
Resources: Hypertextbooks for the Web. In Thirty
Second SIGCSE Technical Symposium on Computer
Science Education (SIGCSE Bulletin) (Mar. 2001),
vol. 33, number 1, pp. 65–69.

[3] Reinhard Wilhelm, et. al. Ganimal. http://rw4.-
cs.uni-sb.de/∼ganimal/, 2001.

[4] Stasko, J., Domingue, J., Brown, M. H., and Price,
B. A., Eds. Software Visualization: Programming
as a Multimedia Experience. MIT Press, 1997.


