Hypertextbooks:
Animated, Active Learning, Comprehensive
Teaching and Learning Resources for the Web!

Rockford J. Ross! and Michael T. Grinder?

! Computer Science Department, Montana State University
Bozeman, MT 59717, USA
ross@cs.montana.edu
2 Computer Science Department, Montana Tech of the University of Montana
Butte, MT 59701, USA

grinder@cs.montana.edu

Abstract. Computer-generated visualizations have been used in com-
puter science education for many years, most notably in the form of
algorithm animations. Although appealing and often useful, the anecdo-
tal evidence is that these visualizations are seldom used in the classroom.
There are many reasons for this, including platform dependence, cum-
bersome installation and maintenance procedures, and—perhaps most
influential—a lack of integration with other course materials. Hyper-
textbooks provide one solution to these problems. Designed as complete
teaching and learning resources for the web, hypertextbooks incorporate
many features for teaching and learning that vastly extend the capabili-
ties of traditional textbooks. Along with traditional textual presentations
of the material to be learned, hypertextbooks allow for different learning
paths through the material for different learning needs, an abundance of
pictures and illustrations, video clips where helpful, audio, and—most
importantly—interactive, active learning visualizations of key concepts.
In this paper we discuss the hypertextbook concept by way of the hy-
pertextbook project currently underway at Montana State University.

1 Introduction

Visualizations play a key role in providing insights into important concepts.
Computer-based visualizations have been applied to many areas of science and
engineering, enhancing our understanding of molecular structures, mysteries of
the universe, predator-prey relationships, and many other science, engineering,
and sociological phenomena. Most visualization software has been oriented to-
wards advancing research. Less attention has been paid to the development of
visualization software for education.

! Support for some of the work described here has come from the National Science
Foundation, grant numbers NSF-0088728 and NSF-0088934.

2 Rockford J. Ross and Michael T. Grinder

At first glance, it might appear that visualization systems developed for re-
search would be equally applicable to education, but that is not the case. Al-
though demonstrations of advanced visualizations can be helpful in the class-
room, there is a vast difference between a visualization intended for an expert,
who already understands the field well and knows what patterns to look for in
a visualization (and what those patterns might mean), and one intended for a
novice who does not understand the field well and is using visualization software
to help learn the field.

Computer science educators have developed a number of visualizations of
computer science concepts for education since the early days of the discipline [1,
13,17,15, 8]. Most of these, not unreasonably, are algorithm animations (see, for
example, [4,11, 14])—visualizations that show the steps of an algorithm, such as
quicksort, in action. Educators have always struggled to convey the dynamics
of an algorithm in a lecture; the artistic and acting capabilities required for an
illuminating presentation at a whiteboard elude most instructors. It is also diffi-
cult to avoid mistakes, and it is a struggle to back up in such a live presentation
to answer student questions about what happened a few steps earlier. Finally,
when students walk out of the classroom they leave the dynamic presentation
behind. Notes they might have taken, being inherently static, are of little use in
recapturing the dynamic information of the lecture.

It is no wonder, then, that the idea of dynamic, computer-based visualizations
of key computer science concepts is so appealing to educators. Done properly,
they are error free, repeatable, easy to reverse in answer to questions, usable
for study outside of the classroom, and readily available to both instructors and
students. In spite of their appeal, however, it is well known that visualization
software for computer science education is not widely used in instructional set-
tings. In the rest of this paper we discuss the reasons for this paradox and present
one remedy: the hypertextbook.

2 Why Educational Visualization Software is Underused

What is it that keeps visualization software systems—even good ones—designed
to aid teaching and learning at bay? In [3] we examine this question in depth.
Essentially, there are four parts to the answer to this question: (1) platform
dependence, (2) installation and maintenance chores, (3) demands on faculty
time, and (4) a lack of courseware integration.

The problems associated with platform dependence and installation and
maintenance chores are self-evident. These problems can be overcome with well-
designed visualization systems designed to run as applets on the web. Such ap-
plets are platform independent by definition, and they require no installation or
maintenance on the part of the users. However, web-based visualization applets
still require time on the part of instructors to locate, evaluate, learn, and teach in
preparation for effective classroom use, a process that must be repeated for each
desired visualization. Since most such applets deal with single concepts and are
therefore useful for only one or two lectures, this is time that most overburdened

Lecture Notes in Computer Science 3

faculty members are unable to invest. Finally—and most importantly—there is
the problem of courseware integration. An individual applet acquired from the
web for visualization purposes is unlikely to blend well with traditional course
resources or other applets. Terminology may differ, the implementation of the
concept may not closely match that presented in the course textbook, and it may
be difficult to decide where to schedule the presentation and use of the applet
in the course. Furthermore, individual applets retrieved from the web seldom
provide comprehensive active learning experiences for students.

On one hand, then, it is no wonder that visualization software designed for
education is underutilized. On the other hand, a solution to this problem is
evident. Teaching and learning resources need to be developed that are plat-
form independent and that incorporate active learning visualization applets as a
seamless part of the whole. This brings us to the concept of the hypertextbook.

3 Hypertextbooks

A hypertextbook is a comprehensive, web-based teaching and learning resource
that is intended to augment or supplant a traditional textbook for an academic
subject. For example, a hypertextbook on the theory of computing would be a
complete, web-based resource for teaching and learning the theory of computing.
Hypertextbooks extend the capabilities of traditional textbooks tremendously in
that, beyond mere textual presentations and static illustrations, they can also
incorporate video clips, audio files, and active links to other material on the
web. They can also be arranged (through the use of hyperlinks) to accommodate
various teaching/learning needs and styles. Most unique, though, is their capacity
for including active learning modules in the form of interactive applets that
visualize important concepts and engage students in exploratory learning. In
most cases, the visualizations are animated. That is, the concept or model being
visualized changes over time in response to various stimuli; we often refer to such
visualizations as animations. It is this capacity that web-based hypertextbooks
have for the incorporation of active learning animation applets that we consider
at length in this paper.

The ensuing discussion of hypertextbooks is based on our own work-in-
progress on a hypertextbook we call Snapshots of the Theory of Computing,
or just Snapshots for short. The title Snapshots reflects the fact that the hy-
pertextbook is being made available in parts (snapshots), as each part becomes
ready.

We have reported on Snapshots before [2,3]. Here we present the hyper-
textbook concept from a different point of view. As the design of Snapshots is
discussed, we will highlight points that we have found to be important in the
construction of a hypertextbook, both from pedagogical and practical points of
view. For ease of reference, we will number these points.

It is important to note at the outset that none of the “important points” we
list have actually been verified by us through formal studies with hypertextbooks
in a teaching and learning environment; we have not yet had opportunity to

4 Rockford J. Ross and Michael T. Grinder

conduct such studies®. Instead, the points listed come from our own experience,
discussions with colleagues, presentations by cognitive psychologists, and the
literature (for example, [14]).

It is equally important to acknowledge that many of the points we highlight—
even though we arrived at most of them independently—are not unique to our
work. The use of hypertext and hypermedia in teaching and learning has been
investigated over the course of a number years (as an example, see [10]). The
idea of constructing hypertext teaching and learning resources with integrated
visualizations and animations is also, of course, not unique to our project. In
[5], for example, eleven “design principles for effective web-based software vi-
sualizations which cover teaching requirements, sustainability, ease of use, and
remoteness” are discussed based on the work of the authors, who build on earlier
work [6]. On the other hand, we know of no other work currently in progress
that captures the essence of our hypertextbook project, which focuses on the
inclusion of comprehensive, integrated, and animated active learning applets.

With these acknowledgements to the substantial work of others, we (for the
sake of brevity) will make few more references to the literature in presenting the
list of issues we have found to be important in the design of a hypertextbook.

3.1 The Hypertextbook Cover

Figure 1 provides a view of the “cover” of Snapshots as it appears when viewed
in the Netscape web browser®. This is the home page of the web that makes up
the Snapshots hypertextbook and thus serves as the portal to the book. One
will notice that this page does indeed appear similar to the cover of a traditional
textbook. We have attempted to make it attractive, uncluttered, and functional,
which leads us to our first points.

Point 1. The cover, or portal, of a hypertextbook should be attractive
and/or intriguing, thus inviting readers to explore further.

Point 2. A hypertextbook, from the cover on, should have a familiar
and professional “textbook” look to it, so that students feel comfortable
using it as their main class learning resource. (As time goes on and
hypertext materials become more prevalent, it is likely that such visual
relationships to traditional textbooks will become unnecessary.)

Point 3. A hypertextbook should be uncluttered, yet functional. There
is a strong temptation to make liberal use of the “bells and whistles”
available for web page development in a hypertextbook (flashing sym-
bols, odd fonts, animated images, and so forth), most of which only
confuse the learner and detract from the learning experience.

2 This is the classical “chicken and egg” problem; such studies would help in the design
of a hypertextbook, but one needs a hypertextbook to conduct the studies.

3 Tt is, unfortunately, not possible to reproduce colors here. Where important we will
explain the color schemes in the figures.

Lecture Notes in Computer Science 5

We tried a number of different designs before recognizing the importance of
points 1 through 3.

3’; New Page 1 - Netscape O] x|
File Edit Yiew Go Communicator Help
> {5 & 4
d ow A N . m o & B B
Back Forward Reload Home Search Netscape Print Security Shop Stop
%'Bwkmarks \& Locatim:liile:///Cl/My Documents/My Webs/snapshots/homepage. html ;I @]'Whal‘s Related
&Ins!anl Message WebMail Calendar @ Radio People ‘Yellow Pages Download Customize...
-
DisplayCover —
Snapshats
Preface
of the
Contents
Index Thewwy of Computing
Glossary.
Models
Rogues
By
Rockford J. Ross
Computer Science Department
Montana State University
Bozeman, MT
A hypertextbook project supported in part by
[== [

Fig. 1. The cover of the Snapshots hypertextbook

As seen in figure 1, the main entry points to the hypertextbook are listed
as links along the left side of the cover. This left margin with its links appears
on every page of the hypertextbook, giving students easy access to the impor-
tant parts of the book: cover page, preface, contents, index, glossary, standalone
versions of the active learning visualization applets (the “Models” link) used in

6 Rockford J. Ross and Michael T. Grinder

the book, and a list of the book’s contributors (the “Rogues” link). Fonts, page
backgrounds, and color schemes are also used consistently throughout the book.

Point 4. A hypertextbook should maintain a consistent structure through-
out. Standardized page design, common font usage, and consistent ap-
plication of color schemes are all important.

3.2 The Hypertextbook Structure

The web provides opportunities for structuring a hypertextbook in ways that
traditional textbook authors can only dream about. As examples, a hypertext-
book can be organized—through the use of hyperlinks—to have different learning
paths (through the same material) for different learning styles or for different
levels of educational maturity. In Snapshots we have chosen the latter approach,
creating paths through the book that cater to novices, intermediate learners,
and advanced students, respectively. From the “Preface” link in the left margin
one can get to a description of the organization of Snapshots which displays the
illustration given in figure 2.

Lot b il i

Goallats bl Forrst (5 s e B ot

Fig. 2. The ski slope organizational model of Snapshots

Figure 2 is a copy of a ski trail map for Bridger Bowl, a ski destination in
the Rocky Mountains near Bozeman, Montana, USA. One can see that there
are many trails that start at various high points on the mountain. All trails are
marked with international symbols to make it possible for skiers to choose the
appropriate way down based on their abilities. Green circles mark the easiest
routes, blue squares the intermediate paths, and black diamonds the challenging
trails. All lead to the same goal: the lodge at the bottom.

Lecture Notes in Computer Science 7

The ski slope model is our inspiration for the organization of Snapshots. We
are designing the book, as noted, to address the needs of beginners, intermediate
learners, and advanced students. We mark the different ways through the book
with the same international symbols used on ski slopes: a green circle for begin-
ners, a blue square for intermediate learners, and a black diamond for the more
advanced. All paths lead to the same goal: an understanding and appreciation
of the theory of computing. This structure makes the book usable across the
curriculum.

Point 5. A hypertextbook should make use of hyperlinks to organize the
material in ways appropriate for different learning needs and/or different
learning styles to make it as flexible and useful as possible.

Table of Contents

Contents 1. The Theory of Computing

Index

Gloszar 2. A Simple Computing Model: the Finite State Automaton and Regular Languages

Models

w

. Extending the Computing Model with a Stack: Pushdown Automata and Context Free Languages
Rogues

»

. Allowing Writing to the Tape in Restricted Ways: Linear Bounded Automata and Context Sensitive
Languages

5. The Most Powerful Computing Model: Turing Machines, Algorithms, and Phrase Structure Languages

o

. The Limits of Computing: Computability and Intractability

it

Fig. 3. The contents page of Snapshots

To see how this works, look at figure 3, which is a clip of the page reached by
selecting the “Contents” link in the left margin. Notice that beneath each chapter
title the three international symbols appear: the (green) circle, the (blue) square,
and the (black) diamond. These symbols have associated hyperlinks that lead
the user to a more detailed table of contents for that chapter based on the level
selected. From the more detailed table of contents a student can then begin to
learn about the topic of the chapter by clicking on the desired section of the
chapter (each of which is also a hyperlink). The pages for each topic are marked
at the top by the appropriate international symbol to let the students know
whether they are on the appropriate track.

Following the green circle route leads a student through a very intuitive
presentation of the topic being studied, with lots of examples and liberal use of
the animated, active-learning applets that we have designed for the theory of

8 Rockford J. Ross and Michael T. Grinder

computing. The blue square track also provides an intuitive introduction to the
topic, but with fewer examples involving the active-learning applets and a greater
reliance on mathematical notation. The black diamond approach incorporates
only a few examples that use the active learning applets and resorts to formal
mathematics throughout.

3.3 Animated, Active Learning Applets for Hypertextbooks

At this point we can finally discuss the central feature of the Snapshots hyper-
textbook—animated, active learning applets of the key concepts of the theory of
computing. It might seem that these could be discussed in isolation, but doing so
would obscure one of the most important issues of hypertextbook design: applets
designed for use in a hypertextbook have substantially different requirements
than those designed for standalone use. They also take much more time to create.
An old subjective metric [7] states that if a software system designed for personal
use takes time N to complete, the same system designed for use by others will
take time 3N, and if it is also to be integrated with another system (e.g., a
hypertextbook) it will take time 9N. Our experience certainly lends credence to
this observation.

Point 6. Creating animated, active learning applets that integrate well
with each other and fit seamlessly into a hypertextbook takes appreciably
more time than creating standalone applets for identical topics.

By way of introduction, look at figure 4. This is a page that appears towards
the end of a section in Snapshots that discusses nondeterministic finite state
automata on the green track. Notice that the applet is embedded directly in the
text of this page. We have discovered that opening a new window for an applet
is distracting to the student, in that it causes focus to be shifted away from the
discussion in the text. It is also confusing in that students are not sure when a
newly opened window should be closed, nor is it clear when or how to return
to the text. On the other hand, standalone versions of the applet should also be
available for students to use in their own explorations (this feature is provided
in Snapshots through the “Models” link in the left margin).

Point 7. Applets that are to be used in examples in a hypertextbook
should appear in line and not be displayed in new windows.

Point 8. Applets used in a hypertextbook should also be available (in
an appendix, for instance) in standalone mode for arbitrary student or
instructor use.

Figure 4 shows the automaton applet preloaded with an example nondeter-
ministic automaton for determining whether an input string is a valid integer,
fixed point, or floating point number. Configuring the applet for this particular
use is, of course, the responsibility of the hypertextbook author.

Lecture Notes in Computer Science 9

3% Scanning for Tokens - Netscape =10[x]
File Edt View Go Communicator Help

4 ¢ A A 2 @ S & O
Back Forwerd Reload Home Search Netscape Print Security Shop Stap:
" Bookmarks . Location: [fl:///CI/My Documents/My Webs/snapshots/Contents/02_green/intfixed-floatnfsa htrl =] @) What's Related
&Instanl Message WebhMail Calendar Radio People Yellow Pages Download Customize...
N
splayCover i H
fuplline: Scanning for Tokens
T
Contents One real world example of the use of nondeterministic finite state automata is in the design of compilers.
Tokens must be scanned in the input stream, and automata provide a nice model of this process.
Index
Consider the process of scanning in a number. A number in a programming language might be an integer (a
Glossary number with no decimal point), a fixed point value (a number with a decimal point, but no exponent; digits
are required in front of and behind the decimal point), and a floating point value (a number with an
Models exponent value and possibly a decimal point).
Rogues Each of these values starts with a digit, so a finite state automaton to recognize integers, fixed points, or
floating points is best designed as a nondeterministic finite state automaton. Following is an example.
[i
[Run”cleall | Hu)mparel
’ Accepted
0-9 0-9 O Rejected
‘J Processing
. < ;\ 0-9 Step
0-9
Notice that the automaton accepts the input string as a valid number exactly when it winds up in one or
mare accept states.
& =0=] [

Fig. 4. An embedded finite state automaton applet in Snapshots

10 Rockford J. Ross and Michael T. Grinder

Point 9. A special software tool must be provided with each applet that
allows an author to configure that applet properly for each appearance of
that applet in the hypertextbook. For instance, if the applet in question
is to illustrate a particular finite state automaton in an example at some
desired point in the hypertextbook, the author must be able to configure
the applet to start up with the desired automaton at that point.

Active learning applets should have a number of special features that aid
learning. One is a feature that can lead a student through an animation a step
at a time with little or no required intervention and with accompanying explana-
tions. This feature is important when examples of a new topic are encountered
for the first time. In the case of the finite state automaton applet, for instance,
this would mean that the applet would be preloaded with both an automaton
and an input string. Each time the student presses the “Step” button, the au-
tomaton would be shown consuming the current input symbol, changing states,
and moving the input head to the next input symbol. An explanation of this
step would appear simultaneously in another pane of the applet window.

A second feature of applets intended for active learning is one that gives
students more responsibility for directing the animation. Again using the finite
state automaton applet as an example, in this instance an automaton might be
preloaded into the applet by the author, but the student would then provide his
or her own input strings and run the automaton to see whether the strings were
accepted or rejected.

A final necessary feature for active learning applets is one that assigns com-
plete responsibility to the student (for example, when an applet is used in an
exercise). In the case of the finite state automaton applet, the student should be
able to create and modify an automaton arbitrarily within the applet in solving
a given exercise or for independent exploration.

Other important features include the capability to back up in an animation
(so that the student can explore puzzling aspects of the animation), and an
option to set the animation either to proceed one step at a time under student
control or to set it to run automatically with an accompanying method (e.g., a
slider bar) for controlling the speed of automatic execution of the animation.

Point 10. Active learning animation applets intended for use in a hy-
pertextbook must provide a wide range of control to the student, from
virtually no control (so that a new concept can be explained a step at
a time by the author), to intermediate control (so that a predetermined
example can be explored by a student controlling the animation of that
example), to complete control (so that a student can construct and con-
trol an animation of a concept from scratch in an exercise). It has been
shown that the more involved a student is in creating an animation, the
better the student learns [16, 14].

Point 11. Active learning applets should provide capabilities for a stu-
dent to control each step in an animation or to set the animation to run

Lecture Notes in Computer Science 11

continuously; in the latter case, there should be a mechanism that allows
the student to adjust the speed of automatic animation.

Point 12. Active learning applets should allow a student to back up
arbitrarily far in an animation to review or retry certain steps.

In figure 4 the nondeterministic automaton is shown part way through the
processing of the input string 365.33E-14. There are three nondeterministic
branches in this automaton that check whether the input string is an integer,
fixed point, or floating point number, respectively. The current states are shaded
(with a red disk). As an input symbol is consumed, a state transition is shown in
that the red disks move smoothly from their current states simultaneously across
the appropriate transition edges to the next states (if there is no corresponding
transition from a state, the red disk turns gray and then disappears). The input
head also moves to the next input symbol. State transitions can be controlled a
step at a time through the “Step” button or set to run automatically. Rudimen-
tary sound effects accompany these actions; there are different sounds for state
transitions, string acceptance, and string rejection that draw attention to these
activities and distinguish them from one another. One can see that the graphical
version of the automaton reflects closely the form of automaton models found in
traditional textbooks.

Point 13. Animated, active learning applets should provide smooth
transitions between images, or states, in the animation. Students can
then see more easily how the step being animated occurs.

Point 14. Sound should be used where appropriate in active learning
applets. Sound can give important clues to an animation, which today’s
students are accustomed to utilizing, for example, while playing com-
puter games, and even while interacting with general software systems
(e.g., operating systems).

Point 15. Models animated in active learning applets should not deviate
in appearance substantially from their traditional visual representations
unless there are sound pedagogical reasons for a change.

3.4 Integrating Applets in Hypertextbooks

The repertoire of applets designed so far for Snapshots includes those needed for
a complete first chapter of a traditional theory book on finite state automata,
regular grammars, and regular expressions. In addition to the finite state au-
tomaton applet shown in figure 4, there is a context free grammar applet that
allows an author to illustrate arbitrary context free grammars (and hence arbi-
trary regular grammars) and animate derivations with these grammars. Students
can use this applet in exercises to create grammars and to construct derivations
of arbitrary strings in those grammars.

12 Rockford J. Ross and Michael T. Grinder

There is also a regular expression grammar that an author can use to demon-
strate the construction of a regular expression for a provided regular set. It also
allows a student to construct regular expressions.

Finally, there is a program animator that animates (Pascal) programs. It can
be used to demonstrate implementations of various algorithms related to the
theory, such as how a finite state automaton can be implemented as a program,
how a regular expression is converted to a finite state automaton, and so forth.
(in this instance, Pascal serves as a nice pseudo-language). These applets are not
illustrated here for lack of space, but can be found at [12].

The finite state automaton, context free grammar, and the regular expres-
sion applets have been designed to work together to provide feedback to a stu-
dent completing exercises using these applets*. Using known properties of finite
state automata, the automaton applet incorporates an algorithm that checks a
student-constructed automaton for accuracy. To accomplish this, the hypertext-
book author providing the exercise also gives a correct finite state automaton
(hidden from the student) for the exercise. The language of the correct automa-
ton is then compared with the language of the student’s automaton. If the two
are equal, the student is congratulated. If the two languages are not equal, the
applet reports this to the student along with a sample string that the student’s
automaton either accepts or rejects in error.

Using other known algorithms that convert regular expressions and regular
grammars to equivalent finite state automata the same technique is applied in the
regular expression and grammar animation applets to provide similar feedback
to a student. Again, the author must provide a correct regular expression or
grammar, respectively, when creating exercises with these applets. Then the
conversions to equivalent finite state automata of the correct version and the
student version are made, the language comparisons completed as above, and
feedback provided to the student.

Point 16. Active learning models included in a hypertextbook must be
designed to interact with each other as appropriate.

3.5 Decoupling a Model from its Description

This brings us to our final point, and perhaps the most important one we make.

Point 17. The data structure that describes a model (e.g., a finite state
automaton) must be independent of its graphical representation in an
applet.

This last point is easily overlooked. It is the reason why many standalone ap-
plets cannot readily be extended, or incorporated into other resources, such as
hypertextbooks. Without an underlying representation for each model that is in-
dependent of its graphical presentation, integrating applets to work together (as

4 Much of this work is in progress at the time of this writing.

Lecture Notes in Computer Science 13

described in the previous section) would be prohibitively difficult. With Snap-
shots we have implemented the most logical solution to this problem by design-
ing for each model (finite state automaton, grammar, and regular expression)
an eXtensible Markup Language (XML) definition. Not only does this allow the
various models to be integrated with each other, but it also provides for the
development of different graphical representations of the models as desired, and
it allows the models to be treated in a fashion that is now standard on the web.

Briefly, this works as follows. Consider the definition of a finite state au-
tomaton. This definition can be formally specified in XML so that all of the
components of a finite state automaton—the states, the input alphabet, the
transition function, and the accept states—are well defined. Each different finite
state automaton is formulated with the same XML structure, but with different
values in the data fields (e.g., the fields that represent the number of states, the
actual input alphabet, and so forth). In our case, where pedagogy is key, there
may also be other parts to the definition not normally associated with the the-
oretical definition of a finite state automaton, such as a field that accompanies
each state that describes what that state “remembers,” or a particular input
string on which the automaton should be started when it is initialized. Along
with the XML file for a finite state automaton, a Document Type Definition
(DTD) file is provided that specifies the rules for constructing a proper finite
state automaton in XML. Thus, programs that process the XML file can check
it against its DTD to see that the file represents a correctly structured finite
state automaton before actually processing the XML file.

The key point is that the XML file for a finite state automaton contains only
its definition, not any information about how the automaton is to be displayed.
Thus, it is up to the program processing an automaton XML file to decide how
to display the automaton. The illustration in figure 4 represents one way to
display a finite state automaton from its XML file. The same automaton could
be displayed as a table from the same XML file, since no information is included
in the file about how to display or animate the automaton. On the other hand,
since all of the information about the automaton is in the XML file, it is possible
to display the automaton consistently in one of these various forms, and even to
animate it as desired.

Consider also what is done when an author creates an exercise for the hy-
pertextbook using an exercise creation tool (see point 9). Suppose this exercise
requires a student to construct a finite state automaton to recognize a partic-
ular regular language. In developing the exercise, the author provides both the
written specifications of the automaton for the student and a correct automa-
ton. This correct automaton is automatically converted to its XML form by the
exercise construction tool and stored as part of the exercise (hidden from the
student). The student completing the exercise then attempts to construct a cor-
rect automaton within the finite state automaton applet. Behind the scenes, the
applet converts the student’s automaton to its respective XML form. When the
student then clicks on a “submit” button, the applet invokes an algorithm that
compares the correct automaton against the student’s automaton using a well-

14 Rockford J. Ross and Michael T. Grinder

known algorithm for determining whether two finite state automata recognize
the same language. This algorithm is easy to implement because of the consis-
tent representation of both automata as correct and consistent XML files (each
based on the same DTD).

The context free grammar and regular expression models in Snapshots also
have appropriate, consistent XML representations. This makes implementation
of standard conversion and checking algorithms (e.g., algorithms for checking
whether a student-constructed regular expression is correct or not, or for con-
verting a regular expression to a finite state automaton) in the active learning
applets that animate these concepts straightforward as well.

Based on the XML definitions for the different models, work is continuing as
of this writing on extending the active learning applet library of Snapshots to
include animations of the standard conversion algorithms from nondeterministic
finite state automata to equivalent deterministic versions, from deterministic fi-
nite state automata to their minimal form, from regular expressions to finite state
automata (and vice versa), and from regular grammars to finite state automata
(and vice versa). Finally, animations of the applications of the theory—such
as the pumping lemma for regular languages, the Myhill-Nerode theorem, and
others—are in the plans. Together, these animations will support a comprehen-
sive first chapter in Snapshots on finite state automata, regular grammars, and
regular expressions, replete with animated, active learning applets designed to
help students of many different abilities and backgrounds come to an apprecia-
tion and understanding of the theory of computing.

4 Summary

In this paper we have discussed some of the problems that have precluded the
widespread use of standalone educational visualization software systems in the
computer science curriculum. We have then proposed one solution to these prob-
lems: hypertextbooks that are designed for the web and are thus platform inde-
pendent, turnkey systems that can be used as the primary teaching and learning
resource in a course. Such hypertextbooks can (and should) incorporate ani-
mated, active learning applets in a seamless fashion, so that students use them
as a matter of course. Finally, we have listed a number of important points that
we have learned in the course of our efforts to construct hypertextbooks in the
Webworks Laboratory [12] at Montana State University.

There are a number of researchers working on visualization and animation
software for education, including animations of theory concepts (see, for example,
[9]). However, we know of no other hypertextbook projects of the scope described
here (one project worth a look is [18]). We hope that our work will encourage
others to begin similar projects. Patience is required. The writing of a textbook
is a big job in any case. Designing a hypertextbook that addresses the differing
needs of students and that incorporates active learning applets makes the job
much more challenging. In the end we believe that students will profit.

Lecture Notes in Computer Science 15

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

16mm color sound film. Sorting Out Sorting. 30 minutes, 1981.

Boroni, C. M., Goosey, F. W.; Grinder, M. T., and Ross, R. J. A Paradigm
Shift! The Internet, the Web, Browsers, Java, and the Future of Computer Science
Education. In Twenty-ninth SIGCSE Technical Symposium on Computer Science
Education (SIGCSE Bulletin) (Mar. 1998), vol. 30, number 1, pp. 145-149.
Boroni, C. M., Goosey, F. W., Grinder, M. T., and Ross, R. J. Engaging Students
with Active Learning Resources: Hypertextbooks for the Web. In Thirty Second
SIGCSE Technical Symposium on Computer Science Education (SIGCSE Bulletin)
(Mar. 2001), vol. 33, number 1, pp. 65-69.

Brown, M. H. Zeus: A System for Algorithm Animation. In Proceedings of the
1991 Workshop on Visual Languages (Oct. 1991).

Domingue, J., and Muholland, P. An Effective Web Based Software Visualization
Learning Environment. In Journal of Visual Languages and Computing (Oct.
1998), vol. 9, number 5, pp. 485-508.

Eisenstadt, M., and Brayshaw, M. Understanding the Novice Programmer. Erl-
baum, Hilldsdale, NJ, E. Soloway and J. Spohrer, Eds., 1987, ch. An integrated
textbook, video and software environment for novice and expert Prolog program-
mers.

Frederick P. Brooks, J. The Mythical Man-Month. Addison Wesley, 1975.
Greening, T., Ed. Computer Science Education in the 21st Century. Springer
Verlag, 2000, ch. Shifting Paradigms: Teaching and Learning in an Animated, Web-
Connected World, pp. 173-193. Invited chapter by Rockford J. Ross.

Hung, T., and Rodger, S. H. Increasing Visualization and Interaction in the Au-
tomata Theory Course. In Thirty-first SIGCSE Technical Symposium on Computer
Science Education (SIGCSE Bulletin) (Mar. 2000), vol. 32, number 1, pp. 6-10.
Jacobson, M. J., Maouri, C., Mishra, P., and Kolar, C. Learning with hypertext
learning environments: Theory, design, and practice. In Journal of Educational
Multimedia and Hypermedia (1996), vol. 5, number 3/4, pp. 239-281.

Naps, T. L., Eagan, J. R., and Norton, L. L. JHAVE — An Environment to
Actively Engage Students in Web-based Algorithm Visualizations. In Thirty-first
SIGCSE Technical Symposium on Computer Science Education (SIGCSE Bulletin)
(Mar. 2000), vol. 32, number 1, pp. 109-113.

Ross, R. J. Webworks Laboratory Web Site. http://www.cs.montana.edu/web-
works.

Ross, R. J. Teaching Programming to the Deaf. ACM SIGCAPH Bulletin 30
(Autumn 1982).

Stasko, J. Evaluating Animations as Student Aids in Learning Computer Algo-
rithms. Computers & Education 33, 4 (1999), 253-278.

Stasko, J., Domingue, J., Brown, M. H., and Price, B. A., Eds. Software Visual-
ization: Programming as a Multimedia Ezperience. MIT Press, 1997.

Stasko, J. T. Using Student-Built Algorithm Animations as Learning Aids. In
Twenty-eighth SIGCSE Technical Symposium on Computer Science Education
(SIGCSE Bulletin) (Mar. 1997), vol. 29, number 1, pp. 25-29.

Thomas, D. A., Ed. Scientific Visualization in Mathematics and Science Teach-
ing. Association for the Advancement of Computing in Education (AACE), 1995,
ch. Visualizing Computer Science. Invited chapter by Rockford J. Ross.

Wilhelm, R. Ganimal project: Ganifa—electronic textbook on generating finite
automata. http://www.cs.uni-sb.de/ GANIMAL/, 2001.

