
Realizing the Promise of Visualization in the Theory of Computing1

Joshua J. Cogliati2, Frances W. Goosey3, Michael T. Grinder4, Bradley A. Pascoe5,
Rockford J. Ross6, and Cheston J. Williams7

http://www.cs.montana.edu/webworks/projects/theoryportal/

Abstract

Ongoing work on a project to develop a hypertextbook on the theory of computing is presented. The
hypertextbook is a novel teaching and learning resource built around Web technologies that incorporates
text, sound, pictures, illustrations, slide shows, video clips, and—most importantly—active learning models
of the key concepts of the theory of computing into a single, integrated source. Active learning models
currently exist for finite state automata, regular expressions, regular grammars, the pumping lemma for
regular languages, context free grammars, LL(1) parsing, and program execution. The seamless
interweaving of each of these components into a unified whole that is readable in standard Web browsers
promises to make the hypertextbook universally accessible and to help realize the goal of integrating
visualization techniques into theory courses.

Categories and Subject Descriptors: K.3.2 [Computers and Education]: Computer and Information
Science Education—Computer science education; F.4.3 [Mathematical Logic and Formal Languages]:
Formal Languages—Classes defined by grammars or automata; F.1.1 [Computation by Abstract Devices]:
Models of Computation—Automata; H.5.4 [Information Interfaces and Presentation]:
Hypertext/Hypermedia

General Terms: Theory

Additional Keywords and Phrases: computer science education, theory of computing, regular languages,
finite state automata, regular grammars, regular expressions, hypertextbook, active learning, learning
applets

1. Introduction

Software systems for visualizing concepts in computer science have been around for
many years (see, for example, [Stasko et al. 1997] for an overview). Most of this work
has been focused on algorithm animation.

1 This work has been supported in part by the National Science Foundation, grant numbers NSF 0088728
and NSF 0089397.
2 Computer Science Department, Montana State University, Bozeman, MT 59717.
cogliati@cs.montana.edu.
3 Computer Science Department, Montana State University, Bozeman, MT 59717.
goosey@cs.montana.edu.
4 Computer Science Department, Montana Tech of the University of Montana, Butte, MT 59701,
grinder@mtech.edu.
5 Computer Science Department, Montana State University, Bozeman, MT 59717.
pascoe@cs.montana.edu.
6 Computer Science Department, Montana State University, Bozeman, MT 59717. ross@cs.montana.edu.
7 Computer Science Department, Montana State University, Bozeman, MT 59717.

The theory of computing is a subject that lends itself naturally to visualization
techniques: the many models of computation, algorithms that convert one model to
another, pumping lemmas, problem reductions, and virtually all other aspects of the
theory beg to be visualized. Indeed, instructors generally spend a large proportion of
their time in the classroom acting as visualizing agents, attempting to illustrate the
dynamic nature of these topics. Unfortunately, whereas students may take notes of these
demonstrations, once they leave the classroom they are stuck with only static reminders
of the dynamic processes they watched in the classroom. The prospect of software that
would allow instructors to present such topics in an animated, error-free, and repeatable
fashion in the classroom, and that would empower students to study these topics on their
own time as often and as extensively as desired using the same software, has long held a
strong allure. Even more enticing was the hope that students would be able to learn the
theory of computing better, or at least find themselves motivated and excited about
learning the theory—a subject generally deemed the most difficult and least interesting in
the computer science curriculum.

A number of software systems for visualizing various concepts from the theory of
computing have been developed over time. Most have been “toy” versions produced
locally, not widely distributed, and rarely maintained. Just a handful have become widely
known (see, for example, [Chesnevar et al. 2003]). Among these, only a few represent
concerted efforts to produce comprehensive resources for support of an entire course or
course module on the theory of computing. Most notable are the works of Susan Rodger
[Akingbade et al. 2003, Hung and Rodger 2000] and those of the authors of this paper
[Boroni et al. 1999, Boroni et al. 2001, Grinder et al. 2002]. Readers are especially
encouraged to visit http://www.cs.duke.edu/~rodger/tools/tools.html, home of Susan
Rodger’s theory tools web site.

In spite of the fact that some very good visualization software for the theory of
computing has been developed, its use in the curriculum is not widespread. Indeed, this
phenomenon is not restricted to the theory of computing. None of the excellent
visualization systems for teaching and learning computer science has seen broad use.
The reasons for this are probably not hard to understand in retrospect and have been
discussed in the literature (see, for example, [Ross 2002, Naps et al. 2003]). These have
largely to do with the amount of time an instructor must invest for a small return:
visualization systems must be located on the Web, learned, possibly installed in the local
computing environment, taught to students, and somehow integrated into the fabric of an
existing course that may use different terminology and illustrations than those
incorporated in the visualization software—all for perhaps a few lectures’ worth of
material (consider, for example, integrating the use of a software system that visualizes
the actions of finite state automata into an existing course).

A second observation that had an initial chilling effect on the promise that visualization
software would help students learn appeared in [Byrne et al. 1996] where it was reported
that algorithm animation software did not seem to help students learn the algorithms
involved. Later results, however, showed that students were indeed helped if the
visualization software required active participation on the part of the students [Stasko

1997, Stasko 1999]. Indeed, in all of the reports on student learning an important fact
was often overlooked: students certainly did not learn worse when using visualization
software and indeed were often much more motivated and excited about learning when
using visualization software as opposed to traditional text-based resources alone [Ross
2002, Grinder 2003].

The message from these two observations for developers of visualization software is
clear. To be effective and used, visualization software must be designed for active
learning, and it must become an integrated part of a larger, comprehensive educational
resource. In the rest of this paper we discuss our approach to the design of visualization
software and our efforts to interweave it into the fabric of a hypertextbook on the theory
of computing. This work represents the combined efforts of many students and
colleagues under the direction of Rocky Ross, who serves as the director of the
Webworks Laboratory at Montana State University where this work is underway. We
restrict this discussion to just those components to be used in a chapter on finite state
automata, regular expressions, and regular grammars.

2. Active Learning Models

We have developed a number of active learning applets and identified many others for
inclusion in the hypertextbook on the theory of computing. Some of the inspiration for
this work comes from the ideas of constructivism [Ben-Ari 2001] and mental models
[Craik 1943, Gentner and Stevens 1983, Byrne 2000]. An active learning applet is
interactive software that can be integrated seamlessly into the fabric of a hypertextbook at
arbitrary points to illustrate a concept. When students encounter an active learning applet
they must interact with it through mouse clicks and other responses in exploring the
concept in question. Currently our repertoire includes active learning applets for helping
students learn about

• deterministic and nondeterministic finite state automata
• regular expressions
• regular grammars
• various versions of the pumping lemma for regular languages
• context free grammars
• LL(1) and LR(1) parsing

We sometimes refer to the above kinds of active learning applets as active learning
models, because the concepts visualized by these applets are models (e.g. of finite state
automata, regular grammars, and so forth). We have also designed different sorts of
active learning applets to support other aspects of teaching and learning. We sometimes
refer to these kinds of applets as active learning tools. Among these active learning tools
are

• a slide show presentation system
• a video clip display module
• a program animator

2.1 Versions of Active Learning Models

For applets intended for use as active learning models we have identified a number of
variations that are helpful for teaching and learning.

A passive learning example version. At first glance it might seem a paradox to have
instances of active learning models that are passive. However, in a teaching and learning
environment a passive form of an active learning model turns out to be quite helpful for
illustrating the model and how it is used when students first encounter it. The initial
exposure to the finite state automaton active learning model, for instance, might be in an
embedded example that just requires students to click a “step” button continuously to
observe the series of state transitions that the illustrated finite state automaton performs
as it processes a predefined input string (i.e., the students are not allowed to change the
input string or modify the finite state automaton in this passive version of the applet).
Passive learning versions of an applet are thus intended for use in situations in which an
instructor or hypertextbook author wants to convey a point without any of the distractions
that might occur if students were allowed simultaneously to change aspects of the model.

An active learning example version. Most examples that appear in the hypertextbook
will call for active learning versions of the model applet. In these cases students are
required to interact with the model in active learning mode. In the case of the finite state
automaton model, for instance, the student may be required to provide different input
strings to the finite state automaton.

An active learning exercise version. Exercises require more of active learning model
applets. For example, in exercises involving finite state automata, students should be
able to modify a finite state automaton in the applet or indeed to construct an entirely new
one from scratch. Furthermore, to ensure the most benefit, the applet should provide
feedback to the student about the correctness of the student’s solution.

An authoring version. A version of the applet should be constructed that provides
instructors and hypertextbook authors a way to construct passive learning examples,
active learning examples, and active learning exercises easily.

A standalone application version. Although all of the active learning models are
designed to be embedded as applets directly in the hypertextbook, it is also important that
each of these models be available as standalone applications in an appendix of the
hypertextbook. This allows for their use in independent projects and individual student
exploration.

2.2 Design Considerations

Historically, visualization software has been developed to elucidate individual concepts
in isolation. Scant consideration was given to the construction of a framework in which
all designed applets would have common interface characteristics or would be able to

interact with each other. The initial efforts of the Webworks team were no different.
However, as the concept of the hypertextbook evolved it became apparent that it would
be beneficial to address these issues. Among the most important are

• a common design philosophy and structure based on XML
• similar graphical user interfaces
• the capability for step at a time execution
• an option for continuous execution
• smooth transitions between states
• sparing use of popup windows
• undo, or reversal, of steps
• audio for cues and voice narration of processes [Mayer and Anderson 1991,

1992]

3. The Finite State Automaton Active Learning Model

A snapshot of the exercise version of the finite state automaton active learning model is
shown in figure 1. We can assume in this depiction that a student has been asked to
construct a finite state automaton to recognize any binary string that ends in 101 or 110.
In this case the student has apparently constructed a nondeterministic finite state
automaton for this purpose and is testing it on the input string 101101.

Figure 1. Finite State Automaton

Given the position of the input head on the string, it is clear that the student has clicked
on the “Step” button (in the right panel of the applet window) twice, causing the
automaton to process the leading 1 and 0 of the input string in succession and positioning
the head to consume the next symbol (a 1). Notice that the automaton is concurrently in

states S0 and S2 (nondeterministically), as indicated by the red shading of these states.
These are precisely the states at which the automaton would arrive upon processing the
leading 1 and 0 of the input string. State 4, on the other hand, is colored gray to denote
that processing of the previous input symbol (the 0) caused that nondeterministic branch
of the automaton to “die.”

Transitions are shown by smooth motion of the red disks from their current states across
the correct arcs to the next states according to the input symbol being processed. It is
known that presenting state transitions in any model in transitionally smooth fashion
helps students see how a particular state of the model is arrived at from a previous state
[Saariluoma 2000].

Note the three “indicator lights” on the right panel of the window. The yellow light is lit
to indicate that the finite state automaton is in “Processing” mode. When the automaton
has finished processing the entire input string the Processing light will turn off and either
the “Accepted” or the “Rejected” light will illuminate to indicate whether the input string
has been accepted or rejected, respectively.

Notice also the four buttons on the top panel of the window. The “Run” button positions
the read head under the first symbol of the input string and prepares the automaton for
processing after a string has been typed onto the tape. The “Clear” button clears the input
string in preparation for entering a new string. The “Alphabet” button allows the user to
select the alphabet symbols that can be used to form strings for a finite state automaton
under construction. And the “Compare” button, when clicked, compares the language
recognized by the student’s constructed finite state automaton with the language of a
correct (hidden) finite state automaton provided by the author of the exercise (see
[Grinder 2003] for details). If the two languages are the same, the student receives a
congratulatory message. If the two languages differ the student is given feedback about
strings that the student’s automaton accepts or rejects in error, allowing the student to
repair the automaton.

Automata are constructed by simple mouse clicks that create states, and by click-and-
drag operations to connect states with arrows. Similarly, provisions for labeling arrows
with symbols from the chosen alphabet are made through mouse clicks. At any point
during construction of a finite state automaton, states can be repositioned by clicking and
dragging them to desired locations; the arrows and all labels follow automatically.

The work of Michael Grinder, the finite state automaton applet has undergone many
revisions since its inception. Its definition in standard, display-independent XML
notation and its feedback mechanism are all recent enhancements. Another recent
extension, not shown in figure 1, is a state description tool that helps students learn that
the states in a finite state automaton represent memory. For example, a description can
be associated with a state that reads, “This state remembers that an even number of 1s has
been seen in the in the input string so far.” State descriptions can be read by hovering the
mouse pointer over a state.

Finally, the finite state automaton active learning model includes sound effects that
provide audio cues for the actions of the automaton as it processes a string.

4. The Regular Expression Active Learning Model

A snapshot of the exercise version of the regular expression active learning model in
action is presented in figure 2. In this exercise version of the applet, the student is
initially presented with a regular language; it is then up to the student to construct a
correct regular expression for that language in the proper input pane (the one labeled
“Enter Final Regular Expression:”). For this illustration the student has been asked to
construct a regular expression that represents the language consisting of all floating point
numbers in a particular programming language (the definition of this language is not
shown in figure 2, as it was presented previously to the student under the tab “Regular
Expression”).

Figure 2. The Regular Expression Active Learning Model

Rather than requiring the student to construct a complex regular expression from
individual characters, provision is made for defining auxiliary regular expressions that
can be used in the final answer. For example, in figure 2, the student has chosen to
construct an auxiliary regular expression named <digit> that denotes the decimal digits in
the top input window. The student has then used this auxiliary regular expression to enter
the following attempted solution to the exercise:

<digit>.<digit>

In this illustration, the student has apparently clicked on the “submit final expression”
button at the bottom of the applet window to see whether his or her attempted solution is
correct. The popup window indicates to the student that the solution is flawed and the
message provides feedback to indicate why. (As a technical note, the feedback
mechanism is based on the one described earlier for finite state automata. The student’s
submitted regular expression and a hidden, correct regular expression are both converted
to finite state automata. Both of these automata are then fed to the finite state automata
comparator that was previously constructed for the finite state automaton exercise active
learning model to obtain feedback on whether the two automata—and hence, the two
regular expressions—represent the same regular language.) The student can use this
feedback to continue to work on the regular expression until it is correct.

The original version of this applet was the work of Katie Walsh and was reported in
[Grinder et al. 2002]. Recent enhancements were made by Brad Pascoe, including the
compare feature.

5. The Regular Grammar Active Learning Model

The regular grammar active learning model also has many features to help students learn
about regular grammars. A set of grammars can be provided with each instance of this
applet from which a student can select one for exploration. In the exercise version of this
applet, a student can be required to create a regular grammar that generates a given
regular language. This is the case shown in figure 3. Here a student has input a simple
grammar to generate the language that is the set of all strings of length 0 or greater
consisting only of a’s.

Once a grammar has either been selected from a list or constructed from scratch, the
student can generate parse trees based on this grammar. An unexpanded nonterminal in
the parse tree is selected by clicking on it, and then a rule from the list in the upper right
pane of the applet is selected by clicking in turn on it. Finally, the chosen rule is applied
to the selected nonterminal when the “EXPAND” button is clicked. Following the design
rule that changes in a model image should be shown in transitionally smooth fashion, the
lines from the nonterminal being expanded to its children are drawn one at a time. The
speed of this drawing is controlled by the slider bar entitled “Animation Speed.”

Notice that there are buttons that allow a student to undo rule applications (arbitrarily
far), to select a node and collapse the entire sub tree beneath it for reconstruction, or to
clear the entire tree and start over.

As with the finite state automaton and regular expressions active learning models, this
applet also includes a compare feature that can be used in exercises to see whether the
regular grammar constructed by a student generates the language specified in the
exercise. Again, this comparison is carried out by an algorithm that converts the
student’s grammar and a hidden, correct grammar supplied by the author of the exercise
to finite state automata, which are both fed to the finite state automata comparator for
feedback.

Figure 3. The Regular Grammar Active Learning Model

There are also three tabs in the applet. The first tab, labeled “Parse Tree Pane,” shows
the parse tree as it is being constructed, as depicted in figure 3. The second tab, labeled
“String History Pane,” shows an alternate view of the parse as a succession of
intermediate strings in a standard derivation. The third tab reveals a help window that
provides instructions on how to use the applet. The currently derived string in the parse
(i.e., the leaves of the current parse tree) is maintained in the narrow pane just above the
main lower pane. The slider bars on the lower pane ensure that arbitrarily large parse
trees can be constructed and viewed.

This applet was the work of Teresa Lutey and was reported in [Grinder et al. 2002].
Extensions were made by Brad Pascoe, including the compare feature8.

6. The Regular Language Pumping Lemma Active Learning Model

Developing active learning applets for the standard models of the theory of computing—
finite state automata, regular expressions, and regular grammars—while time consuming
and painstaking—is a fairly straightforward process. It is a greater challenge to design
active learning applets that help students understand and apply various results of the
theory. The pumping lemma for regular languages is one such result that students have
tremendous difficulty grasping and applying.

8 It should be noted that the standalone applications for creating finite state automata, regular expressions,
and regular grammars can be used in exercises in which students create an instance of one of these
according to written directions and save and submit their creation electronically to an instructor, who can
then run the submissions against a correct instance for easy grading.

The purpose of the pumping lemma for regular languages is, of course, to provide a
means of demonstrating that languages are not regular. However, correct application of
the pumping lemma requires that students clearly understand the pumping lemma itself.
That is, students must realize that the pumping lemma in its various forms reveals
characteristics that all regular languages have, and, by implication, that any language that
does not exhibit theses characteristics is therefore not regular. The first order of business
is thus to help students learn what the pumping lemma is and why it is true. Among the
facts to be learned are

• for each regular language there is a finite state automaton that recognizes it
• each finite state automaton has some finite, fixed number of states, k
• every string that has at least as many symbols in it as the number of states (k) in

the finite state automaton processing the string is guaranteed to cause the
automaton to loop while processing the first k symbols of the string (and, in fact,
although just one loop can be guaranteed, there are likely many different loops
encountered by the automaton while processing the first k symbols of an input
string)

• furthermore, in any string being processed by a finite state automaton with k
states, each substring of that string that has at least k symbols will cause the
automaton to loop

• if the string being processed by a finite state automaton is accepted by that
automaton and if it also causes the automaton to loop, new strings are readily
constructed that will also be accepted by the automaton (and hence must be
members of the regular language recognized by the automaton) by repeating the
symbols of a substring that causes the automaton to loop, or by taking the
symbols that cause the automaton to loop out of the string.

Our experience in teaching the theory course at both the undergraduate and graduate
levels indicates that many students seem not to be able to grasp these facts readily and
thus have trouble understanding their abstraction as the pumping lemma. The problem
may well be one of time. Instructors cannot spend the time necessary to ensure that
students really do understand all of the issues described above before moving on to the
statement, proof, and application of the pumping lemma. Thus it seems apparent that
active learning models that help students explore these issues in depth on their own time
outside the classroom would help students learn the pumping lemma.

Josh Cogliati has designed and implemented an active learning model for this purpose.
Figure 4 shows one version of this model.

Figure 4. The Pumping Lemma Active Learning Model

This applet was constructed by extending the finite state automaton active learning model
described earlier to incorporate features for elucidating the pumping lemma. There
versions of this applet for

• passive learning examples. Students can watch a preconfigured automaton locate
the first loop encountered while processing the input string; the applet factors the
input string into a prefix substring, x, a loop substring, y, and a suffix substring, z,
in usual fashion as the input string is read by the automaton.

• active learning examples. Students can be required to supply strings for input
and/or to select any substring of the input string of length greater than or equal to
the number of states in the finite state automaton and watch the automaton
identify the first encountered loop in the selected substring.

• active learning exercises. Students can be asked to identify a substring that causes
the automaton to loop by highlighting a portion of the input string; figure 4
illustrates this mode of the applet. The green bar beneath the input string
indicates that the student has identified the substring just above it as one that will
cause the automaton to loop. The student then checks whether this selected
substring causes the automaton to loop by running the automaton on the input
string. The applet colors the transition arrows green that are encountered as the
automaton reads the portion of the string that the student highlighted, illustrating
for the student whether the selected substring actually causes the automaton to
loop or not. Students can be required to locate all of the loops in a string.

We expect that the pumping lemma active learning model will help students understand
the pumping lemma. The next step in this project, not yet completed, is to design and

implement an active learning model that leads students to a clear understanding of how to
apply the pumping lemma to show that a language is not regular.

7. The Program Animator Active Learning Tool

A number of algorithms are integral parts of the theory of computing, including
algorithms that convert one model to another (e.g., regular expressions to finite state
automata and vice versa) and algorithms that implement the models themselves (e.g.,
programs that simulate finite state automata). These can be illustrated using the program
animator applet, illustrated in figure 5 (note that the program animator is not intended to
take the place of active learning visualizations of these processes—yet to be developed—
but rather to augment them).

Figure 5. The Program Animator Active Learning Tool

This applet executes Pascal programs in a highly visual fashion (note that Pascal serves
these days as a convenient pseudo language for expressing algorithms). The program
animation applet allows a student to select a program to run from a library pulldown
menu. Once the program is loaded it can be executed a step at a time or it can be set to
execute without interruption. In step mode, the current line being executed is
highlighted. Changing variable values are shown in the upper right pane of the applet
window. Provisions are made for both forward and backward execution so that puzzling
parts of the program can be reviewed as many times as desired. The “Cost” pane in the
lower right corner of the applet window keeps track of the number of underlying virtual

machine instructions executed to provide for time complexity analysis of a running
program.

The program in figure 5 is an implementation of a finite state automaton that recognizes
the set of all valid Ada decimal literals. Students studying this program can learn one
standard way of implementing finite state automata as programs.

The program animator was one of the first active learning applets to be developed in the
Webworks Laboratory, and has been discussed in the literature numerous times (see, for
example [Boroni et al. 1999]). It was converted to applet form by Frances Goosey.

8. The Slide Show Tool

The slide show applet, shown in figure 6, is the work of Brad Pascoe and was originally
developed for a separate project underway in the Webworks Laboratory, the construction
of a hypertextbook on the subject of biofilms [Ross 2003]. It soon became apparent that
this tool would be useful in a hypertextbook on any subject.

Figure 6. The Slide Show Applet

In the illustration of figure 6, the image shown is just one in a planned slide show that
helps students learn how to construct a finite state automaton by hand in traditional
“pencil and paper mode.” A series of slides accompanied by voice narration would lead
students from the beginning to the end of the construction a step at a time.

The various buttons on the lower bar of the slide show applet provide a student with
many options for viewing a slide show. The “Go To” button brings up a list of all of the
images in the show, and students can select one from the list to access immediately. The
next buttons in succession from left to right allow a student to (1) go to the first slide in
the show, (2) go to the previous slide in the show, (3) go to the next slide in the show, (4)
go to the last slide in the show, (5) magnify the current image where desired an arbitrary
amount, (6) start the slide show in automatic mode, (7) pause the slide show, and (8) stop
the slide show. The next buttons off to the right in gray allow a student to play the
accompanying audio narration or to turn the sound on or off.

One appeal of the slide show applet is that it takes up little space in a hypertextbook.
Students can watch an entire presentation without being required to leave their position
on the current page. Indeed, multiple slide shows could be included in one applet and
students who need additional help could select as many different shows as desired from a
pulldown menu, each, for example, showing the construction of a different finite state
automaton by hand. Slide shows can thus help alleviate the problem of limited time that
instructors face in a course when presenting certain topics. For instance, students could
observe the instructor present the hand-construction of a finite state automaton in class a
few times and then study as many additional presentations as needed on their own time
by way of slide shows included in a hypertextbook that accompanies the class.

9. The Video Tool

The video tool has a purpose similar to the slide show tool. It provides a way for
including video clips of processes important to the subject under consideration. Small
“lecturelets” on a topic are prime candidates for a video clip.

The snapshot of the video applet presented in figure 7 is of a professor explaining the
workings of a pushdown automaton at a whiteboard. The bar at the bottom of the applet
includes a play button, an advance-to-beginning button, and advance-to-end button, a
slider bar for arbitrary positioning in the video clip, and a volume button. Audio
recording can be done at the time of filming, or a separate audio track can be inserted as
desired. The video applet is the work of the Frances Goosey.

We have found that both the slide show and video applets have given us a tremendous
benefit in the ongoing construction of the hypertextbook on the theory of computing.
They serve a useful and effective purpose in their own right and will see liberal use in the
hypertextbook. It turns out, however, that they can also be used to fill the gaps still
remaining which we hope to fill with new active learning models. That is, the ultimate
goal of our project is to have effective active learning models of the many important
concepts in the theory of computing. These, however, take a great deal of time to
develop and hone. In the interim we are able to resort to slide shows and videos in their
stead to help students learn these concepts. For example, in completing the chapter on
finite state automata, regular expressions, and regular grammars, it would be nice to have
active learning model applets of the main conversion algorithms in place (e.g., from finite

state automata to regular expressions and vice versa). While these applets are being
developed, the conversions can be explained in slide shows and/or videos, allowing
construction of the hypertextbook to proceed.

Figure 7. The Video Applet Tool

10. Tying it All Together—A Hypertextbook on the Theory of Computing

It should be clear that each of these active learning model and tool applets could be quite
useful on their own. However, as noted at the beginning of this paper, standalone applets
seem not to be widely used in the classroom for many reasons. It is therefore important
that a comprehensive teaching and learning resource be developed and disseminated that
seamlessly integrates standard text presentations of the material with the active learning
models (see Greening 2000, Sutinen 2001, Ross 2002 for a comprehensive description of
the concept of a hypertextbook).

There are a number of design objectives for the hypertextbook.

• It should be completely accessible in standard Web browsers, such as Netscape
Navigator and Internet Explorer.

• It should work on any computer and operating system platform.
• It should be distributable on DVD or CD media.
• It should incorporate different levels of presentation of the material for different

levels of learners.
• It should be easily modifiable and extensible.

Accessing the hypertextbook should be as simple as inserting a DVD into the player on a
computer, which, in autostart mode, should immediately bring up the user’s preferred
browser with the cover page of the hypertextbook displayed, as illustrated in figure 8.

Figure 8. A Sample Hypertextbook Cover Page

Notice that the cover page appears in a Netscape Navigator window. All of the usual
features of the browser with which all users are intimately familiar are available to the
user, such as the forward, back, and refresh buttons as well as the bookmark option.

Along the left side of the window are links to important parts of the hypertextbook: the
cover, preface, table of contents, index, glossary, models (which allow students access to
the active learning models—embedded elsewhere throughout the hypertextbook as
applets—in standalone mode as applications), and a rogues gallery of contributors to the
project. This set of links is replicated on all pages of the hypertextbook for easy
navigation.

Following the link to the table of contents brings up a page similar to the one shown in
figure 9. Notice that below each chapter entry are three symbols: a green circle, a blue
square, and a black diamond. These are the international ski industry symbols for “easy
way,” “intermediate way”, and “challenging way” down the mountain. Clicking on these
symbols leads the user to a presentation of the material described in the chapter heading
for novice students, intermediate students, or advanced students, respectively. The green
circle routes through the material will include many instances of the active learning
models and tools to help students new to the material to learn well. The next two levels
make increasingly less use of the models and tools and rely more increasingly on abstract
mathematical presentations. Of course, students are free to move back and forth between
the levels as needed.

Figure 9. Table of Contents of the Hypertextbook

Finally, individual “pages” in the hypertextbook integrate text, graphics, and the active
learning model and tool applets into a seamless presentation of the material. Figure 10
shows a truncated sample page from the hypertextbook. Notice that the context free
grammar active learning model applet shown is embedded seamlessly into the
surrounding text that describes an exercise to be performed. The left side of the page has
the usual links to other parts of the hypertextbook as described earlier.

11. Summary

We have described a number of existing active learning models and tools that can be used
in standalone mode or included seamlessly within the fabric of a hypertextbook on the
theory of computing. We further elaborated on the concept of a hypertextbook. The
eventual goal of the project is the construction of a hypertextbook that serves as a
complete teaching and learning resource for an undergraduate or graduate course on the
theory of computing. As the project progresses we expect to release chapters of the
hypertextbook as they are completed.

It should be clear that there are many more active learning models that should be
constructed as this project progresses, including ones that illuminate such advanced
concepts as problem reductions and NP-completeness. Indeed, such a project is likely
never to see true completion. There will always be room for new and improved active
learning applets and for inclusion of fresh material. We are now at the point where a first
chapter on finite state automata, regular expressions, and regular grammars is doable, and
we expect the others to follow in short order.

Finally, we expect the hypertextbook to solve the problem of the lack of use of
visualization software in the classroom. Since the visualization software is part and
parcel of the hypertextbook in the form of seamlessly interwoven active learning applets,
the visualization tools will be used as a matter of course. Progress can be monitored on
the project website [Ross 1999].

References

AKINGBADE, A., FINLEY, T., JACKSON, D., PATEL, P., AND RODGER, S.H. 2003 Jawaa: Easy
Web-Based Animation from CS 0 to Advanced CS Courses. In Thirty-fourth SIGCSE Technical
Symposium on Computer Science Education (SIGCSE Bulletin), volume 35, pages 162-166, March 2003.

BEN-ARI, M. 2001 Constructivism in Computer Science Education. Journal of Computers in Mathematics
and Science Teaching, 20(1):45-73, 2001.

BORONI, C.M., GOOSEY, F.W., GRINDER, M.T., LAMBERT, J.L., AND ROSS, R.J. 1999 Tying it
all Together Creating Self-Contained, Animated Interactive, Web-Based Resources for Computer Science
Education. In Thirtieth SIGCSE Technical Symposium on Computer Science Education (SIGCSE Bulletin),
volume 31, number 1, pages 7-11, March 1999.

BORONI, C.M., GOOSEY, F.W., GRINDER, M T., AND ROSS, R.J. 2001 Engaging Students with
Active Learning Resources: Hypertextbooks for the Web. In Thirty Second SIGCSE Technical Symposium
on Computer Science Education (SIGCSE Bulletin), volume 33, number 1, pages 65-69, March 2001.

BYRNE, M.D., CATRAMBONE, R., AND STASKO, J.T. 1996 Do Algorithm Animations Aid Learning?
Technical Report GIT-GVU-96-18, Georgia Institute of Technology, Atlanta, GA 30332-0280, August
1996. The results here are not negative, but they are inconclusive.

BYRNE, R. Mental Models Website. May 2000
http://www.tcd.ie/Psychology/Ruth_Byrne/mental_models/index.html

CHESNEVAR, C.I., COBO, M.L., AND YURCIK, W. 2003 Using Theoretical Computer Simulators for
Formal Languages and Automata Theory. In ITiCSE 2002 Working Group Reports (SIGCSE Bulletin),
volume 35, pages 33-37, June 2003.

CRAIK, K. 1943 The Nature of Explanation. Cambridge University Press.

GENTNER, D. AND STEVENS, A.L. (Eds) 1983 Mental Models. Lawrence Erlbaum Associates,
Hillsdale, NJ.

GREENING, T. (Ed.) 2000 Computer Science Education in the 21st Century, chapter Shifting Paradigms:
Teaching and Learning in an Animated, Web-Connected World, pages 173-193. Springer Verlag, 2000.
Invited chapter by Rockford J. Ross.

GRINDER, M.T. 2003 A Preliminary Empirical Evaluation of the Effectiveness of a Finite State
Automaton Animator. In Twenty-fourth SIGCSE Technical Symposium on Computer Science Education
(SIGCSE Bulletin), volume 35, pages 157-161, March 2003.

GRINDER, M.T., KIM, S.B., LUTEY, L. ROSS, R.J. AND WALSH K.F. 2002 Loving to Learn Theory:
Active Learning Modules for the Theory of Computing. In ThirtyThird SIGCSE Technical Symposium on
Computer Science Education (SIGCSE Bulletin), volume 34, number 1, pages 371-375, February 2002.

HUNG, T. AND RODGER, S.H.. Increasing Visualization and Interaction in the Automata Theory Course.
In Thirty-first SIGCSE Technical Symposium on Computer Science Education (SIGCSE Bulletin), volume
32, number 1, pages 6-10, March 2000.

MAYER, R.E. AND ANDERSON, R.B. 1991 Animations Need Narrations. Journal of Educational
Psychology, 83(4):484-490, 1991.

MAYER, R.E. AND ANDERSON, R.B. 1992 Helping Students Build Connections Between Words and
Pictures in Multimedia Learning. Journal of Educational Psychology, 84(4):444, 1992.

NAPS, T. and et al. 2003 Evaluating the Educational Impact of Visualization. A working group report
from ITiCSE 2003, July 2003.

ROSS, R.J. 1999 Webworks web site. http://www.cs.montana.edu/webworks, 1999.

ROSS, R.J. 2003 Snapshots of Slime. In SIGACT News (Education Forum), volume 34, number 4, pages
78-83, December 2003.

ROSS, R. 2002 Hypertextbooks: Animated, Active Learning, Comprehensive Teaching and Learning
Resources for the Web. In Software Visualization (LNCS 2269), pages 269-283. Springer Verlag, 2002.
Diehl S. (Ed.).

SAARILUOMA, P. 2000 Image and Interface: Some Psychological Aspects of Visualisation. Report given
at PVW 2000. http://cs.joensuu.fi/pages/pvw/saariluoma.htm

STASKO, J., DOMNGUE, J., BROWN, M.H., AND PRICE, B.A. 1997 Software Visualization:
Programming as a Multimedia Experience. MIT Press.

STASKO, J. Evaluating Animations as Student Aids in Learning Computer Algorithms. Computers &
Education, 33(4):253-278, 1999. This paper shows more positive results than the 1996 paper.

STASKO, J.T. Using Student-Built Algorithm Animations as Learning Aids. In Twenty-eighth SIGCSE
Technical Symposium on Computer Science Education (SIGCSE Bulletin), volume 29, number 1, pages 25-
29, March 1997.

SUTINEN, E. (Ed.). Proceedings of the First Program Visualization Workshop, chapter Hypertextbooks
for the Web, pages 221-233. University of Joensuu, 2001. Chapter by Rockford J. Ross.

