AN EMULATOR FOR THE E- MACHI NE

by
M chael Leigh Birch

A thesis submitted in partial fulfillnent
of the requirenents for the degree

of
Mast er of Science
in

Conput er Sci ence

MONTANA STATE UN VERSI TY
Bozeman, Mont ana

June 1990

STATEMENT OF PERM SSI ON TO USE

In presenting this thesis in partial fulfillment of the requirenents
for a master’'s degree at Mntana State University, | agree that the
Library shall make it available to borrowers under rules of the Library.
Brief quotations from this thesis are allowable wthout special
perm ssion, provided that accurate acknow edgenent of source is made.

Permi ssion for extensive quotation from or reproduction of this
thesis may be granted by ny mmjor professor, or in his absence, by the
Dean of Libraries when, in the opinion of either, the proposed use of the
material is for scholarly purposes. Any copying or use of material in
this thesis for financial gain shall not be allowed without ny witten

perm ssi on.

Si gnature

Dat e

TABLE OF CONTENTS

LI ST OF FI GURES .
ABSTRACT

1. | NTRODUCTI ON .
Preview . . .
Ter m nol ogy and Background

2. THE E- MACHI NE .
Desi gn Consi derati ons .
E- machi ne System Overvi ew .
E- machi ne I nstruction Set
I nstruction Set
Addr essi ng Modes

Source Program Vari abl e Represent ation in E-machi ne Code

The Save Stack . .
The Label Registers . . .
Critical vs. Noncritical Instructions .

3. THE DESI GN OF THE E- MACH NE EMJULATOR .
Fet ch/ Decode/ Execut e Modul e .
Addr ess Decode Modul e .
Program Menory Mdule . . .

I nstruction Execution Mdul e
Data Menory Module . .

Vari abl e Regi ster/ Stack Modul e
Label Register/Stack Mdul e .
Eval uati on Stack Mdule .
Call Stack Mdule .

Save Stack Mdul e .

Packet Mbdul e .

Faul t Modul e

Load Mbdul e .

Fl ags Modul e

Synbol Table . . .

Source Code Array .

4. E- MACHI NE EMULATOR OPERATI ON .

5. CREATI NG OBJECT PROGRAM FI LES
Building Instructions
Creating Variable Registers .
Creating The Label Registers
Creating The Symbol Table .
Creating The Packet Table . . .
Format of the (hject Code File

6. CONCLUSI ONS AND NEW DI RECTI ONS .
New Directions for the Emul ator .
New Directions for the Program Ani matr on Pror ect
Concl usi ons . .
REFERENCES Cl TED

APPENDI X

NN N
WN -

NN N NN
ONoOIkwI

NRRRRRRRRRE
POOONOUAWNROO® NoURWNHE

LI ST OF FI GURES

The E-nmachine

E- machi ne d obal Variable |Inplenentation .

E- machi ne Recursive Variable |Inplenentation .

Variabl e and Save Stack for a Variable X .

Vari abl e and Save Stack After Assignment to X .

A Pascal Procedure Fragnment something . .

Vari abl e and Save Stack mrlng Successive Calls to Procedure
sonething . .

Si npl e E-code Program Wth a Branch .

Sinpl e E-code Programwi th a Loop .

Ceneral Label Stack

Label Stack After 0 Loop Iterations .

Label Stack After 1 Loop lteration

Label Stack After 2 Loop lterations . .

E-code Translation of X := X + Y - 17 * Z * Z

Graphi cal Representation of emul ator .

Exanpl e Packeti zed Pascal Program.

An E-code Translation for an Exanpl e Pr ogram

Synbol Table for Exanple Program

Packet Table for Exanple Program . .

Vari abl e Regi ster Table for Exanple Pr ogram

Label Register Table for Exanpl e Pr ogram

Di spl ay Before Execution . . .

Di spl ay After Executing Packet 5

Di spl ay After Executing Packet 51 .

Di spl ay After Executing Packet 11 . .

Di spl ay After Executing New(NewNode);

Di splay at end of Procedure I|nsert

Enul at or Source Code Co

Vi

ABSTRACT

In the Master’s thesis, "The E-machi ne: Supporting the Teachi ng of
Program Executi on Dynami cs", Sanuel D. Patton, presented the design of a
virtual conputer, called the E-nachine, that was devel oped as the first
conponent of a project to develop a conprehensive program animation
environnent for teaching and |earning programrming and other concepts
fundanmental to conputer science. To support programanimation activities
in an easy and natural fashion, the E-nmachi ne has many uni que features,
i ncluding the capability of reverse execution. This thesis represents the
next step in the programani mati on project. The E-machine is refined and
an E-machine enulator is presented. The ermulator is witten in standard
C and shoul d thus be portable to nany different conmputer types.

CHAPTER 1
I NTRODUCTI ON

This thesis represents the second step in the devel opnent of a
conpr ehensi ve program ani mati on system intended to support the teaching
and |l earning of progranmng and other concepts fundamental to conputer
science. The cornerstone of the program animation systemis a virtua
conputer, called the E-machine (short for Education Machine), that
i ncorporates nany special features that will support program ani mation.
Chi ef anbng these is the capability to execute programs in reverse. The
E- machi ne was originally defined in the thesis, "The E-nmachi ne: Supporting
t he Teachi ng of Program Execution Dynam cs," by Sam Patton [Patton 89] as
the first step of the program animation project. 1In this thesis the E-
machine is refined and an emulator for the E-machine, witten in C is

gi ven.
Previ ew

The thesis is organized into six chapters and one appendix. This is
Chapter 1, which is intended to give an overvi ew of the thesis, including
structure, as well as explain ternm nology and notation that will be used
t hr oughout the thesis.

Chapter 2 is essentially a copy of Chapter 5 of Patton's thesis. It
is included for the sake of clarity, as it describes the E-nmachi ne design
inits entirety, with certain nodifications made in this thesis, and nust
be available in updated form for further work on the program ani mation
proj ect. Maj or nodifications to the E-machine design are marked by a
| eadi ng asterisk (") throughout Chapter 2. Note that no attenpt is nade
to describe any differences between the nodifications and the original
design, so if the reader is interested in the differences, the two theses

shoul d be conpared

2

Chapters 3 and 4 describe the E-machine enulator. Chapter 3
expl ai ns the emul ator design. This includes infornmation about the | ogical
conponents of the enmulator program as well as information necessary to
interface with the enmulator to provide anination. Chapter 4 gives a
denonstration of the operation of the emulator. A primtive interface is
used to highlight the features of the enulator and how they apply to
program ani mation. This chapter is not intended to describe the program
animator or its user interface (they have yet to be devel oped), only to
denonstrate the capabilities of the emul ator

Chapter 5 is a guide for conmpiler witers developing high |eve
| anguage transl ators for the E-machine. Chapters 3 and 4 together should
contain sufficient information for designing a program ani mator based on
the E-machine, but the E-machine design presented in Chapter 2 was not
felt to be sufficient information for conpiler witers. Chapter 5 thus
gives additional insight into the design of the E-machine, which should
nmake the conpiler witer’s job nuch easier

Chapter 6 presents the status of the program ani mati on project and
expectations for future directions for the project. The finished product
has not yet been conpletely defined, so only highlights of what sone of
the features nmight be are included in this chapter

The code for the emulator, inits entirety, is included in Appendi X
A, along with a make file used to conpile the enulator. As already noted,
nost of Chapter 2 is the work of Sam Patton, although the current author
was involved in discussions of the E-machine design from the beginning.
The remmi ning chapters represent original material and formthe core of

this thesis.

Ter m nol ogy and Backgr ound

Due to the nature of this thesis, there is an abundance of new
term nol ogy used throughout. Most of it is explained at the appropriate

time or is anticipated to be famliar to anyone that might read the

3

t hesi s. There is, however, a pseudo assenbly |anguage that is used
t hroughout the thesis that deserves attention at this point. Note that
the assenbly | anguage used is neither strictly defined or inplenented in
an assenbler, it is nerely a tool to present necessary information

The rules for the language are sinple. The |anguage is nade up of
i nstructions, conposed of four fields, each of which appears separately on
a single line. The first field of an instruction is an opcode menoni c,
whi ch denotes the operation of the instruction. The second field is a
flag marking the instruction as critical or noncritical. The nature of
this flag is explained in detail in Chapter 2. The third field denotes
the data type to be used in the instruction and the fourth field is the
operand field containing either a nunber or an addressing node.
Addressing nodes and their formats are discussed in Chapter 2.

The menonic field is separated from the others by one or nore
spaces, and the remaining fields are separated by conmas. The critica
flag is a single letter, either ¢ (for critical) or n (for noncritical).
The data type is a single capital letter, I, R C, A or B, standing for
I nteger, Real, Character, Address, or Bool ean respectively.

Note that not all of the instructions use all of the fields. Every
instruction will have the mmenonic field, but any or all of the renaining
fields may be onitted. Because of the easily discernible differences
between fields, if a field is not appropriate for an instruction, it is
nmerely left out. Note also, that fields 2 and 3 are left out conpletely
i n some exanpl es, when they are not pertinent to the point being nade and
would only serve to confuse the issue. Anyone fanmiliar with assenbly
| anguages in general should be able to understand the pseudo assenbly

| anguage form used here without difficulty.

CHAPTER 2

THE E- MACHI NE

This chapter is included for continuity and was taken virtually
verbatimfrom Chapter 5 of Patton’s thesis [Patton 89]. There have been
sone changes in the design of the E-nmachine which differ fromthe design
presented in Patton's thesis; these differences are noted by a |eading
asterisk ("). The changes in design have been incorporated into the text
and there is no discussion of the differences fromthe original design.
Patton’s thesis shoul d be read for a conpl ete background on the E-nachi ne.

The Education Machi ne, or E-nachine, is a virtual conmputer with its
own nmachi ne | anguage, called E-code. The task of the E-machine is to
execute E-code translations of high level |language (e.g., Pascal)
prograns. The real purpose of the E-machine, however, is to support a
programani mati on system as described nore fully in [Ross 90], [Birch 90]
and in Patton's thesis (there it was called a "dynam c di splay systent).
This chapter focuses on the design of the E-machine, highlighting its

speci al capabilities for supporting program aninmation activities.

Desi gn Consi der ati ons

The part played by the E-machine in a program ani mati on systemis
central to its design. The E-machine operates as follows. It is first
| oaded with a conpiled E-code translation of a particular high |evel
| anguage source program It then awaits a call froma driver program (the
animator); this call causes a packet of E-code instructions correspondi ng
to one high level |anguage statement to be executed by the E-nachine.
Afterwards, control is returned to the animator, which perforns the
necessary aninmation activities before calling the E-machi ne again to have
t he next packet of E-code instructions executed. The E-machine thus acts

as a dedi cated m croprocessor whose only purpose is to wait for a signa

5

fromthe ani mator and then execute a prescribed set of instructions based
upon that signal. This definition of how the E-machine is to be used
allows constraints to be placed upon its design that make the design
process somewhat sinpler.

As already noted, the E-nachine is a virtual conputer. The concept
of a virtual conputer is central to many conputer science applications.
Conpilers and interpreters are the nobst commobn exanples of systens
designed around a virtual conputer. The design of a virtual conputer mnust
take into account the purpose of the application. This helps to define
and give structure and logic to the virtual conmputer. In the case of the
E-machine, its purpose is to enable program execution dynam cs of high
| evel progranmi ng | anguages to be di splayed easily by a program ani mat or
This goal places sone considerations upon the E-nmachine’'s design. Most
i mportantly, the E-nachine nust:

1) Have structures for easy inplenentation of high |evel programing
| anguage constructs;

2) I ncorporate a sinple nmethod for inplenenting functions, procedures,
and paraneters;

3) Be able to execute either forward or backward.

The driving force in the design of the E-machine is the requirenent for

backward, or reverse, execution. Wat does it nean for a computer to run

inreverse? Wat does it nean for a high | evel | anguage programto execute

in reverse? As will be seen, these two questions have very simlar and

rel ated answers, but they are not the sane.

In a conputer (virtual or real), the program counter, registers,
main menory, and other status information can all be thought of as
variables that change as the conputer executes instructions. These
vari abl es can be collectively thought of as the "state" of the conmputer
If one knows the current state of a conputer, one knows everything
necessary for properly carrying out the next instruction to achieve the

proper next state. In normal conputers, however, the current state does

6

not contain enough information to reset the conputer to a prior state.
That is, nost conputers do not keep track of their history of execution
However, the conputer’s execution history is precisely what nust be
accessed in order to execute in reverse. How can this information be
retained? The previous states nust be recoverable. That is, given the
present state of the conmputer, there nust be a mechani smfor changing this
state to an arbitrary past state.

The brute force approach to solving this problemis to store each
current state of the conmputer just before each newinstruction is executed
(all instructions change the state of a conputer). Then, when the
conputer is to be restored to sonme prior state, all that has to be done is
to load the conputer with that state and the operation is done. Wth
this method, the conputer can be restored to an arbitrary prior state in
one step.

The brute force nmethod is unnecessarily powerful and also very
inefficient. For exanple, this approach would require that all of nain
menory be stored with each state, even though at nbst one nenory | ocation
woul d have changed from state to state as single instructions were
executed. A better approach would be to have the conputer save the m ninal
amount of information necessary to recover just the previous state from
the current state in a given reversal step. The conputer could then be
restored to an arbitrary prior state by doing the reversal one state at a
time until the desired prior state were obtained. For the purpose of the
E- machi ne, this approach is sufficient.

Backing up one state at a tine is a nmuch sinpler proposition than
backing up to an arbitrary state in one step. Rather than storing the
entire state of the conputer at each step, it is only necessary to store
the difference between the previous state and the current state. For
exanpl e, suppose the instruction

pop V2

7

pops the top value of the evaluation stack and places the value into
vari abl e register 2. No other registers would have been changed by
executing this instruction, so the only changes to the state of the
conputer (in nost conputer nodels) would be to the value in V2, the
program counter, and perhaps some status infornmation. Saving these
changes rather than the entire state of the conputer takes nuch |ess
menory, and in a real conputer, nenory is a valuable cormmodity. Therefore
the E-nmachine was designed with this nethod of backing up in mnd.

A natural question to ask at this point is whether it is possible to
do even better: could the previous state be constructed directly fromthe
current state without relying on sone saved portion of the execution
hi story? The answer is no. Consi der an assignment instruction: an
assignment instruction destroys the value in the register or nmenory
| ocation receiving the assignnent; the value being destroyed mnust
therefore be saved in order for backup to be possible.

One ot her aspect of program animation influenced the design of the
E- machi ne. The animator is neant to work with high |evel |anguage
progranms. This led to an inportant observation: the E-nmachine actually
has to be able to reverse only high |evel |anguage statenents in one
reversal step, not each individual |ow level E-code instruction involved
in the translation of sone high | evel |anguage statenent. 1In particular,
the state of the E-nachine has to be restored to the state it was in prior
to the execution of the group of E-code instructions that are the
translation of the correspondi ng high | evel |anguage statenent.

This observation led to further efficiencies in the design of the
E-machine and to the incorporation of two classes of E-nmachine code
i nstructions, critical and noncritical. As wll be explained further
later, an E-machine instruction is classified as critical if it destroys
information essential to backing up through a high I|evel |anguage
staterment; it is classified as noncritical otherwise. In the translation

of a high level |anguage statenment into E-code, a nunber of E-machine

8

instructions will be used only for dealing with internedi ate val ues. For
exanple, in a high level l|anguage arithnetic assignnment statenment, a
nunber of internediate values are likely to be needed in conputing the
arithmetic value on the right side of the assi gnment statenment before this
value can be assigned to the variable on the left. However, the only
value that needs to be restored as far as the high |evel progranm ng
| anguage i s concerned upon backi ng up through this assignnent statenent is
the original value of the variable on the left. The internediate val ues
conputed by various E-code instructions are of no consequence. Hence,
such instructions can be classified as noncritical and their effects
i gnored for backup purposes.

A particular E-code instruction can be classified as either critical
or noncritical indifferent circunstances. Different high |level |anguages
will often have quite different statenment sets, and what needs to be
renmenbered for backup purposes may differ substantially fromone | anguage
to another. It will be the responsibility of the conpilers for each high
| evel language to produce the correct E-code (involving critical and

noncritical instructions) for allow ng backup.

E- nachi ne System Overvi ew

Wth these considerations for backing up in mnd it is now possible
to describe the architecture of the E-machine in nore detail. Figure 1
depicts the logical structure of the E-nmachine. After sone deliberation,
a stack-based architecture was chosen over other possibilities for its
i nherent sinplicity. As can be seen, however, there are a nunber of

conponents not found in real stack-based conputers.

9

Label Label Vari abl e Vari abl e
Regi sters St acks Regi sters St acks
> >
>
—>
> >
>
>
_> _
>
CPU

Eval uati on

St ack Eval uati on Pr ogr am
Regi st er St ack Count er
> I
Pr evi ous
Ret urn Program >
Addr ess Ret urn Count er
St ack Addr ess
Regi st er St ack
—>
>
Save
St ack Save
Regi st er St ack
>
Figure 1

The E-machi ne

<xTOZImMZ >»-H>»0

<xTOZIMZE Z>rXVOOXTT

10

Program nenory will contain the E-code program currently being

executed by the E-machine. The programcounter will contain the address

in programnenory of the current E-code instruction to be executed. The

previ ous program counter, needed for backup purposes, will contain the

address in program nenory of the nost recently executed E-code
i nstruction.

"The packet register contains information about the next packet to

be executed, or the packet that is currently executing, including the
starting and endi ng Iine and col um nunbers of the original source program
statenent that is represented by the packet of E-code instructions about
to be executed. Also included are the starting and endi ng program nenory
addresses for the packet, which are used internally to determ ne when
execution of the packet is conplete.

The variable registers are an unbounded nunber of registers that

will be assigned to source program variables, constants, and paraneters
during conpilation fromthe source programinto E-code. Each identifier
name representing nenory in the source program will be assigned one
variable register in the E-nmachine. As one can see in Figure 1, the

vari able registers only contain pointers to individual variable stacks,

which in turn contain pointers into data nenory, where the actual variable
val ues are stored. The reason for this conplex arrangenment will becone
clearer as variables are di scussed nore thoroughly bel ow.

The | abel registers are another uni que conmponent of the E-machine

required for backup. There are also an unbounded nunber of these
regi sters and, as described later, they are used to keep track of E-code
| abel instructions in an E-code programfor backup purposes. Each E-code
| abel statement will be assigned a unique | abel register at conpile tine.
A label register, in turn, points to a label stack that essentially
mai ntains a history of previous instructions that caused a branch to the

| abel represented by the | abel register in question

11

The index register is found in real conputers and serves the sane

purpose in the E-machine. Under normal circunstances, the data in a
variable is accessed through the appropriate variable register. However,
inthe case of high |l evel data structures, such as arrays and records, the
address of an individual data value is not at the nenory |l ocation directly
accessible through a variable register. Rather, it is stored at a
| ocation offset from this nmenory | ocation. When necessary, an offset
value can be placed in the index register and the E-nmachine can then
access the proper nmenory location as required (by any of the indexed
addr essi ng nodes).

“The address register is provided to allow access to nenory areas

that are not directly accessible through variable registers. For exanple,
a pointer in Pascal is a variable that contains a data address. Data at
t hat address can be accessed using the variable indirect addressi ng node
(described later); however, if there are many levels of indirection, the
address regi ster nmust be | oaded with a pointer value to conti nue accessi ng
each level of indirection. The address register can used in place of
variable registers for any of the addressi ng nodes.

The eval uation stack pointer is also found in real conputers. The

eval uation stack pointer keeps track of the top of the evaluation stack

The evaluation stack is where the results of all arithnetic and |ogica
operations and assignnents are mai ntained. For exanple, in an arithnetic
operation, the operands are pushed onto the stack and the operation is
then performed on them The operands are consuned by the operation and
the result is pushed onto the top of the stack. Assignnents are perforned
by popping the top value of the evaluation stack and placing it into a
vari able. The advantages of a stack architecture are well known; severa
popul ar conputers use this design

The return address stack (or call stack) pointer is a nmechani smfor

i mpl ementing procedure and function calls. Wen a call is nmade to an

E- machi ne subroutine, the program counter plus one is pushed onto the

12

return address stack. Then, when the E-nmachine executes a return from

subroutine instruction, all it has to do is |load the programcounter with
the top of the return address stack

The save stack pointers point to the top and bottom of the save

stack, which stores information required for backup that woul d ot herw se
be lost. Wenever sone critical information (as deternined by the
execution of a critical instruction) is about to be destroyed, the
required information is pushed onto the save stack. This ensures that
when backing up, the instruction that nbst recently destroyed sone
critical information can be reversed by retrieving that critica
information fromthe top of the save stack

Finally, data nenory represents the usual randomaccess nenory found
on real conputers, but in the E-machine it is only used for hol ding data
values (it does not hold any of the program instructions). In real
conputers, a simlar situation exists in some systens which provide for
separate code and data segnments in nenory. On the E-machine, there is no
bound on the available nenory (or any of +the stack nenories).
| mpl enent ati ons on real conmputers will naturally enforce sonme bounds, but
for the academ c (snall progran) environnent envisioned for this system
no practical problens are expected to be encountered due to linmted

menory.

E- machi ne I nstruction Set

The E-machine’s instruction set is a quite small but conpl ete set of
instructions; these instructions allow an E-code program to access data
easily and sinply. Al arithnetic, logical, and assignnent operations
occur on the evaluation stack. Data is stored and recalled using the
vari abl e regi sters and, possibly, the address register.. Al operations
for backing up occur with a m nimumof information fromthe E-code program

in question (in general, all the E-code programhas to do is utilize the

13

correct formof the instruction--critical or noncritical--to ensure that

backi ng up can occur correctly).

I nstruction Set

This section lists all of the instructions in the instruction set of
the E-machine. The argunent ADDR refers to any addressi ng node descri bed
in the next section. The argunment TYPE refers to any of the data types
i nteger, real, boolean, char, or address; nost instructions require that
the type of data being operated upon be specified. The # refers to an
i nteger constant specifying the nunber of an E-code | abel or an E-rmachine
vari abl e regi ster. The CFLAG argunent nust be either ¢ or n and designates
whet her the instruction is to be treated as critical (c) or noncritica
(n). Backing up through a noncritical instruction often still requires
that sonething be pushed onto the evaluation stack to keep the stack of

the proper size; in such cases an arbitrary value, called DUMW is used.

push ADDR, TYPE:

Pushes the value in ADDR onto the eval uati on st ack.

For war d:
Pushes the value in ADDR onto the eval uati on stack.
Backwar d:
Pops the top value of the evaluation stack and stores it in
ADDR.
“pusha ADDR:

Pushes the cal cul ated address of ADDR onto the evaluation stack
This instruction is intended to be used for pushing the addresses of
par aneters passed by reference onto the eval uation stack

For war d:
Pushes the cal cul ated address of ADDR onto the eval uation
st ack.
Backwar d:
Pops and di scards the address on top of the eval uation stack
pop CFLAG ADDR, TYPE

Pops the top value of the evaluation stack and places it in ADDR

“popar

“popi r

14

Forward-Critical:
Pushes the value in ADDR onto t he save stack and then pops the
top value of the evaluation stack and stores it in ADDR

Forwar d- Noncritical:
Pops the top value of the evaluation stack and stores it in
ADDR.

Backward-Critical :
Pushes the value in ADDR onto the evaluation stack and then
pops the top value of the save stack and places it in ADDR

Backwar d- Noncriti cal :
Pushes the value in ADDR onto the eval uati on st ack.

CFLAG

Pops the address on top of the eval uation stack and places it in the
address register.

Forward-Critical:
The contents of the address regi ster are pushed onto the save
stack. The address on top of the evaluation stack is popped
of f and placed in the address register.

Forwar d- Noncritical :
The address on top of the evaluation stack is popped off and
pl aced in the address register.

Backward-Critical:
The contents of the address register are pushed onto the
eval uation stack. Then the address on top of the save stack
i s popped off and placed in the address register.

Backwar d- Noncri tical :
The contents of the address register are pushed onto the
eval uati on stack.

CFLAG

Pops the i nteger on top of the evaluation stack and places it in the
i ndex register.

Forward-Critical:
The contents of the index register are pushed onto the save
stack. Then the integer on top of the evaluation stack is
popped off and placed in the index register.

Forwar d- Noncritical :
The integer on top of the evaluation stack is popped off and
placed in the index register.

Backward-Critical:
The contents of the index register are pushed onto the
eval uation stack. Then the integer on top of the save stack
i s popped off and placed in the index register.

15

Backwar d- Noncriti cal :

The contents of the index register are pushed onto the
eval uati on stack.

*| oadar CFLAG, ADDR:

Pl aces the address ADDR in the address register.

Forward-Critical:
The contents of the address regi ster are pushed onto the save
stack. Then the address conputed for the addressing node is
placed in the address register. | nportant note: it is the
address that is conputed by the addressi ng node that is used,
not the contents of that address.

Forwar d- Noncri tical:
The address conputed for the addressing node is placed in the

address register. Same note for Forward-Critical applies
here.

Backward-Critical :

The address on top of the save stack is popped off and pl aced
in the address register.

Backwar d- Noncritical :
Not hi ng happens.

‘| oadir CFLAG #:

add

Pl aces the # into the index register.

Forward-Critical:
The contents of the index register are pushed onto the save
stack. Then # is placed in the address register.

Forwar d- Noncri tical :
is placed in the index register.

Backward-Critical :

The val ue on top of the save stack i s popped off and placed in
the index register.

Backwar d- Noncriti cal :
Not hi ng happens.

CFLAG, TYPE:

Adds the top two values on the evaluation stack and places the
result onto the eval uation stack.

Forward-Critical:
Pops the top two val ues of the eval uation stack, pushes them
onto the save stack, and then pushes their sum onto the
eval uati on stack.

For war d- Noncri tical :

Pops the top two values of the evaluation stack and pushes
their sumonto the eval uation stack.

16

Backward-Critical :
Pops the top value of the evaluation stack and discards the
val ue. Pops the top two el enents of the save stack and pushes
themonto the eval uation stack.

Backwar d- Noncriti cal :
Pushes DUMW onto the eval uati on stack.

sub CFLAG TYPE:

Subtracts the second value fromthe top of the eval uation stack from
the first and places the result onto the eval uation stack.

Forward-Critical:
Pops the top two values of the evaluation stack, pushes the
two values onto the save stack, and then pushes the bottom
val ue mnus the top value onto the eval uati on stack.

Forwar d- Noncritical:
Pops the top two values of the evaluation stack, and pushes
the bottom value minus the top value onto the evaluation
st ack.

Backward-Critical :
Pops the top value of the evaluation stack and discards it.
Pops the top two val ues of the save stack and pushes themonto
t he eval uati on stack.

Backwar d- Noncriti cal :
Pushes DUMW onto the eval uati on stack.

mult CFLAG TYPE:

Multiplies the top two val ue on the eval uati on stack and pl aces the
result onto the evaluation stack.

Forward-Critical:
Pops the top two values of the evaluation stack, pushes the
two val ues onto the save stack, and then pushes their product
onto the evaluation stack.

Forwar d- Noncritical:
Pops the top two values of the evaluation stack and pushes
their product onto the eval uation stack.

Backward-Critical :
Pops the top value of the evaluation stack and discards it.
Pops the top two val ues of the save stack and pushes themonto
t he eval uati on stack.

Backwar d- Noncriti cal :
Pushes DUMW onto the eval uati on stack.
div CFLAG TYPE:

Di vi des t he second val ue fromthe top of the eval uati on stack by the
first and places the result onto the eval uati on stack.

17

Forward-Critical:
Pops the top two values of the evaluation stack, pushes the
two val ues onto the save stack, and pushes the bottom val ue
di vided by the top value onto the eval uation stack.

Forwar d- Noncritical :
Pops the top two val ues of the eval uati on stack and pushes the
bottom value divided by the top value onto the evaluation
st ack.

Backward-Critical:
Pops the top value of the evaluation stack and discards it.
Pops the top two val ues of the save stack and pushes themonto
t he eval uati on stack.

Backwar d- Noncriti cal :
Pushes DUMW onto the eval uati on st ack.

neg TYPE:
Negates the top val ue on the eval uati on stack.

For war d:
Pops the top of the evaluation stack and pushes the negation
of that value onto the evaluation stack.

Backwar d:
Pops the top of the evaluation stack and pushes the negation
of that value onto the evaluation stack.

‘and CFLAG TYPE:

Bitwi se and’s the top two val ues of the eval uation stack and pl aces
the result onto the eval uation stack.

Forward-Critical:
Pops the top two values of the evaluation stack, pushes the
two values onto the save stack, and then pushes the bottom
value bitwise and’ed with the top value onto the evaluation
st ack.

Forwar d- Noncritical:
Pops the top two val ues of the eval uati on stack and pushes t he
bottom value bitwise and’ed with the top value onto the
eval uati on stack.

Backward-Critical :
Pops the top value of the evaluation stack and discards it.
Pops the top two val ues of the save stack and pushes themonto
t he eval uati on stack.

Backwar d- Noncriti cal :
Pushes DUMW onto the eval uati on stack.
‘or CFLAG TYPE:

Bitwise or’s the top two val ues of the evaluation stack and pl aces
the result onto the eval uation stack.

18

Forward-Critical:

Pops the top two values of the evaluation stack, pushes the
two values onto the save stack, and then pushes the bottom
value bitwise or’ed with the top value onto the evaluation
st ack.

Forwar d- Noncritical :
Pops the top two val ues of the eval uati on stack and pushes t he

bottom value bitwise or’ed with the top value onto the
eval uati on stack.

Backward-Critical :

Pops the top value of the evaluation stack and discards it.
Pops the top two val ues of the save stack and pushes themonto
t he eval uati on stack.

Backwar d- Noncritical :
Pushes DUMW onto the eval uati on stack.

‘xor CFLAG TYPE:

Bitwi se exclusive-or’'s the top two values of the evaluation stack
and places the result onto the eval uation stack.

Forward-Critical :

Pops the top two values of the evaluation stack, pushes the
two values onto the save stack, and then pushes the bottom
value bitwi se exclusive or’ed with the top value onto the
eval uati on stack.

Forwar d- Noncritical:

Pops the top two val ues of the eval uati on stack and pushes t he
bott om val ue bitw se exclusive or’ed with the top val ue onto
t he eval uation stack.

Backward-Critical :
Pops the top value of the evaluation stack and discards it.

Pops the top two val ues of the save stack and pushes themonto
t he eval uati on stack.

Backwar d- Noncriti cal :
Pushes DUMW onto the eval uati on stack.

"not CFLAG TYPE:

Bitwi se conplenents the top value of the eval uati on stack.

For war d:

Pops the top of the evaluation stack and pushes the bitw se
not of that value onto the evaluation stack.

Backwar d:

Pops the top of the evaluation stack and pushes the bitw se
not of that value onto the evaluation stack.

19

“shl CFLAG TYPE, #:

Shifts the value on top of the evaluation stack # bits to the left
filling on the right with 0's.

Forward-Critical:
Pops the top val ue of the eval uation stack, pushes it onto the
save stack, then shift it # bits to the left and pushes the
result back onto the eval uation stack

Forwar d- Noncritical :
Pops the top value of the evaluation stack, shifts it left #
bits, then pushes the result back onto the eval uation stack

Backwar d-Cri ti cal
Pops the top val ue of the evaluation stack. The pops the top
value of the save stack and pushes it onto the evaluation
st ack.

Backwar d- Noncri ti cal
Not hi ng happens.

‘shr CFLAG TYPE, #:

Shifts the value on top of the evaluation stack # bits to the right
filling on the right with 0's.

Forward-Critical:
Pops the top val ue of the eval uation stack, pushes it onto the
save stack, then shift it # bits to the right and pushes the
result back onto the eval uation stack

Forwar d- Noncritical :
Pops the top value of the evaluation stack, shifts it right #
bits, then pushes the result back onto the eval uation stack

Backwar d-Cri ti cal
Pops the top val ue of the evaluation stack. The pops the top
value of the save stack and pushes it onto the evaluation
st ack.

Backwar d- Noncri ti cal
Not hi ng happens.

nod CFLAG TYPE:

Fi nds the remai nder of the division of the second value fromthe top
of the evaluation stack by the first and places the result onto the
eval uati on stack.

Forward-Criti cal
Pops the top two values of the evaluation stack, pushes the
two values onto the save stack, and then pushes the bottom
val ue nodul o the top value onto the evaluation stack

cast

‘wite

20

Forwar d- Noncritical:
Pops the top two val ues of the eval uati on stack and pushes t he
bott om val ue nodul o the top val ue onto the eval uati on stack.

Backward-Critical :
Pops the top value of the evaluation stack and discards it.
Pops the top two val ues of the save stack and pushes themonto
t he eval uati on stack.

Backwar d- Noncriti cal :
Pushes DUMW onto the eval uati on st ack.

TYPE, TYPE:

Changes the top val ue of the evaluation stack fromthe first TYPE to
t he second.

Forward-Critical:
Pops the top val ue of the eval uation stack and pushes it onto
t he save stack, then transforns the value fromthe first TYPE
to the second. The result is pushed onto t he eval uation stack.

Forwar d- Noncritical:
Pops the top value of the evaluation stack, then transforns
the value fromthe first TYPE to the second. The result is
pushed onto the eval uation stack.

Backward-Critical :
Pops the top val ue of the evaluation stack. The pops the top
value of the save stack and pushes it onto the evaluation
st ack.

Backwar d- Noncri tical :
Not hi ng happens.

CFLAG TYPE:
Di spl ays a value for the user.

Forward-Critical:
The top of the evaluation stack i s popped and the val ue pushed
onto the save stack. This value is then converted into a
string and passed to a user interface function which takes
appropriate action to display the val ue.

Forwar d- Noncritical:
The top of the evaluation stack is popped and is converted
into a string and passed to a user interface function to be
di spl ayed.

Backward-Critical :
The val ue on top of the save stack is popped and pushed onto
the evaluation stack. Then a user interface function is
call ed to handl e undi splaying of the |last val ue displ ayed.

Backwar d- Noncri tical :
DUMW is pushed onto the evaluation stack then a user
interface function is called to handle undisplaying of the
| ast val ue di spl ayed.

21

‘read CFLAG TYPE:

| abel

br #:

“eql,

Reads a value fromthe user.

For war d:
A user interface function is called to get input from the
user. The input is converted froma string to the appropriate
type and pushed onto the eval uation stack.

Backwar d:
The top value is popped off the eval uation stack.

#:
Marks the location to which a branch nay be made.

For war d:
Pushes the previ ous programcounter onto the stack pointed to
by | abel register #.

Backwar d:
Pops the top value of the stack pointed to by |abel register
and places it in the program counter.

Unconditionally branches to | abel #.

For war d:
Load the program counter with the address of the |abel #
i nstruction.

Backwar d:
No operati on.

neql, less, leqgl, gtr, geql CFLAG #:

If the second value fromthe top of the evaluation stack conpares
favorably with the first, then TRUE is pushed onto the evaluation
stack. O herwi se FALSE is pushed onto the eval uati on stack.

Forward-Critical:
Pops the top two values off the evaluation stack, pushes the
two val ues onto the save stack, conpares the bottomval ue with
the top. If the result of the conparison matches the
conpari son operation perforned, a bool ean TRUE i s pushed onto
the evaluation stack, otherwi se, a boolean FALSE is pushed
onto the evaluation stack.

Forwar d- Noncritical:
Pops the top two val ues off the eval uati on stack and conpares
the bottom value with the top value. |If the result natches
t he conpari son operation perforned, a boolean TRUE is pushed
onto the evaluation stack, otherwise, a boolean FALSE is
pushed onto the eval uation stack.

“brt,

cal |

22

Backward-Critical :
Pops the top value of the evaluation stack and discards it,
then pops the top two values off the save stack and pushes
themonto the eval uation stack.

Backwar d- Noncriti cal :
Pushes DUMW onto the eval uati on stack.

brf CFLAG #:

Conditionally branches depending on whether the top of the
eval uation stack is TRUE or FALSE.

Forward-Critical:
Pops the top val ue of f the eval uation stack and pushes it onto
t he save stack. |If the value satisfies the conditional on the
branch (TRUE for brt, FALSE for brf), the programcounter is
| oaded with the address of the |abel # instruction.

Forwar d- Noncritical:
Pops the top value off the evaluation stack. If the val ue
agrees with the conditional branch (TRUE for brt, FALSE for
brf), the program counter is |oaded with the address of the
| abel # instruction.

Backward-Critical:
Pops the top value of the save stack and pushes it onto the
eval uati on stack.

Backwar d- Noncri tical :
Arbitrarily pushes DUMW onto the eval uation stack.

#:

Branches to | abel # saving the program address which follows the
call instruction so that execution wll continue there upon
execution of a return instruction.

For war d:
Pushes the current program counter onto the return address
stack, then | oads the address of the |l abel # instruction into
t he program counter.

Backwar d:
No operati on.

return:

Returns to the appropriate program address following a call
i nstruction.

For war d:
Pops the top value of the return address stack and | oads it
into the program counter.

Backwar d:
No operati on.

23

"al l oc CFLAG #:
Al'l ocates a block of nenory of # size.

For war d:
Attenpts to allocate # conmputer words of storage. | f
successful, the address of the first word of data nmenory that
was al |l ocated i s pushed onto the eval uati on stack. O herw se,
a NULL address is pushed onto the eval uation stack

Backwar d:
Pops the top value off the evaluation stack, which should be
a data address, and frees # words of data nenory starting at
t hat address.

“unal | oc CFLAG #:

Deal | ocates a block of menory of # size beginning at the data
address atop the eval uation stack

Forward-Critical:
Pops the top value off the evaluation stack, which should be
a data address, copies # words of data nenory starting at that
address to the save stack, then frees the data nenory.

Forwar d- Noncritical :
Pops the top value off the evaluation stack, which should be
a data address, and frees # words of data nmenory starting at
t hat address.

Backward-Criti cal
Pops the top value off the save stack, which should be a data
address, pushes it onto the evaluation stack and all ocates #
words of data menory starting at that location. # words are
then nmoved fromthe save stack to this data nenory.

Backwar d- Noncri ti cal
Al l ocates # words of data nenory and pushes the address of the
first word of allocated nenory onto the eval uati on stack

‘i nst CFLAG, V#:
Creates an instance of the variable register #.

Forward-Critical:
Al |l ocat es enough data nenory for the variable represented by
the variable register #. The address of the allocated nenory
is then pushed onto the variable register’s stack

Forwar d- Noncritical:
Al |l ocat es enough data nenory for the variable represented by
the variable register #. The size of the variable is stored
inthe variable register. The address of the allocated nmenory
is then pushed onto the variable register’s stack

Backwar d-Cri ti cal
The data nmenory occupi ed by the variable register is freed and
the top value is popped off the variable register’s stack

24

Backwar d- Noncri ti cal
Frees the space taken up by the variable in data nmenmory and
pops the top value off the variable register’s stack

‘uni nst CFLAG V#:
Di spose of an instance of variable register #.

Forward-Critical:
Pushes the variables data onto the save stack, frees the
menory occupi ed by the variable then pops the top data nenory
address off the variable register’s stack and pushes it onto
t he save stack.

Forwar d- Noncritical:
Frees the nenory occupied by the variable then pops the top
address off the variable register’s stack

Backward-Criti cal
Pops the address off the save stack and pushes it onto the
vari abl e regi ster’s stack, reallocates enough data nmenory for
the variable # starting at that address, then pops the
vari abl es data off the save stack and places it the address.

Backwar d- Noncri ti cal
Real | ocat es enough data nenory for the variable # and pushes
the address of the data nenory allocated onto the variable
regi ster’s stack.

link #:
Associ ates one variable register with the value of another
For war d:
Pops the top value of the eval uation stack and pushes it onto
the variable stack pointed to by variable register #.
Backwar d:
Pops the top value of the variable stack pointed to by
vari abl e register # and pushes it onto the eval uation stack
unlink #:
Di sassociates a variable register from another.
For war d:
Pops the top value of the variable stack pointed to by
vari abl e register # and pushes it onto the save stack
Backwar d:

Pops the top value of the save stack and pushes it onto the
vari abl e stack pointed to by variable register #.

25
“nop:
This instruction does absolutely nothing except take up space. It
is intended to be used to create packets for programstatenents that

don’t generate any instructions, but should be highlighted during
execution.

Addr essi ng Mbdes

In this section, the various addressing nodes available in the
E-machine instruction set are given. Qite a few nodes are defined in
order to accommodate standard high |evel |anguage data structures nore
conveniently. Note that each addressing node refers to either the data at
the conputed address or the conputed address itself, depending on the
instruction. That is, for those instructions that need a data val ue, such
as push, the data value at the address conputed fromthe addressi ng node
is used. For instructions that need an address, such as pop, the address
that was conputed for the addressi ng node is used.

For each addressing node |isted below, an exanple of its intended
use is given. Each exanple is given in pseudo assenbly | anguage formfor
clarity; it is inportant to renenber that no assenbler (and hence no
assenbl y | anguage) has yet been devel oped for the E-nachi ne. However, the
pseudo assenbly |anguage exanples should be easily understood. An
explanation of the arguments and their nmeanings were given in the

i ntroducti on.

constant node - C#:
This node is often called the i mredi ate node i n ot her architectures;
is itself the integer, real, boolean, character, or address
constant operand required in the instruction

Exanpl e:
A:=1.5;

could be transl ated into:

push R Cl.5 ; push 1.5
pop c,R V1 ; assignto A

26

vari abl e node - V#:
variable register # -> top of variable stack -> data nenory

Thi s node accesses the data nenory | ocation given in the top el enent
of the variable stack that is pointed to by variable register #.
This nmode is intended to address source programvariables that are
of one of the basic E-nmachi ne types.

Exanpl e:
B :=1;

could be transl ated into:

push I, Cl ; push 1
pop c,l,V3 ; assignto B

"variable indirect - (V#):

variable register # -> top of variable stack -> data nenory -> data
nenory

Thi s nbde accesses the data in data nenory whose | ocation is stored
at another data nenory |l ocation, which is pointed to by the top of
the variabl e stack pointed to by variable register #. This node is
i ntended for accessing the contents of a high |evel |anguage pointer
variables. It would be particularly useful for handling paraneters
in C which are passed as pointers for the intention of passing
paranmeters by reference.

Exanpl e:

int foo(C)
int *C

could be transl ated into:

| abel c,5 ; procedure entry

i nst c, V3 ; Ccreate new instance of C

pop c, A V3 ; assign argunent passed to *C
push I, Cl ; push 1

pop c,l,(V3) ; assign to *C

uni nst c, V3 ; destroy instance of C

return ; return from cal

‘vari abl e of fset node - V#{offset}:
variable register # -> top of variable stack + IR -> data nenory
This nobde accesses the data pointed to by the top of the variable
regi ster # stack plus a byte of fset which was previously | oaded into
the index register. This node is useful for accessing fields in a
structured data type such as a Pascal record or C struct.

Exanpl e:
A := D Field2

could be transl ated into:

push l,2 ; Dis at offset of 2 in structure
popi r c ; put offset into index register
push R VA{I R} ; push D. Fiel d2

pop c ; assignto A

"address indirect - (A):
address register -> data nenory
Thi s node provi des access to data | ocated at the data address in the
address register. The address register nust be |oaded with a data
menory address which points to data nenory. This node i s useful for
nmul tiple indirection.

Exanpl e:
c =*(*0);

could be transl ated into:

| oadar c, V7 ; load addr reg with addr of g
| oadar c, (A ; load addr reg with addr of *g
push L (A ; push *(*g)

pop c,l,V3 ; assign to c

"address offset npde - A{offset}:
address register + IR -> data nenory

This node provides access to structured data through the address
register. The index register is added to the address register to
provi de an address to the data to be accessed. This node is usefu
for indirection with structured data, such as pointers to records in
Pascal .

Exanpl e:
| := H'. Data

could be transl ated into:

push A V8 ; push H' (address val ue of H)
popar c ; load ar with H*

push I, C2 ; Data has offset of 2 in record
popi r c ; load ir with of fset

push I, AIR ; push H*. Data

pop c, |,V ; assign to |

"vari abl e i ndexed node - V#[index]:

variable register # -> top of variable stack + IR * datasize -> data
menory

Thi s address nmode uses the top of the variable register # stack as
a base address and adds the i ndex register, which nust be previously
| oaded, nultiplied by the nunber of bytes occupied by the data type,
which is a basic E-nachine data type. The resulting address points
to the data item This node is useful for accessing an array whose
el ements are of a basic E-nmamchine data type

28

Exanpl e:
B:=L[3];

could be transl ated into:

push n,Il,3 ; put index of 3 into
popi r c ; the index register
push I,VI12[IR] ; push L[3]

pop c,l,V2 ; assignto B

"addr ess i ndexed node - A[index]:
address register + IR * datasize -> data nenory

This node provides the sane function as variable indexed node,
except instead of a variable register providing the base address,
the address register is loaded with the base address. This node
coul d be used for accessing el enents of an array which is pointed to
by a vari abl e.

Exanpl e:
B := SM4];

could be transl ated into:

push A, V19 ; put address of array into
popar c ; address register

push 1,4 ; put index of 4 into

popi r c ; the index register

push I,A[IR ; push S 4]

pop c,l,V2 ; assignto B

Sour ce Program Vari abl e Representation i n E-machi ne Code

Under st andi ng how t he E-nmachine provides for the inplenentation of
high level source |anguage variables is vital to understanding the
operation of the E-machine, especially in backing up. (In this context,
the term variable refers to any identifier in the source program that
requires menory, including, for exanple, constants, and paraneters.)
First, a conpiler that generates E-code translations of, say, Pascal
prograns, assigns each variable in the Pascal program a uni que E-nmachine
variable register. This is done statically at conpile tine, so that every
variable is associated with a uni que vari abl e register for the duration of
programexecution, regardl ess of whether that variable is currently active
or not. The variable register for a variable does not contain the val ue
of the variable. Rather, it contains a pointer to a uni que variabl e stack

for that variable (look at Figure 1 again). Since each variable register

29

is really only a pointer, it will be the sanme size regardl ess of whet her
the variable is a sinple variable or, for exanple, an array.

The variable stack pointed to by a variable register also does not
contain the value of the variable. In this case, each elenment of the
variable stack is itself a pointer to the actual variable value in data
menory. The stack is necessary because a particular variable may have
mul ti pl e associ ated instances. Consider the case of a variable Athat is
local to a recursive Pascal procedure. Each new recursive call to that
procedure would require that a new data nenory | ocation be set aside for
new instance of A A's variable register would point to A's variable
stack, and the top of A's variable stack would point to the value of the
current instance of A in data nenory. The second stack element would
point to the previous instance of A in data menory, and so on. Most
vari abl es are not in recursive procedures and thus will only have at nost
one instance during program execution. In such cases, the variable
regi ster would point to a variable stack that is just one el enent deep.
The case for a variable A with just a single instance is illustrated in
Fi gure 2. Figure 3 shows the situation of a variable A having three

instances as the result of three recursive calls to a procedure.

vari abl e vari abl e dat a
registers st ack menory
> > 14
A A's A's
st ack dat a
Figure 2

E- machi ne d obal Variable | nplenentation

Whenever a procedure or function exits, the conpiled E-code will
ensure that |ocal variable instances are properly renoved fromdata nenory

by sinply causing the top of the variable stacks to be popped for each

30

affected variable. |If a variable is totally deactivated as a result, its

variable register will sinply point to an enpty variabl e stack

vari abl e vari abl e data
registers st ack nenory

> > 14

> 77

> 4

A A's A's
st ack data

Figure 3

E- machi ne Recursive Variable |nplenentation

Notice that arrays and records can be handled in the usual fashion, using
offsets (in the index register) fromthe first |location for the variable

in data nmenory to arrive at individual elenments.

The Save Stack

To see how backing up is acconplished with this nmethod of
representing variables, the role of the save stack nust be explai ned. The
first things to consider are the kinds of information associated with a
variable. There are two kinds: the location of the variable s nenory and
the data in the variable in data nenory |ocation. Both are subject to
destruction or loss during normal programexecution. It is easier to see
how t he second type of information, the data, can be destroyed. Whenever
an assignnent is made into a variable, the old data in the variable's
nmenory location is destroyed. Therefore, in order to restore the
E-machine’s state to the state prior to the assignment, it is necessary to

save the old data. This is done on the save stack. Upon backing up, the

31

old variable value can then be restored by retrieving it fromthe save
st ack.

Now consi der the case of a nenory location. Recall that the data
nmenory | ocation of a variable is kept in the stack corresponding to that
variable. In the case, say, of a Pascal global variable, the single stack
elemrent for that variable continues to point to the proper data nenory
| ocation for that variabl e throughout the execution of the program In the
case of a variable (again, this refers to both local variables and
paranmeters) in a procedure or function, however, the data nenory | ocation
and hence the pointer to this location on the variable stack, nay change
with each call. That is, each time a call to the procedure or functionis
made, a different data nenory |ocation nmay be allocated for the val ue of
t he vari abl e and pushed onto the top of that variable s stack; upon return
from the procedure or function, that address wll be popped off the
variable’'s stack as the variable is deallocated. At this point,
information critical to backup would be lost if the address popped off
were not saved in sonme way.

This, again, is where the save stack comes in. Whenever any
information is about to be lost in either of the above fashions, the
information instead is pushed onto the save stack. Figure 4 shows the
initial variable register, variable stack, and data nmenory location for a

variable X. Also included is the save stack

vari abl e vari abl e dat a save
registers stack nenory stack
> > 14
X X's X's
st ack dat a
Figure 4

Vari abl e and Save Stack for a Variable X

32

Notice that the save stack is enpty now (Technically, this
situation could not arise since X has a value at this point, and therefore
at sone point in the past nust have had an assi gnnent statenent perforned
upon it that would have required the old value to be pushed onto the save
stack. For purposes of this exanple, we wll ignore this fact.) Now,
let’s performan assignnent operation:

X =27
The effect this will have upon the E-nachine’s structures is shown in
Figure 5. Notice that the top of the save stack now contains the old val ue
of X and that the new value of Xis stored inthe old nmenory location. 1In
this case, the information that woul d have been destroyed was the data,

not the nenory | ocation.

vari abl e vari abl e dat a save
registers st ack nenory st ack
> >| 28 14
X X's X's
st ack dat a
Figure 5

Vari abl e and Save Stack After Assignment to X

In order to back up at this point, all that would be necessary woul d
be to pop the top of the save stack and place the popped value into the
menory location pointed to by the top of X s variable stack. Thi s
procedure allows any assignment to be reversed.

Preparing for the reverse execution of statements that | ose | ocation
information is somewhat nore involved. To understand this task better
recall fromthe previous section how the E-nmachi ne architecture provides
for the inplenentation of high |evel |anguage variables (renenber, too,
that the termvariable is used here to stand for any high | evel |anguage
identifier requiring nmenory, such as actual variables, paraneters, and

constants). Each variable has a permanently assigned variabl e register

33

Each variable register points to a unique, associated variable stack
Each elenment of the variable stack is a pointer to an instance of the
variable value in data menory; the top of the variable stack points to the
current, active instance of the variable.

Thus, since the location of a variable’s assigned vari abl e register
remai ns constant throughout programexecution, and this variable register
al ways points to the current top el ement of the associ ated vari abl e stack
the only location information that can be lost during normal forward
execution is the location of a variable’s value in data nenory as a
procedure or function is exited (i.e., the value on top of the variable
stack for the variable). Thus, upon exit of a procedure or function, when
the values of |ocal variables (including paraneters and constants) and
their locations in data nenory are normally lost, the |ocations of these
vari abl es, must be saved on the save stack. Wen backing up through a
procedure or function call, (i.e. executing the procedure or function in
reverse), the original |locations of the |ocal variables in data nenmory can
be restored to the top of their respective variable stacks fromthe save
st ack.

How can one be certain that the original variable values will be in
the restored |ocations upon backing up? Consider how a value in data
menory i s changed. The only way this can happen is through an assi gnnment
operation. But earlier in this chapter, a nechanism was introduced that
al | owed an assignment instruction to be reversed. Therefore, even though
a nmenory | ocation may have been assigned nunerous different val ues since
t he procedure exited, as backing up occurs, that nenory |location will have
been reset to the required value by the tine the procedure is encountered
inreverse. Consider the exanple Pascal programfragment in Figure 6. It
consists of a header definition for procedure sonmething with one val ue
paranmeter; there are three calls to that procedure from another routine.
The lines labeled 0,1,2, and 3 have correspondi ng sections in Figure 7.

Figure 7 contains the variable structures and the save stack that

34
correspond to each of the procedure calls in Figure 6. The section
labeled O in Figure 7 refers to the state of the structures before any
procedure call has been executed. Notice that the save stack is enpty,

and notice too that the variable stack for Pis also enpty.
Procedure sonething(P : integer);
somet hing(7);

sonet hi ng(5);
sonet hi ng(-16);

WNEF,O

Figure 6
A Pascal Procedure Fragment sonet hing
Now let’s exanmine line 1 in Figure 6. This is the first call to
procedure sonmething. Notice that during the call, P's stack in section 1
of Figure 7 now has a value, 1, which is a location in data menory.
Notice also that the data nenory location which this points to (data
nenory | ocation 1) contains the value of the paraneter which was passed to
sonething. During this call, any references to Parereferring to the data

menory | ocation that is pointed by the top of PPs variable stack

35

Vari abl e structures Save stack after
During Procedure Call Procedure cal
vari abl e vari abl e dat a save
registers st ack menory st ack
0 > - -
1 > 1 > 7 1
2 > 7 > 5 7
1
3 > 4 >|-16 4
-
1
P Ps Ps save
st ack dat a st ack
Figure 7

Vari abl e and Save Stack During Successive Calls to Procedure sonething

The save stack in section 1 of Figure 7 shows the state of the stack
after procedure sonething finishes executing for the first time. Notice
that it now has the value 1 on top. This is because when the procedure
exited, the data nenory location to which P was pointing would have been
lost, so it was saved by the E-machine on the top of the save stack
Consi der now the second call to sonething in line 2 of Figure 5 and
conpare it with section 2 in Figure 7. The top of P s variable stack now
contains the value 7, which points to data nenmory |location 7, which
contains a 5. Now any references to P will refer to menory location 7

(i.e., tothe value 5). When procedure sonething is exited this tinme, the

36

top of the variable stack would again be lost if it were not saved. Thus,
the 7 on top of the variable stack for P is pushed onto the save stack by
the E-nachine, resulting in the save stack configuration of section 2 in
Figure 7.

The third call to procedure sonmething follows in exactly the sane
manner. \When the procedure is executing, the variable P refers to the
data nenory | ocation contained on the top of P's variable stack, and when
the procedure ends, that data nenory address is pushed onto the save
st ack.

Reversing through these procedure calls sinply consists of popping
t he addresses off the save stack and pushing themonto P's variabl e stack
when reversing through the procedure’s exit, and popping the top of P's

vari abl e stack when reversing through the procedure’s entrance.

The Label Regqisters

Execution in a programis not a sinple, linear affair. There are
branches, calls to subroutines, returns from subroutines, and other
non-sequential types of instructions that add conplexity to the probl em of
backi ng up. W have seen how to reverse many E-machine instructions by
utilizing the save stack. What we haven’t yet determined is how to reset
the current program counter so that it points to the proper previous
i nstruction. If the current instruction was arrived at from sone
instruction other than the i nmedi ately preceding instruction (e.g., via a
branch i nstruction) there nust be sone nmet hod avail abl e for recovering the
i ne nunber of the instruction branched from

For example, Figure 8 gives a sinple E-code program (for clarity,
variables are referred to by nane rather than their variable registers,
and addressi ng nodes, data types, and critical and noncritical designators
have been onmitted). The programdoes the following: |'s value is pushed
onto the evaluation stack followed by J's value. The egl instruction of

line 3 then conpares the top two stack val ues, consuning t hese val ues, and

37

pushing the result of the conparison onto the stack. Notice line 4; if
the top of stack val ue denotes "true", a branch nust be nade to the | abe
1 instruction, which is inline 7 (that is, the current program counter
must be set to 7). O herw se execution proceeds sequentially through
lines 5 and 6 until line 7 is reached.

The | abel instruction of line 7 is the interesting instruction in
this case. As seen, depending on the values of | and J, the instruction
executed just previous to line 7 could have been either line 4 or 6. How
can it be determ ned for backing up which one really did precede line 7?

The brute force nmethod of solving this problemis sinple but very
inefficient. If, at each step, the current programcounter is stored on a
stack, all that is needed to restore the current program counter upon
backing up is to replace its value with the top of stack value. This
net hod
push

I
push J
eql

brt 1
push |
pop J
| abel 1
hal t

O~NOURWNPE

Fi gure 8
Sinpl e E-code Program Wth a Branch
will work, but it is inefficient for the follow ng reason. Most
instructions in a programhave only one possi bl e previous instruction, the
one that directly precedes it in the program 1In the exanple of Figure 8,
only line 7 has nore than one possible previous instruction. Al of the
other instructions have only one. A nore elegant and efficient nmethod to
solving this problem then, istoidentify the instructions with nore than
one possible previous instruction (referred to hereinafter as "branch
points") and only save the previous program counter when one of these
instructions is executed in the forward direction. In order to do this,

branch point instructions nust be identifiable.

38

How can branch points be identified by the E-nmachine as it executes
an E-code progran? The characteristics of a branch point are easy to
categorize. A branch point is any instruction that can be executed in
some order other than sequentially from the instruction imediately
preceding it. Mst such instructions can be readily identified: si nce
both branch and call instructions require a label as one of their
argunents, any instruction that is a branch point because of a branch or
call nust be an E-code | abel instruction. This | eaves one class of branch
points still unidentified, those arrived at by a return froma procedure
or function. The return instruction does not--and indeed cannot--have a
| abel as an argunent; instead, control nust be returned to the instruction
i medi ately follow ng the call that invoked the procedure or function (the
utility of a procedure or function lies in the fact that it can be called
from anywhere and, after execution, wll return to the instruction
i medi ately after the call).

Fromthe above discussion, it is clear that each E-code instruction
that inmediately follows a procedure or function call is a branch point.
However, examining an arbitrary E-code instruction in isolation does not
al | ow one to determ ne whet her the previous instruction was a call. Thus,
some sort of mechani sm nust be enployed to mark such an instruction as a
branch point at conpile tine. Since all branch points except those arrived
at by a return are E-code label instructions in any case, the sane
techni que can be enployed to branch points arrived at by a return. The
conpiler can sinply be designed to generate an E-code |abel instruction
i medi ately followi ng each procedure or function call.

This technique ensures that all branch points are E-code | abel
i nstructions. Thus, for successful backup, when the E-nmachi ne executes a
| abel instruction in the forward direction, it nust save the previous
program counter value in sone fashion. Recall that in the E-nachine, the
previous program counter is always maintained in the register by that

nane. Every tinme the current programcounter is changed, its old value is

39

first placed into the previous program counter. (Notice that this
structure is not a stack. Only one value is stored at any one tine in the
previ ous program counter.)

In order to save the previous programcounter for successful backup
t hen, whenever an E-code label instruction is executed, the E-machine
enpl oys its | abel stacks and |abel registers (see Figure 1). Each I|abe
instructionis to be assigned a | abel register at conpile tinme, where each
| abel register is a pointer to a unique |abel stack (the reason for the
stack is given later). Thus whenever a | abel instruction is encountered by
the E-machine, the value in the previous program counter is pushed onto
the stack referenced by that |abel’s register

Now, | ook at the exanple programgiven in Figure 9. There are two
branch points in this program line 1 and line 11. This program contains
a loop in which lines 1 through 10 are executed until | and J are equal
Qoviously, this loop could iterate a | arge nunber of tinmes, and each tine
the label instruction of Iine 1 is executed, it appears that the previous
programcount er shoul d be pushed onto the | abel stack of |abel 1. However,
except for the very first tine line 1 is executed, the previous program
counter will always contain 10. There should be a way to take advant age
of this repetition and save sone space.

The E-machine does this in the follow ng way. Each el enent of the
| abel stack associated with each branch point has two parts, one for
hol di ng the value of the previous program counter and one for holding a
count, as shown in Figure 10. Rather than just pushing the previous
program counter onto the | abel stack when a | abel instruction is executed
by the E-machine, the E-nachine first conpares the previous program
counter to the nunber stored in the top element of the |abel stack. If
these two val ues are equal, the associated counter on the stack is sinply
i ncrenent ed, thus recording the nunber of tines this | abel instruction was
reached fromthe sane previous instruction. Thus, rather than storing n

i denti cal previous programcounter values, where nis the nunber of tines

40

the loop is iterated, only one copy of the repeated previous program

counter value is saved along with n, a trenendous savi ngs.

| abel
push
push
eql
brt
push
push
add
pop
10 br

11 | abel
12 halt

OCONOUIRAWNREFO
R—N G—p

NP —

Figure 9
Sinple E-code Programwith a Loop

Addr ess Count er

Addr ess Count er

Addr ess Count er

Addr ess Count er

Fi gure 10
General Label Stack
Look again at Figure 9 and consider what will happen to the | abel
stack for the branch point instruction at line 1 as the E-nachi ne executes
the instructions. Assunme that | equals 3 and J equals 5. The E-machine
will step sequentially through the instructions starting at 0. \Wen the
label 1 instruction at line 1 is executed for the first tine, the address
of the the instruction executed just prior to it (at this point,
instruction 0) is pushed onto label 1's l|abel stack, resulting in the

| abel stack of Figure 11.

41

Figure 11
Label Stack After O Loop lterations

As the E-nmachi ne conti nues executing, | and J will be conpared, they
will be found to be not equal and so the E-machine will continue executing
sequentially, increnenting | in the process, until line 10 is reached. At
that point, a branch to the label 1 instruction is executed, which | oads
1 into the programcounter. Wen the label 1 instruction is executed, the
address of the instruction that was executed just prior to this is pushed
onto the stack for |abel 1. Since that instruction was the branch
instruction at line 10, a 10 nmust be pushed as shown in Figure 12.

At this point in the execution, the | oop has executed once, | equals
4, J equals 5, and the E-nachine has just executed line 1. Proceedi ng
sequentially with the execution of the programresults in | and J being
conpar ed. Once again, | does not equal J and the E-machine executes
sequentially, again increnenting |, until line 10 is reached. At this
poi nt, the branch to | abel 1 is executed. The execution of |abel 1 causes
the address of the instruction executed just prior to the label 1, 10, to
be pushed onto I abel 1's stack. This results in the | abel stack of Figure
20. Notice that no new address was actually pushed onto the stack. Since
the top of the stack had the sane value as the value that was to be
pushed, the counter of the top of the stack el enent was sinply i ncrenented
(from1l to 2). |If the address had been different than the value of the
top of the stack, a new val ue and counter woul d have been pushed onto the

top of the stack

42

10 1
0 1
Fi gure 12

Label Stack After 1 Loop lteration

10 2

Fi gure 13
Label Stack After 2 Loop lterations
How to reverse through a | abel instruction should now be clear. The
address on top of that label’s stack is sinmply placed in the program
counter. If the corresponding count is one, the label stack is also

popped, otherw se the count is just decrenented.

Critical vs. Noncritical Instructions

Early on in the chapter, it was nmentioned that a conmputer running in
reverse and a high | evel | anguage programexecuting in reverse represented
simlar but not identical processes. The reason this is so is that one
hi gh | evel | anguage statenent will, in general, correspond to many nachi ne
| anguage instructions. For exanple, the Pascal assignnment statenent

Y :=X+Y- 17 * Z * Z
will be translated into at |least ten nachine |anguage instructions, as
shown in Figure 14, only one of which has any effect on the values of the
variables in this statenent (the final pop instruction). Since the intent
of the proposed systemis to display the execution dynam cs of high | eve
| anguage progranms, it is unnecessary to be concerned about precisely

backing up the E-code instructions that only calculate internediate

43

values. This observation led naturally to a classification system for
E-machine instructions that reflects this situation. If an E-machine
instruction destroys information necessary for backup in the high |eve
| anguage program it is classified as critical by the conpiler; if it does
not, it is classified as noncritical
This identification of E-code instructions as either critical or
noncritical allows the E-machine to save for backup purposes only that
i nformati on necessary to reverse statements in the high |evel |anguage
program Since the vast mpjority of conpiled E-code instructions will be
noncritical, a large savings in storage space and tine is realized.
However, it should be noted that the flexibility is present to accurately
back up E-machi ne code Iine by Iine by sinply designating each i nstruction
as critical.
push
push
push
push
mul t
push Z
mul t
sub

add
pop Y

NP <X

Fi gure 14
E-code Translation of X := X+ Y- 17 * Z * Z;

44

CHAPTER 3

THE DESI GN OF THE E- MACHI NE EMJLATOR

This chapter describes the design of the E-nachi ne emul ator, which
essentially follows the design of the E-nachine presented in Chapter 2 of
this thesis. The enmulator is intended eventually to be included as part
of another program the aninmator. The enulator is partitioned into
several nodules including the Fetch/Decode/ Execute, Address Decode,
Program Menory, I nstruction Executi on, Dat a Menory, Vari abl e
Regi ster/ Stack, Label Register/Stack, Evaluation Stack, Call Stack, Save
Stack, Packet, Fault, Load, and Flags nodules. The aninmator will also
require access to sone of these nodules in order to produce ani mation.
These include the Fetch/Decode/ Execute, Data Menory, Vari abl e
Regi ster/ Stack, and Packet nodul es. In addition, there are a few data
structures that will need to be accessed directly (i.e., w thout the use
of interfacing functions) by the animator, nanely the Synbol/Type Tabl e
and the Source Code Array. The enul ator, whose source code is included in
Appendix A, was witten in ANSI Standard C for portability. It was
conpiled in Turbo Con an | BMPC conpati bl e conputer, on which it was al so
t est ed.

Figure 15 presents a graphical representation of the emulator
design. It is intended to show which nodules interact with others. The
direction of information flowis also shown with data flow foll ow ng the
arrows. A line with an arrow at either end indicates flow in both
directions. The Fault and Fl ags nodul es have been |l eft out of the diagram
because they are not particularly inmportant to the design of the enul ator
and their inclusion would nake the diagram difficult to read. A

description of each nodule foll ows.

45

Fet ch/ Decode/ Execut e

Modul e
Addr ess Decode I nstruction Pr ogram Menory
Modul e Executi on Modul e Modul e
——
Data Menory Vari abl e Regi ster Packet
Modul e Modul e Modul e
| |
Call Stack Eval uati on Stack Save Stack
Modul e Modul e Modul e
Synbol Label Regi ster Sour ce
Tabl e Modul e Code
Load
Ani mat or Modul e
Fi gure 15

Graphi cal Representation of emrul ator

Fet ch/ Decode/ Execut e Modul e

The Fetch/Decode/ Execute Mddule is the driver for the rest of the
execution part of the E-machine. This nodule is conparable to the fetch
and execute cycl es of standard von Neumann conputers. One difference from
t he von Neumann nodel is that a packet of instructions corresponding to a
hi gh | evel | anguage statenent is executed, then execution is suspended and

control returned to the animator, so that information about the current

46

state of the nmamchine can be nanaged. Decoding and execution are carried

out in separate nodul es but are controlled fromthis nodule.

Data Structures, Defined Types, and Constants

opi nfo
This is a table that includes an entry for each nachine
opcode. Each table entry consists of a pointer to the
function that provides the execution of the opcode, and the
type of argunment expected by the opcode (DATA, ADDR, or NONE)

current packet
This structure contains all the infornmation about the packet
that is currently being executed, or when the animator has
control, information about the next packet that is to be
executed. For an explanation of the packet data structure
see the packet nodul e description

pr ogr ancount er
This is a variable that has the same function as the program
counter in a Von-Neumann nachine; it keeps track of which
nmachi ne instruction should be executed next.

pr evi ouspc
Thi s vari abl e hol ds t he prograntounter val ue that existed just
prior to the current prograntounter val ue.

I nstruction
This is the structure definition for an E-machi ne i nstruction
This structure holds the opcode, addressing node, data type,
critical flag, and operands for an E-machine instruction

Functi ons
execut epacket ()
This function carries out execution of all instructions inthe
current packet. Wen prograncounter is no longer within the
bounds of the current packet, execution halts until this

function is called again.

set pc(address)
This function is used to allow sonme of the instruction
execution functions (e.g., the branch instructions) to change
pr ogr ancount er.

i ncpc()
This function increnents prograncounter so that it points to
the instructionimediately followi ng the current instruction

set ppc(address)
This function is used by sone of the instruction execution

functions (e.g., the branch instructions) to set the
previ ouspc.

reverse()
This function is intended to be called by the animator to
change the direction of execution. |If executionis currently

forward, prograntounter and previouspc are swapped and the
FORWARD flag is set to FALSE If execution is currently

47

reverse, prograncounter and previouspc are swapped and the
FORWARD flag is set to TRUE. The changi ng of prograntounter

i s necessary since it nust point to the next instruction to be
execut ed.

get currpacket (packet)
This function is meant for use by the animator so that it may
get the contents of the currentpacket variabl e which holds the
begi nning and ending Iine and columm of the source code that
is represented by the current packet.

Calls To
Addr ess Decode Mddul e, Executi on Modul e, Packet Mdul e, Fl ags Modul e

Calls From

ani mat or

Addr ess Decode Modul e

This module is responsible for decoding the addressing node of an
instruction to obtain the appropriate operands. A majority of the
i nstructions can make use of the address node decoder; however, there are
sonme instructions that are handled by their respective instruction

execution function.

Data Structures, Defined Types, and Constants

ArgType
This is an enuneration type with the val ues DATA, ADDR, and
NONE, which represent the kind of information indicated by the
addr essi ng node.

Functi ons
decaddr(instruction, address, data, defined)
This function decodes the addressing node in instruction,
provi ded an operand is expected, and returns the data nenory
address, if one exists, the data at that address, and whet her
the data is defined or undefined.
Calls To

Data Menory Model, Variable Register/Stack Mdul e

Calls From
Fet ch/ Decode/ Execut e Modul e

48

Program Menory Modul e

This nodule is responsible for handling program nenory. Thi s
i ncludes |oading program nenmory with object code and returning the
contents of a program nenory address. The program nenory data structure
is only accessible within this nodule, so this nodule nmust be called to

get the contents of a program nenory address.

Data Structures, Defined Types, and Constants

Pr ogAddr ess
This is a type definition for programaddresses. Just enough
menory is allocated for prognemin this function to hold al
of the E-code instructions for the object program

prognmem
This is an array of type instruction, the indices of which are
pr ogr am addr esses.

Functi ons

| oadprogmen{ file)
This function |oads E-code instructions into program nmenory
fromthe object file.

getinstruction(address)
This function returns the instruction located at the given
program nmenory address.

Calls To
None
Calls From

Fet ch/ Decode/ Execut e Modul e

I nstruction Execution Mdule

This nodule contains all of the functions that carry out the
execution of E-machine instructions. The function pointers in the opinfo
structure in the Fetch/ Decode/ Execute nodule point to functions in this

nodul e.

49

Data Structures, Defined Types, and Constants

I nstruction
This structure defines the format of an E-nmachi ne i nstruction
Included in the structure are the opcode, addressing nobde
data type, critical flag, and data

Functi ons

There is one function for each of the E-machine instructions with
the same nanme as the opcode mmenonics described in Chapter 2. The
functions follow the explanation of the instructions given in Chapter 2
and so will not be described here. The paraneters passed to these
functions, however, do require sonme explanation

There are three paraneters that are passed to each function. Not
all of these paraneters are used by all of the functions, but are included
to keep order in the calling of the functions. The three paraneters are
an instruction, a data item and a data nmenory address. The instruction
is a data structure of type Instruction described above and contains al
the information about the instruction that is currently being executed.
Information in the instruction that may be used in a function includes the
data type, the critical/noncritical flag, and the operand. The data item
is the data found at the address cal cul ated by the address decodi ng nodul e
and the data nenory address is the cal cul ated address.

Sone of the functions expect data, others addresses, and sone
nothing at all (i.e. the push instructionrequires a dataitem which wll
be pushed onto the eval uation stack, whereas the pop instruction requires
an address at which to store data popped from the stack). Thi s
information is stored in the opinfo table in the Fetch/Decode/ Execute
nodule and is used by the address decoder to signal faults when the
requested information represents an inpossibility wth the given
addressi ng node. The data and address are always conputed for the given
addressi ng node and passed to each function. The reason the address of

the data is passed when the operation only requires data is that the

50

address of the data may be necessary for saving backup information for

critical instructions.

Calls To
Dat a Menory Modul e, Vari abl e Regi ster Mddul e, Label Regi ster Mdul e,
Fl ags Mbdul e, Eval uation Stack Mddul e, Save Stack Mddul e, Call Stack
Modul e.

Calls From

Fet ch/ Decode/ Execut e Modul e.

Data Menory Modul e

This nodul e is responsible for managi ng data nenory. This includes
the operations of allocating, deallocating, |oading, and storing. This
nodul e i s al so responsi bl e for nmai ntai ning the defi ned/ undefi ned st atus of
the data menory | ocations. All data nmenory i s nmarked undefined when first
al l ocated, then when a value is placed into a data nenory | ocation, that
location is nmarked defi ned. Data Menory is mmintained at the snall est

addr essabl e nenory si ze for the conputer on which the enulator is running.

Data Structures, Defined Types, and Constants

Dat aWwr d
A type definition given a C data type that represents the
smal | est addressabl e piece of nenory (e.g., if a machine is

byt e addressable, then DataWwrd would nost |ikely be defined
by the C type of unsigned char).

WORDSI ZE
A constant whose val ue is the nunber of bits in one DataWrd.

Doubl eWord
A type definition given a C data type that represents two
DataWwrds (e.g., using the sane byte exanple from above,
Doubl eWord mi ght be defined by the C type of unsigned int).

DBLWORDSI ZE
A constant whose value is 2 * WORDSI ZE and shoul d represent
t he nunber of bits in one Doubl eWrd.

Dat aAddr ess
A type definition for a data nenory address.

MAXDATA
A constant whose value is the size of data nenory, which is
statically allocated during conpilation of the enulator.

51

dat amem
An array of MAXDATA Dat aWwrds whose indices are data menory
addresses. This is the data nmenory structure.

dat adef i ned
This is a bit array of MAXDATA size. Each bit is used to mark
the corresponding data Ilocations as being defined or
undefined. A bit value of 1 neans the data is defined and a
bit value of 0 neans the data is undefined.

freemem
This is an array, each of whose elenents is a structure
contai ni ng two dat a addresses, a begi nni ng and endi ng addr ess.
This structure is used to all ocate and deal | ocate data nenory.
Each entry in the array nmarks a free block of nenory. To
begin with there is only one entry in the array with a
begi nni ng address of 0 and an endi ng address of MAXDATA -1

| astentry
This is an index into the freemem array that marks the | ast
free block entry in the freenem array.

Functi

ons

readdat a(address, data, type, defined)
This function is used to read a data value from data nenory.
Data of the specified type is read fromthe given data address
and placed in data. The corresponding bit pattern is also
retrieved from the datadefined array and placed right
justified in defined. A fault is generated if the address is
not a valid data nenory address.

writedata(address, data, type)
This function is used to place values into data nenory. Data
is placed into data nmenory at the given address and the
corresponding bits in the datadefined array are set to
indicate that the data is defined. A fault occurs if
Dat aAddress is not a valid data nenory address.

al | ocdat a(address, size)
This function searches the freenemarray to find a bl ock of
menory at |east size DataWrds | ong. If one is found, the
address of that block of data is returned, otherw se a nul
address i s returned.

unal | ocdat a(address, size)
This function places the block of data starting at address,
size DataWwrds long, into the freememarray so that it may be
used again |later.

savenen(address, size)
This function pushes a block of data nmenory size units long
beginning at the given data nenory address onto the save
stack. The defined/ undefined status of each | ocation is saved
on the stack as well.

unsavenen(address, size)
This function pops a block of data menory off the save stack
and places it at the data menory address supplied. The
defined/ undefined status of the data is restored from the
stack as well.

52

Calls To
Save Stack Mdul e

Calls From

I nstruction Execution Mdul e, Address Mbdul e

Vari abl e Regi ster/ Stack Mdul e

This nodule is responsible for maintaining the variable registers
and stacks. This includes pushing and poppi ng addresses fromthe vari abl e
stacks, returning variable addresses, and reading the sizes of variables

fromthe object file.

Data Structures, Defined Types, and Constants

Vari abl eReg
This is a type definition for the variable register nunbers
whi ch are used to access the individual variable registers.

varregs
This is an array of type Variabl eReg. This is the set of
vari abl e registers.

| astreg
This is a variabl e of type Variabl eNumwhi ch hol ds t he hi ghest
nunbered variable register so that checks can be nmde to
determ ne | egal variable register nunbers.

Var St ack
This is a type definition for the variable register stacks.

Functi ons

pushvari abl e(varreg, address)
This function is used to create a new i nstance of a variable
by pushi ng address onto the stack corresponding to varreg. A
fault occurs if varreg is not a valid variable register
nunber .

popvari abl e(varreg)
This function is used to renpbve an instance of a variable by
renmovi ng the top address on t he stack correspondi ng to varreg.
A fault occurs if varreg is not a valid variable register
numnber .

getvaraddress(varreg, address)
This function returns in address the top address on the stack
corresponding to varreq. A fault occurs if varreg is not a
valid variable register nunber.

53

getvarsi ze(varreg, size)
This function returns, in size, the size of the variable
represented by varreqg. The size will nost likely be used to
all ocate nenmory for a new instance of the variable. A fault
occurs if varreg is not a valid variable regi ster nunber.

| oadvarregs(file)
This function reads in a set of variable registers from an
object file, whose formis described in Chapter 5.

Calls To
None
Calls From

Addr ess Decode Modul e, Instruction Execution Mdul e

Label Register/Stack Modul e

This nmodule is responsible for maintaining the |abel registers and
stacks. This includes pushi ng and poppi ng addresses fromthe | abel stacks
and returning the addresses of |abel instructions. This nodule is
primarily used by the E-machine branch instructions to branch to the

proper address during both forward and reverse execution

Data Structures, Defined Types, and Constants

Label Reg
This is a type definition for the label nunber which is an
index into the | abelregs structure.

| abel r egs
This is an array of type LabelReg. This is the structure for
the set of |abel registers.

| astreg
This is a variable of type Label Reg, which holds the |ast
valid | abel register nunber. This is used to determne if a
| abel register number is valid.

Label St ack
This is a type definition for the |abel stack structure.

Functi ons

get | abel address(| abel, address)
This function returns, in address, the program address of the
given | abel register. A fault occurs if label is not a valid
| abel register numnber.

54

pushl abel (| abel, address)
This function pushes address onto the given |abel register’s
stack. A fault occurs if label is not a valid |abel register
nunber .

popl abel (| abel, address)
This function returns the program address on top of the stack
associated with label. A fault occurs if |label is not avalid
| abel register nunber.

| oadl abel regs(file)
This function reads in a set of | abel registers froman obj ect
file, whose formis described in Chapter 5.

Calls To
None
Calls From

I nstruction Execution Mdule, Load Mdul e

Eval uati on Stack Mdul e

This nmodul e mai ntains the eval uation stack. This includes pushing
(and popping) data values onto (and from the evaluation stack. Unlike
the save stack, variables are not nmarked defined or undefined on the
eval uation stack. Any errors due to undefined data are to be handl ed

after reading a value fromdata nenory.

Data Structures, Defined Types, and Constants

eval st ack
This is a static array whose el enents are of type DataVal ue (a
union declared in the datanemnodul e). This is the eval uation
stack structure

eval t op
This variable is an index into the eval stack structure and i s
used to mark the top of the evaluation stack

Functi ons

pusheval (data)
Thi s function pushes the given data onto the eval uati on stack

popeval (data)
Thi s function pops the top value fromthe eval uati on stack and
returns it in data

55

Calls To
None
Calls From

I nstruction Execution Mdul e

Call Stack Mdul e

This nodul e naintains the emulator’s call stack. This includes the
pushi ng and poppi ng of program addresses to and fromthe call stack. The
call stack is used to store the next instruction to be executed upon

return froma called procedure.

Data Structures, Defined Types, and Constants

cal | stack
This is an array whose el enents are of type ProgAddress. This
is the call stack structure

calltop
This variable is an index into the callstack structure and i s
used to mark the top of the stack

Functi ons

pushcal | (address)
This function pushes address onto the call stack

popcal | (address)
This function pops the top programaddress off the call stack
and returns it in address.

Calls To
None
Calls From

I nstruction Execution Mdul e

56

Save Stack Mdul e

This nodule maintains the E-machine save stack. This includes
pushi ng and poppi ng data and data nmenory. There are two routines for the
push and pop, one for data values, the other for a block of data nenory.
Thi s was done to make pushing data val ues easier to deal with. Note that

t he save stack al so holds the defined/ undefi ned status of the data.

Data Structures, Defined Types, and Constants

MAXSAVE
This is a defined constant which holds the size of the save
st ack.

savest ack
This is an array with MAXSAVE el ements of type DatawWwrd. This
is the E-nmachi ne save stack structure.

savet op
This is an integer index into the savestack structure that
mar ks the top of the save stack.

savebottom
This is an integer index into the savestack structure that
marks the bottom of the save stack. This is used because the
save stack waps around and thus cannot overflow. This neans
that backup is always possible, but not necessarily all the
way back to the beginning of the program

savedef i ned
This is a bit array associated with the save stack structure
and is used to hold the defined/undefined status of the
el ements stored in the save stack

packet queue

This queue is used to store the position in the save stack of
t he beginning of each packet that is stored there. Because
correct backup is only guaranteed across packets, this
structure is necessary to nmake sure the bottom of the save
stack is always at a packet boundary (if this condition
weren’t monitored, it would be possible in the circul ar stack
for partial packets to occur as the stack wapped around
possibly leading to problenms during extended reverse
execution).

packett op
This is an integer index into the packetqueue that marks the
top of the queue where save stack indices are renoved.

packet bottom
This is an integer an index into the packetqgueue that marks
the bottom of the queue where save stack indices are added.

57

Functi ons

newpacket ()
This function queues the current top of the save stack in
packet queue mar ki ng the begi nning of reversal information for
a packet on the save stack.

savedat a(data, type, defined)
This function pushes data, which has the E-nachi ne data type
type, onto the save stack. Defined is a bit string of the
def i ned/ undefi ned status of data.

unsavedat a(data, type, defined)
This function pops the top val ue of E-machi ne data type type,
off the save stack and returns it in data. The
def i ned/ undefined status of the data is returned in defined.

Calls

To
None

From

Calls

Fet ch/ Decode/ Execut e Modul e, Instruction Execution Mdul e

Packet ©Mbdul e

The packet nodule is responsible for maintaining the packet table.

Thi s invol ves | oadi ng the packet table fromthe object file and returning

packets fromthe tabl e given either a program address or a packet nunber,

whi ch

is an index into the packet table.

Data Structures, Defined Types, and Constants

Packet
This is a type definition for a packet. This structure
contai ns seven fields for the beginning and endi ng E-machi ne
code program address for the packet, the begi nning and endi ng
i ne and col um nunbers of the source code that is represented
by the packet, and an index into the synbol table to mark the
vari abl e scope for the packet.

Packet Num
This is a type definition for packet nunbers. The packet
number is an index into the packettable structure.

58

packettabl e
This is an array of type Packet and is allocated when the
object file is read into the enul ator

| ast packet
This is an integer that contains the | argest avail abl e packet
nunmber for the | oaded object program

Functi ons

fi ndpacket (address, packet, packetnum)
This function searches for the packet that contains address
bet ween the begi nning and endi ng program addresses for the
packet. |If found, the packet and packet nunmber are returned
in packet and packetnum respectively, otherw se, a packet
that contains a null programpointer for the begi nning address
i s returned.

get packet (packet num packet)
This function returns the packetnum elenent of the packet
table. If packetnumis not a legitinmate packet number then
t he packet returned will have a null program address for the
begi nni ng program addr ess.

| oadpackettable(file)
This function reads a packet table fromthe object file, whose
formis described in Chapter 5.

Calls To
None
Calls From

I nstruction Execution Mdule, Load Mdul e

Faul t Modul e

The fault nodule reports E-machine errors that may occur during
execution of a program such as divide by zero, or illegal opcode. Each
different fault that can occur is given a value froman enunerated type.
Executi on does not necessarily halt when a fault occurs; the fault handl er
keeps track of the last fault that occurred and execution continues. A
guery can be done of the last fault and the emrul at or makes deci sions as to
how to execute instructions with the existence of the fault. The fault
nodul e woul d nost |ikely be used by the animator to notify the user of an

error in execution.

59

Data Structure, Defined Types, and Constants

Faul t Type
This is an enunerated type that contains all of the different
faults that can occur throughout the enulator. Refer to the
source code in Appendix A for the nanes of the enunerated
const ants.

faul t megs
This is an array of strings, containing explanations for each
fault. This is used by the faultnsg function to give access
to the descriptions of the faults.

| astfault
This variable holds the last registered fault that was
decl ar ed.
Functi ons

fault(faul tnum)
This is the function that is called throughout the enul ator
when an error occurs. Faultnumis the fault nunber of the
t hat occurred.

getfault()
This function returns the current value of lastfault.

faultmsg(fault, nsg)
This function returns a nessage in nsg describing the
particular fault that was passed in.

Calls To
None
Calls From

Ani mat or, Fetch/ Decode/ Execute Modul e, Address Decoding Module,
Program Menory Modul e, Instruction Execution Mdule, Data Menory
Modul e, Vari abl e Regi ster/ Stack Mbdul e, Label Register/ Stack Mdul e,
Eval uation Stack Module, Call Stack Mdule, Save Stack Modul e,
Packet Mbdul e

Load Mbdul e

The | oad nodul e is used to | oad an object file into the emulator for
executi on. This calls a host of load functions in the various other
nodul es in order to acconplish its task. The | oad nodule nmerely reads in
a header and determines which of the load functions to call. For a

description of the format of the object file see Chapter 5.

60

Data Structure, Defined Types, and Constants

Secti ons
This is an enunerated type for the headings of the various
sections of the object file.

Functi ons
| oadobj ectfile (fil enane)
This is the only functioninthis nodule and it is responsible
for reading the object file filenane and determning the
di fferent sections of the object file and whi ch | oad functions
need to be called. This nodule also stores the synbol table
and source code in their respective data structures as they
are read in fromthe object file.
Calls To
Program Menory Module, Variable Register/Stack WMdule, Label
Regi ster/ Stack Mdul e, Packet Modul e
Calls From

Ani mat or

Fl ags Modul e

The flags nodule maintains a set of flags used in nost of the
nodul es in the emulator. The flags are used for a variety of things, such
as to specify the direction of program execution. These flags are not
nmeant to be used by the animator, so a description of each of the flags

has been | eft out.

Data Structure, Defined Types, and Constants

flags
This is an array of type Bool eanType that hol ds the val ues for
each of the flags, each of which is represented by their index
into the array.

Functi ons

getflag(flag)
This Bool eanType function returns, as the result of the
function, the value of the flag passed in flag.

setflag(flag)
This function sets the flag corresponding to flag to the val ue
TRUE.

61

resetflag(flag)
This function sets the flag corresponding to flag to the val ue

FALSE.
Calls To
None
Calls From

Instruction Execution WMdule, Fetch/Decode/Execute Modul e, Data
Mermory Modul e, Program Menory Modul e, Fault Modul e

Synbol Tabl e

The synbol table is just a data structure and does not have a nodul e
to manipulate it. This is because the synbol table contains infornmation
that nust be available to the animator in order to allow extracting
i nformation about programidentifiers in an efficient manner. The synbo
table not only contains the variable and procedure nanes that are part of
the source program but also the structure of the variables in the
program The structure of the variables is necessary so that the ani mator
can di splay variables appropriately.

Because the synbol table conveys a great deal of information about
the original source program each entry is rather |arge and a conplex tree
structure is maintained within the table for nanaging variable scope
Following is a description of each field of a synbol table entry. The

fields are: name, size, type, variablereg, offset, | owerbound, upperbound,

parent, child, and | ast.

Nane, size, type, and variablereg are easily explained. Nanme is a

pointer to a character array that contains the nane of the synbol for the
entry. The size field is an integer whose value is the size of the
element in the entry. Size represents the size of only a single el enment
if the entry is an array. The type field holds an E-nmachi ne data type and
has a value only if the entry is a scalar E-machine data type variable or

an array whose elenents are of a basic E-nmachine data type. The

62

variablereg field contains a variable register nunber if the entry is a
source programvariable that is represented by a variable register

Before any further descriptions of the remaining fields an
expl anation of scoping is necessary. |In order to accompdate scopes in
the synbol table the idea of scope blocks is incorporated. A scope bl ock
is a linear group of synbol table entries that are considered to be part
of the sane |ocal scope; the last entry in the scope is marked by a bl ank
entry with a value of END in the type field. However, the symbols in the
scope of a routine typically include those synbols which were in the scope
of the calling procedure or function, excluding identifiers with the sane
nane (and so on, back until the outernpst scope is reached). To
i ncorporate this aspect of scoping into the synbol table the parent field
was included with each |ocal scope. In addition, the child field was
i ncluded for each local scope to allow moving deeper into the scope
| evel s. Conplete explanations of those fields which are affected by the
scope bl ocks in the synbol table follow

The offset field is an integer whose value is the offset fromsone
base (froma parent or other ancestor), where the value for the entry is

st or ed. The | owerbound and upperbound fields are the |ower and upper

bounds, respectively, for array variables. These fields are both zero for
an entry that is not an array. The parent field has two purposes. Al
fields in the first entry in each scope block are blank except for the
parent field, which points to the starting synbol table entry of the scope
bl ock which inmedi ately contains the current scope block. For exanple, a
record is stored in the synbol table with one entry for each field of the
record; for a particular field of a record, the parent entry points to
the parent record definition so that the base address and offset of this
field in nmain nenory can be cal cul at ed.

The child field is used to point to another scope bl ock containing
additional information about the current entry. For exanple, the child

field of a synbol table entry for a record variable nmght point to achild

63

scope block containing entries for each of the fields in the record
Anot her use of child is for multidi mensioned arrays. Since thereis only
one set of upper and | ower bounds for an array entry, the child field is
used to point to another synbol table entry containing the next set of
bounds for another dinmension of the nultidinensional array. Thus, arrays
can have an unlinmited nunmber of dinensions.

The synbol table is sonewhat conpl ex and can best be understood if
read in conjunction with the exanple synbol table presented in the next

chapter.

Source Code Array

This is a data structure defined with the enulator, but is only of
use by the animator for the display of the original source code. The
packet table nodule makes reference to this array with the startline,

startcol, endline, and endcol fields so the source code array was i ncl uded

in the emulator design for clarity. This structure is very sinple and
requires little explanation. The Source Code Array is an array of
character pointers. The array is indexed fromO to the nunber of |ines of
source code and each entry points to one |line of source code. Menory

space is allocated for this structure during the object file | oad process.

64

CHAPTER 4

E- MACHI NE EMULATOR OPERATI ON

This chapter is intended to present an exanple of the enulator at
wor k. The exanpl e provi ded shoul d gi ve insight into the operations of the
emul ator, as well as how the various data structures in the E-machine are
created and handled (i.e., the save stack, the synbol table, etc.). The
exanpl e programused mani pul ates a binary tree. This chapter shoul d be of
particular interest to the devel oper of the aninmator. This chapter also
contains useful information for the conpiler witer.

The Pascal source code for the programis given with |line nunbers as
required by the enulator. An E-code translation of the program is
provided along with a synbol table, variable register table, |abel
register table, and all other structures which nust be contained in the
object file generated by a Pascal conpiler for the E-machine. The actions
of the enulator are presented in conjunction with a sinple display
environnent as a series of figures that illustrate the use of the E-

machi ne for program ani mation.

0 [Program Bi naryTree(Qutput);]
1
2 [Type]
3 [NodePtr = ~Node;]
4 [Node = Record
5 Data : Integer;
6 Left : NodePtr;
7 Ri ght : NodePtr;
8 End;]
9
10 [Var]
11 [Root : NodePtr;]
12

13 [Procedure Insert]([Var Root : NodePtr;] [Data : Integer]);

15 [Var]
16 [NewNode,] [CurNode] : NodePtr;

Fi gure 16
Exanpl e Packetized Pascal Program

65

17

18 [Begi n]

19 [New(NewNode) ;]

20 [NewNode”. Data : = Data;]

21 [NewNode”. Left := NI ;]

22 [NewNode”. Right := Ni|;]

23 [If (Root = Nil) Then]

24 [Root : = NewNode]

25 [El se]

26 [Begi n]

27 [Cur Node : = Root;]

28 [While (CurNode <> Nil) Do]

29 [If (Data < CurNode”. Data) Then]
30 [1f (CurNode”.Left = Nil) Then]
31 [Begi n]

32 [Cur Node”. Left : = NewNode;]
33 [CurNode := N |]

34 [End]

35 [El se]

36 [Cur Node : = Cur Node”. Left]
37 [El se]

38 [1f (CurNode”. Right = Nil) Then]
39 [Begi n]

40 [Cur Node”. Ri ght : = NewNode;]
41 [CurNode := Nil;]

42 [End]

43 [El se]

44 [Cur Node : = Cur Node”. Ri ght;]
45 [End;]

46 [End;]

47

48

49 [Procedure Traverse] ([Root NodePtr]);
50

51 [Begi n]

52 [If (Root <> Nil) Then]

53 [Begi n]

54 [Traverse(Root~. Left);]

55 [Wite(Root”. Data);

56 [Traver se(Root~. Right) ;]

57 [End;]

58 [End;]

59

60 [Begi n]

61 [Root := Nil;]

62 [Insert(Root, 5);]

63 [I nsert(Root, 4);]

64 [I nsert(Root, 6);]

65 [Traverse(Root) ;]

66 [End.]

Figure 16 (continued)

Figure 16 represents a binary tree Pascal

as an exanpl e throughout
(with portions of

nunbers. The packets are the

this chapter.

code grouped together

programthat will be used
The programis shown packetized
line

into packets) and wth

pi eces contained within the brackets ([]).

66

The line nunbers begin with 0, as this is what the enulator expects.
Figure 17 shows the sane Pascal program interspersed with an E-code
transl ati on of each packet and packet nunbering. The nunbers that appear
bef ore each line of E-code are the program addresses used by the emul at or

The translation given is neant to represent what m ght be generated by a
conpiler for this particular Pascal program although there is no
intention to indicate that this is what should be generated by the
conpiler. Notice the abundance of nop (no operation) instructions. They
are necessary to create an E-code packet for Pascal packets that actually
have no translation into E-code, but which the animator might wish to

hi ghl i ght .

0 [Program Bi naryTree(Qutput);]
Packet #00:
0 nop

2 [Type]
Packet #01:
1 nop
3 [NodePtr = ~Node;]
Packet #02:
2 nop
[Node = Record
Data : Integer;
Left : NodePtr;
Ri ght : NodePtr;
End;]
Packet #03:
3 nop

O~NO O A~

©

10 [Var]
Packet #04:
4 nop
11 [Root : NodePtr;]
Packet #05:
5 i nst n, VO ; create an instance of Root
6 br c,0 ; branch to begi nning of nain program
12
13 [Procedure Insert]([Var Root : NodePtr;] [Data : Integer]);
Packet #06:
7 | abel c, 1 ; Insert entry point
Packet #07:
8 link V1 ; link Root to actual param
Packet #08:
9 i nst c, V2 ; Create instance of Data
10 pop c,l,V2 ; put actual paraminto Data
14

Fi gure 17
An E-code Transl ation for an Exanpl e Program

15

16

17
18

19

20

21

22

23

24

25

26

27

67

create instance of NewNode

create instance of CurNode

all ocate block for a new node
put address of bl ock in NewNode

push Data onto stack

push address in NewNode onto stack
put address into address register

| oad index reg with offset of .Data
pop Data into NewNode”. Dat a

push null address onto stack

push address in NewNode onto stack
put address into address register

| oad index reg with offset of Left
pop null address i nto NewNode”. Left

push null address onto stack

push address in NewNode onto stack
put address into address register

| oad i ndex reg with of fset of Ri ght
pop nul | address i nt o NewNode”. Ri ght

push Root onto stack

push null address onto stack
Root = NiI?

if not, goto else

push NewNode onto stack
assign to Root
skip el se

el se cl ause

push Root onto stack

[Var]
Packet #09:
10 nop
[NewNode,] [Cur Node] : NodePtr
Packet #10:
11 i nst c, V3
Packet #11:
12 i nst c, V4
[Begi n]
Packet #12:
13 nop
[New(NewNode) ;]
Packet #13:
14 al |l oc c, C8
15 pop c, A V3
[NewNode”. Data : = Data;]
Packet #14:
16 push 1, V2
17 push A, V3
18 popar c
19 | oadir c,0
20 pop c, A AR{I R}
[NewNode”. Left := Nl
Packet #15:
21 push A N L
22 push A, V3
23 popar c
24 | oadir c,4
25 pop c, A AR{I R}
[NewNode”. Right := N I;]
Packet #16:
26 push A N L
27 push A, V3
28 popar c
29 | oadir c,6
30 op c,A AR I R}
[If (Root := Nil) Then]
Packet #17:
31 push A, V1
32 push A N L
33 eql n, A
34 brf c,2
[Root : = NewNode]
Packet #18:
35 push A, V3
36 pop c,A V1
37 br c,3
[El se]
Packet #19:
38 | abel c,?2
[Begi n]
Packet #20:
39 nop
[Cur Node : = Root;]
Packet #21:
40 push A, V1
41 pop c,A V4

assign to Cur Node

Figure 17 (continued)

28

29

30

31

32

33

34

35
36

37

68

[Wile (CurNode <> Nil) Do

Packet #22:
42 | abel
43 push
44 push
45 neq|
46 brf
[If (Data
Packet #23:
47 push
48 push
49 popar
50 | oadir
51 push
52 | ess
53 brf
[1f (Cur
Packet #24:
54 push
55 popar
56 | oadir
57 push
58 push
59 eql
60 brf
[Begin
Packet #25:
61 nop
[Cur
Packet #26:
62 push
63 push
64 popar
65 | oadir
66 pop
[Cur
Packet #27:
67 push
68 pop
[End]
Packet #28:
69 br
[El se]
70 | abel
[Cur No
Packet #29:
71 push
72 popar
73 | oadir
74 push
75 pop
76 br
[El se]
Packet #30:
77 | abel

c,4 ; top of while |oop

A V4 ; push CurNode onto stack

A N L ; push null address onto stack
n, A : CurNode <> Ni|?

c,5 ; if not, |leave |oop

< Cur Node”. Data) Then]

I, V2 ; push Data onto stack

A V4 ; push Cur Node onto stack

c ; place address in address reg
c,0 ; load index reg with offset of Data
I, AR{I R} ; push Cur Node”. Data onto stack
n, A ; Data < Cur Node”. Dat a?

c,6 ; 1f not, goto else

Node”. Left = Nil) Then]

A V4 ; push CurNode onto stack

c ; place address into address reg
c,4 ; load index reg with of fset of Left
A AR{I R} ; push Cur Node”. Left

A, N L ; push null address

c, A ; CurNode”. Left = Ni|?

c,7 ; i1f not, goto else

]

Node”. Left := NewNode;]

A, V3 push NewNode onto stack

A V4 push Cur Node onto stack

c ; put address into address reg

c,4 | oad index reg with offset of Left
c, A AR{I R} assi gn NewNode to CurNode”. Left
Node := Nil]

A N L ; push null address onto stack

c, A V4 ; assign to CurNode

c,8 ; junp past el se

c,7

de : = Cur Node”. Left]

A V4 ; push CurNode onto stack

c ; put address into address reg

c,4 ; load index reg with of fset of Left
c, A AR{IR} ; push CurNode”. Left

A V ; assign to CurNode

c,9 ; skip else

c,6

Figure 17 (continued)

38

39

40

41

42

43

44

45

46

47
48
49

50

69

[1f (CurNode™. Right =

Ni 1) Then]

push Cur Node onto stack

pl ace address into address reg
| oad i ndex reg with of fset of Right

push Cur Node”. Ri ght

push nul

addr ess

Cur Node®. Right = Ni | ?
if not, goto else

NewNode;]

push NewNode onto stack
push Cur Node onto stack
put address into address reg

| oad index reg with of fset of Right
assi gn NewNode to CurNode”. Ri ght

push nul
assign to

skip el se

address onto stack
Cur Node

push Cur Node onto stack
put address into address reg

| oad index reg with offset of Left

push Cur Node”. Left

assign to

Cur Node

del ete i nstance of CurNode
del ete i nstance of NewNode
del ete i nstance of Data

Packet #31
78 push A V4 ;
79 popar c ;
80 | oadi r c,6 ;
81 push A AR{I R} ;
82 push A N L ;
83 eql c,A ;
84 brf c, 10 ;
[Begi n]
Packet #32:
85 nop
[Cur Node”. Ri ght =
Packet #33:
86 push A, V3 ;
87 push A V4 ;
88 popar c ;
89 | oadi r c,4 ;
90 pop c,AAR{IR ;
[CurNode := Ni|;]
Packet #34:
91 push A N L ;
92 pop c,A V4 ;
[End]
Packet #35:
93 br c, 11 ;
[El se]
Packet #36:
94 | abel c, 10
[Cur Node : = Cur Node”. Ri ght;]
Packet #37:
95 push A V4 ;
96 popar c ;
97 | oadi r c,4 ;
98 push c,AAR{IR ;
99 pop A, V3 ;
[End;]
Packet #38:
100 | abel c,3
101 | abel c,8
102 | abel c,9
103 | abel c, 11
104 | abel c,5
[End;]
Packet #39:
105 | abel c,?2
106 uni nst c,V4 ;
107 uni nst c, V3 ;
108 uni nst c, V2 ;
109 unl i nk c, Vi ;

110 return

[Procedure Traverse] ([Root
Packet #40:

111 | abel c,12
Packet #41:

112 i nst c, Vb
113 pop c, A V5

renpve |ink to Root

NodePtr]);

Traverse entry point

create instance of Root

put act ual

Figure 17 (continued)

paramin Root

51

52

53

54

55

56

57

58

59

60

61

62

70

[Begi n]
Packet #42:
114 nop
[If (Root <> Nil) Then]
Packet #43:

115 push A V5 ;

116 push A N L ;

117 neql c,A ;

118 brf c, 13 ;
[Begi n]

Packet #44:

119 nop

[Traverse(Root ~. Left);]
Packet #45:

120 push A V5 ;
121 popar c ;
122 | oadir c,4 ;
123 push A AR{I R} ;
124 cal | c, 12 ;
125 | abel c, 14 ;
[Wite(Root”. Data);]

Packet #46:

126 push A V5 ;
127 popar c ;
128 | oadir c,0 ;
129 push I, AR{I R} ;
130 wite c, | ;

[Traverse(RoofA.Right);]
Packet #47:

131 push A V5 ;

132 popar c ;

133 | oadir c,4 ;

134 push A AR{ I R} ;

135 cal | c,12 ;

136 | abel c, 15 ;
[End;]

Packet #48:

137 | abel c, 13

[End;]

Packet #49:

138 uni nst v, Vb ;

139 return

[Begi n]

Packet #50:

140 | abel c,0 ;

[Root := Ni|;]

Packet #51:

141 push A N L :

142 pop c, A VO ;

[I nsert(Root, 5);

Packet #52:

143 push I, C5 ;

144 pusha VO ;

145 cal | c,1 ;

146 | abel c, 16 ;

push Root onto stack

push null address onto stack
Root <> Ni | ?
if not, skip to end of if

push Root onto stack

put address into address reg

put index of Left into index reg
push Root”.Left onto stack

call Traverse

records where returned from

push Root onto stack

put address into address reg
put offset of Data into index reg
push Root”. Data onto stack
wite it out

push Root onto stack

put address into address reg
put index of Right into index reg
push Root”. Ri ght onto stack
call Traverse

records where returned from

del ete i nstance of Root

entry point of main program

push null address onto stack
assign to Root

push 5 onto stack

push address of Root onto stack
call Insert

records where returned from

Figure 17 (continued)

63
64
65

66

Entry
Nurber

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

[l nsert (Root,

4) 1]

71

push address of Root onto stack

push address of Root onto stack

Packet #53:
147 push I, 4 ; push 5 onto stack
148 pusha VO ;
149 cal | c,1 ; call Insert
150 | abel c, 17 ; records where returned from
[I nsert(Root, 6);]
Packet #54:
152 push |, C6 ; push 5 onto stack
153 pusha VO ;
154 cal | c,1 ; call Insert
155 | abel c, 18 : records where returned from
[Traver se(Root) ;]
Packet #55:
156 push A VO ; push Root onto stack
157 cal | c,12 ; call Traverse
158 | abel c, 19 : records where returned from
[End.]
Packet #56:
159 uni nst c, VO
Figure 17 (continued)
Synbol Vari abl e
Nane Type O f set reg Par ent
Header - -
Bi naryTree Procedure --
End - -
Header 0
Root Addr ess VO - -
| nsert Pr ocedur e - -
Traver se Procedure --
End 0
Header 3
Root Addr ess Vi - -
Dat a I nt eger V2 - -
NewNode Addr ess V3 - -
Cur Node Addr ess V4 - -
End 3
Header 6
Root Addr ess V5 - -
End 6
Record - -
Dat a I nt eger 0 - -
Left Addr ess 4 - -
Ri ght Addr ess 6 --
End - -
Fi gure 18
Synbol Tabl e for Exanple Program

72

Pack Start End Start Start End End

Num Addr Addr Li ne Col Li ne Col Scope
00 0 0 0 0 0 28 0
01 1 1 2 0 2 3 0
02 2 2 3 2 3 17 0
03 3 3 4 2 8 5 0
04 4 4 10 0 10 2 0
05 5 6 11 2 11 16 1
06 7 7 13 0 13 15 1
07 8 8 13 17 13 35 3
08 9 10 13 37 13 50 3
54 152 155 64 2 64 17 0
55 156 158 65 2 65 16 0
56 159 159 66 9 66 3 0

Figure 19

Packet Table for Exanple Program

Vari abl e Vari abl e
Regi st er Si ze

VO
V1
V2
V3
V4
V5

NNNAEANDN

Fi gure 20
Variabl e Regi ster Table for Exanple Program

Label Label
Regi st er Addr ess
0 141
1 6
2 39
17 151
18 155
19 158

Figure 21

Label Register Table for Exanple Program

The next set of figures is intended to provide a rudinmentary
illustration of how a programani mator night work in conjunction with the
enul at or. Each of these figures, beginning with Figure 22 depicts a

conputer video screen with a snapshot of the animation in progress.

73

Program Bi naryTree(Qutput);

Type
NodePtr = ~Node;
Node = Record
Data : Integer;
Left : NodePtr
Ri ght : NodePtr;
End;

Var
Root : NodePtr;

Procedure Insert(Var Root : NodePtr

Fi gure 22
Di spl ay Before Execution
Figure 22 shows what the display mght look like before any
i nstructions had been executed. Al of the structures in the emul ator--
t he eval uation stack, program nenory, data nenory, and so on, would have

been initialized and the variable currentpacket would contain packet

nunber 0, the next packet to be executed. Fromthe packet table shown in
Fi gure 19, the beginning and ending lines and colums in the source code
correspondi ng to E-code packet 0, are line 0, colum 0, line 0, colum 28,
which are shown highlighted in the display in boldface. After the
enmul ator was called to execute a packet, the display would remain the
sane, except that instead of the first |line being highlighted, the word
Type on the third line would be highlighted. This is because packet 0
contains only a nop instruction, which would result in no changes in the
state of the E-machi ne except to nove on to the next packet. 1In fact, the
hi ghl i ghted text in the display would not change until after execution of
packets 0 through 4 since they each consist only of a nop

The twel fth Iine of the display woul d be highlighted after packet 4
had been executed. In this case the highlighted text would be the
variabl e declaration of Root, and the instructions in packet 5 would
create an instance for variable register 0 and then branch to the
begi nni ng of the main program Variable register O represents the pointer

Root in the original source program According to the variable register

74

table in Figure 20, the size of the variable represented by variable
register 0 is 2. (This is the nunber of data nmenory words required to
store a data nenory address for this particular version of the emulator.)
Execution of this packet would cause two data words to be allocated and
the top of variable register 0's stack to contain a 0, which is the data
menory address at which the 2 data words woul d have been allocated. The
two data words at data nenory address O would have been narked as
undefined since no value would yet have been placed in that nmenory
| ocati on. Figure 23 shows what the display nmight look like after

execution of packet 5 was conpl et ed.

If (Root <> Nil) Then Root: Undefi ned
Begi n
Traverse(Root~. Left);
Wite(Root”. Data);
Traver se(Root”. Ri ght);
End;
End;

Begi n
Root := Nil;
I nsert (Root, 5);
I nsert (Root, 4);
I nsert (Root, 6);
Traver se(Root) ;
End.

Fi gure 23
Di spl ay After Executing Packet 5

Note that the program lines that were displayed in the previous
figure are no longer in the display in Figure 23. This is because the
| ast packet that was executed woul d have caused a branch to the begi nni ng
of the main program which is no longer in the imediate vicinity of the
source lines corresponding to the previous E-code packet. The ani nmator
woul d have to keep track of the source |ines being displayed and when the
source lines corresponding to the current packet are not part of the
current display, change the display appropriately.

Figure 23 shows a possible display as packet 50 is about to be

executed. Once again, packet 50 is another one that only contains a nop

75

instruction, so the display would likely not be updated after its
execution. Packet 51 would then be the next packet to be executed, in
which the value NI would be assigned to the variable Root. The
instructions in packet 51 would push a constant called NIL onto the
eval uation stack and then pop this value off into variable register 0. At
the tine of the pop, there should be an address on top of variable
register 0's stack (which, in this case, would be 0). So the value Ni

woul d be placed in data nenory at |ocation O, and since the value of N

i s an address occupying two data words, both |l ocation 0 and location 1 in
data nmenory woul d contain a value representing the constant NIL. Figure

24 shows what the display mght look |like after execution of packet 51

If (Root <> Nil) Then Root: Ni |
Begi n
Traver se(Root". Left);
Wite(Root”. Data);
Traver se(Root . R ght);
End;
End;

Begi n
Root := Nil;
I nsert (Root, 5);
I nsert (Root, 4);
I nsert (Root, 6);
Traver se(Root) ;
End.

Figure 24
Di splay After Executing Packet 51

Note in Figure 24 that Root is no | onger displayed as undefined, but

i nstead has a value of Nil. The variable Root should contain an E-nmachi ne
address, but Nil is not an address, so how can Root have a value of N I|?
Nil is actually a special value that does not represent a data nenory

location and is used to denote that an address variable (or pointer in
Pascal) does not point to anything in particular. This is inportant

because, if Root did point to sonmething, the data to which it pointed
m ght be of interest, and i ndeed woul d be desirable to display. In fact,

it is likely that the animator would display the value(s) to which Root

76

pointed if Root did point to sonething. An exanple of what the aninator
m ght do for such a circunstance is forthcom ng.

E- code Packet 51 woul d now be the next packet to be executed. This
packet is a procedure call. Executi on of packet 51 would cause the
enmulator to push the address of the instruction following the call,
specifically program address 140, onto the call stack. This is so that
when procedure Insert was finished, it could performa return properly.
Next, the emrmul ator woul d need to branch to label 1. This would be done by
| ooking up the address of label 1 in the |abel register table, which is
given in Figure 21. Fromthis table the enmulator would determ ne that
| abel 1 was at program address 7, so the program counter woul d be | oaded
with this address.

Now | ook at packet 6. Executing packet 6 would likely not change
the display at all, but it has a particularly inportant effect on the
emul ator. Packet 6 contains a |abel instruction, whose sole purposeis to
mark the point to which a branch may have occurred. |f the animtor were
to back up past the entrance to procedure insert, the enul ator woul d need
to know where the call canme frominitially. To accommpdate this, the
enmul ator woul d save the contents of the previous program counter, which
woul d contain the address of the call instruction (program address 139),
on top of label 1's stack. Execution would now nove on to packet 7.

Packet 7 and packet 8 are responsible for setting up the paraneters
for the procedure. The paranmeter Root is passed by reference, so packet
7 contains a link instruction, which would pop the address fromthe top of
t he eval uation stack and push it onto variable register 1's stack. So now
vari able register 1 would have an address of 0, the sane as the variable
Root fromthe main program(the i nportance of this is shown shortly). The
parameter Data is passed by value, so packet 8 would create an instance
for variable register 2 and pop the integer (actual paraneter value 5) off
the top of the evaluation stack and place it into the data nmenory | ocation

that was allocated for variable register 2.

77

Packets 10 and 11 woul d create instances for the variabl es NewNode
and CurNode in variable registers 3 and 4 respectively. These variables
along with the procedure’s paranmeters would now all be avail able for use
in procedure Insert. Figure 25 shows what the animator might display to

reflect this.

Procedure Insert(Var Root : NodePtr; |Root: Nil

-lnsert----------------
Var Root: Ni |
NewNode, Cur Node : NodePtr; Data: 5
NewNode: Undefi ned
Begi n Cur Node: Undefi ned
New(NewNode) ;
NewNode”. Dat a : = Dat a;
NewNode”. Left := Ni|;

NewNode”™. Right := Ni|;
If (Root = Nil) Then
Root : = NewNode
El se
Begi n

Fi gure 25
Di spl ay After Executing Packet 11
At this point, the user might be curious about why Data has a val ue
of 5. To find out, the user could decide that he would like to back up
until he finds the reason Data has value 5. The animator would call the
reverse function of the enmulator to place the enulator in reverse

execution node. The reverse functi on swaps prograncounter and previ ouspc,

sets the emul ator’s FORWARD flag to FALSE, and adjusts the current packet.
The programcounter woul d contai n programaddress 13, which woul d nmake t he
current packet 11. Now when the execute packet function was called,
packet 11 woul d be executed in reverse. Specifically, the address on top
of variable 4's stack would be renoved, and the data nmenory all ocated for
vari abl e 4 woul d be rel eased. The sane woul d happen for variabl e regi ster
3 when packet 10 was executed. For packet 8, the contents of the data
menory occupi ed by variable 2 woul d have been pushed onto the save stack
during forward execution and would be replaced when reversed, then

vari abl e regi ster 2 woul d handl ed as just described for variable registers

78

3 and 4. Finally, packet 7 would uninstantiate variable register 1 and
the emul ator woul d be ready to reverse the | abel instruction in packet 6.

Remenber that when this packet was executed in the forward
direction, the previous programcounter was pushed onto | abel register 1's
st ack. That address was the address of the instruction that called
procedure Insert. By popping that address off |abel 1's stack and pl aci ng
it inthe programcounter, the label instruction would be reversed. Once
packet 6 was reversed, the animator would, nost likely, again show a
display simlar to that of Figure 24, although the enul ator would not be
in the sane state as described for Figure 24. This is because the program
counter always points to the next instruction to be executed either
forward or in reverse. So if the direction were changed to forward at
this point, the programcounter woul d be swapped wi th the previ ous program
counter, and would then contain program address 7 (the address of the
| abel instruction that was just reverse executed), and thus the current
packet would be 6. So in order for the enulator to return to the state it
was in with the display shown in Figure 24 and executing in the forward
direction, the call to procedure Insert would have to be reversed as wel .

To conti nue discussing the emulator, this exanple will pick up where
it left off, with the enmulator executing in the forward direction, the
program counter at address 13, and the current packet being 12. The
correspondi ng display is Figure 25.

At this point the next packet of interest is packet 13, which is
nmeant to allocate space to store a value of type Node as a transl ation of
the Pascal New function. For the E-machine, this is a sinple task.
First, eight data words would be allocated using the E-nachine alloc
i nstruction, which woul d push the address of the all ocated nenory onto the
eval uation stack. The follow ng pop instruction would pop the address of f
the stack and place it in the data nenory |ocation pointed to by the top
of variable register 3's stack giving NewNode a value. Figure 26 shows

what the animator might display once the pointer variable NewNode

79
contai ned a data nenory address. Since NewNode is a pointer (or address),

the contents of the data nmenory pointed to would be of interest; that is

what is displayed beneath the NewNode variable in Figure 26.

Procedure Insert(Var Root : NodePtr; |Root: Nil

-lnsert----------------
Var Root: Ni |
NewNode, Cur Node : NodePtr; Data: 5
NewNode: 8
Begi n Dat a: Undefi ned
New(NewNode) ; Left: Undefined
NewNode”. Dat a : = Dat a; Ri ght: Undefi ned
NewNode”. Left := Ni|; Cur Node: Undefi ned

NewNode”™. Right := Ni |
If (Root = Nil) Then
Root : = NewNode

El se
Begi n

Fi gure 26
Di spl ay After Executing New(NewNode);

The next three packets are straightforward, designed to assign
values to the fields of NewNode. Packet 17 is a good exanple of a
condi tional evaluation in the enulator. The value of Root woul d be pushed
onto the evaluation stack, the constant NIL would al so be pushed onto the
eval uation stack, and then the eql instruction would be executed. The two
are equal, so TRUE would be pushed onto the evaluation stack. The
conditional branch would pop TRUE off the evaluation stack and conti nue
with the next instruction in programnenory since the branch was to occur
only if the value on top of the stack were FALSE. Thus the then portion

of the if would be executed, which would assign NewNode to Root. The

branch instruction in packet 23 would send the enul ator to packet 38.
Figure 27 shows what the animator display might look like after
reachi ng packet 38. Notice the variable display and that not only Root in
the procedure Insert has changed, but so has the instance of Root in the
main program This is because of the link instruction that was executed
at the beginning of procedure Insert, which copied the top of the first

Root’'s stack and pushed it onto the second Root’'s stack, thus making the

Root in the procedure I nsert occupy the sane data nmenory (as shoul d be the

80

case for call by reference paraneters, such as Root).
Cur Node”. Ri ght : = NewNo |Root: 8
CurNode := Ni |; Data: 5
End Left: Nil
El se Right: Nl
Cur Node := CurNode™. Right [-Insert----------------
End; Root: 8
End; Data: 5
Left: Nil
Procedure Traverse(Root NodePtr) ; Right: Nl
NewNode: 8
Begi n Data: 5
If (Root <> Nil) Then Left: Ni
Begi n Right: Nl
Traver se(Root”. Left); Cur Node: Undefi ned
Wite(Root”. Data);
Fi gure 27

Di splay at end of Procedure I|nsert

The emulator would continue executing single packets at a tineg,

either in the forward or reverse direction, as called by the program

animator. |In between calls to the emulator, the ani mator woul d update the
screen displays in a manner simlar to that shown in the exanple screen
snapshots. The exanpl e presented here should be sufficient to understand
how an ani mator could work in conjunction with the enulator to visualize

prograns.

81

CHAPTER 5

CREATI NG OBJECT PROGRAM FI LES

Bui |l ding I nstructions

In order to wite a conpiler, the conpiler witer needs to know how
to create E-code instructions as translations of the high | evel |anguage
prograns for which the conpiler is witten. The exact format of the
i nstruction need not be known, although, it can be found in the "decex. h"
header file. This header file nust be included in the conpiler’s source
code, as it contains the definition of the structure Instruction, whichis
the format of the E-code instruction expected by the Emulator. The
conpiler witer, then, need only followthe directions belowto build the
E-code instructions in the translation phase of the conpiler.

An E-code instruction is a structure with several fields that nust
be filled in order to create the E-code instruction. A variable in the
conpil er nmust be declared of type Instruction to hold the instructions
that are created. The structure is broken up into the follow ng fields:

opcode, addrnode, cflag, type, and data. Each of these fields must be

filled with the appropriate information to create the E-code instruction

The opcode field holds a code that specifies an E-code operation
(e.g., push). There are no specific values for the opcodes; instead there
is a defined constant to represent each of the possible operations. This
is done so that if the E-nmachine emul at or changes, the conpiler only needs
to be reconpiled using the new constant definitions. The constants are
nanes identical to the menbnics given in Chapter 2 for the E-code
instructions, with all letters in the nane capitalized (e.g., the push
i nstruction opcode constant is PUSH).

The addr node fiel d hol ds a code defining the addressi ng node for the

i nstruction. Once again named constants are used to specify the

82

addressing nodes. There are six constants that nake up the addressing
node: | MVEDI ATE, ADDRESS, VARI ABLE, |NDEX, OFFSET, and | NDI RECT. These
constants are mi xed and matched to create di fferent addressi ng nodes. For
exanple, to specify variable indirect node the constants VARI ABLE and
| NDI RECT are or’ ed together to create the addressi ng node code. Note that
not all conbinations are | egal and that nixing themincorrectly will yield
unexpected results when the object programis run. | MVED ATE is al ways
used alone. Either ADDRESS or VARI ABLE, but not both, may be used with
zero or one of | NDEX, OFFSET, or | NDI RECT. Because of the manner in which
addressi ng nodes were inplenented, no other conbinations of constants
shoul d be used. A new nethod for handling addressing nodes should be
consi dered for future versions of the Enulator to elinminate this flaw

The cflag (critical flag) field is used to mark the instruction as
either critical or non-critical. There are two defined constants,
CRI TI CAL and NONCRI TI CAL, which should be used as values for this field.
Any val ue ot her than these constants will yield unpredictable results when
t he obj ect program executes.

The type field holds a code for the data type involved for the
i nstruction. This type is one of the basic E-nmachine types: real,
i nteger, character, boolean, and address. The defined constants REAL,
| NTEGER, CHARACTER, BOOLEAN, and ADDRESS shoul d be used as val ues for this
field. Only one of these values is used, with one exception, the cast
i nstruction. The cast instruction requires two types to be declared
This is done by joining two of the constants in the foll owi ng manner. The
constant for the type that is being cast fromshould be shifted | eft four
bits and or’ed with the type being cast to (see the exanple below). Once
agai n, val ues other than these constants will yield unpredictable results
when executing the object program

The data field is primarily used to hold the constant of the
const ant addressi ng node when used; however, it is also used to hold the

| abel nunbers for branch and | abel instructions, and variable register

83

nunmbers for the link, unlink, inst, and uninst instructions. The data
field is a union of the basic E-nachine data types so that any data type
can be placed in the field. Each field in the union is naned after the
basi ¢ E-machi ne type: real, integer, character, bool ean, and address. To
place a value in the data field, the appropriate union field must be

selected (e.g., data.integer for integer values and data.real for floating

point values). The integer field is used to store the | abel nunbers and
vari abl e regi ster nunbers.

Note that not all of these fields are used for all instructions.
The opcode field always has a value. The addrnode field is used only with
those operations that require an address or data, such as push and pop
The add operation does not use the addrnode field since its operands and
result use the evaluation stack. Sone instructions behave the sanme when
they are critical as when they are non-critical (those instructions in
Chapter 2 that have only an explanation for Forward and Backward
execution). In this case, cflag is ignored and need not be set to any
particul ar val ue. Only those instructions that deal with data need a
value in the type field, such as add, sub, and so on. Instructions |like
all oc and inst, which do nothing with a particul ar E-nmachi ne data type, do
not need a value in the type field. The data field is used for constant
addressing node and those instructions needing a |abel or variable
regi ster nunber.

To further explain howto create E-code instructions, a few exanpl es
are given here. There will be a description of what the exanple
denonstrates foll owed by an E-code instruction and the C code necessary to
build such an instruction. The instruction will be built in a variable

naned instr of type Instruction

Exanpl e 1:

Thi s exanpl e shows an instruction having no value in the data field.
The constant addressing nobde is not used and the instruction does not

expect a | abel or variable register, so the data field is unnecessary.

84

The instruction:
pop n,1,VvV2

could be created in C as foll ows:
ihétruction instr;
i nstr.opcode = POP
instr.cflag = NONCRI Tl CAL

instr.type = | NTEGER
i nstr. addrnbpde = VARI ABLE

Exanpl e 2:

Thi s exanple shows an instruction requiring no addressi ng node or
value in the data field. No value is needed in the data field for the
same reasons as in the previous exanple, and no addressing node is
necessary since the operation uses the evaluation stack for its operands
and storing of the result.

The instruction:
add c,R

could be created in C as foll ows:
ihétruction instr;
i nstr.opcode = ADD

instr.cflag = CRITI CAL
instr.type = REAL;

Exanpl e 3:

Thi s exanpl e shows an instruction needi ng no addressi ng node or data
type. The addressing node is unnecessary for the same reasons as in the
previ ous exanpl e, and the data type i s not necessary since the instruction
is dealing with a variable register and not an E-nachi ne data val ue.

The instruction:
i nst c, V3

could be created in C as foll ows:
ihétruction instr;
i nstr.opcode = | NST;

instr.cflag = CRI Tl CAL
instr.data.integer = 3;

85

Exanpl e 4:

Thi s exanpl e shows an instruction that uses the data field to hold
a l|label nunber, which neans that no addressing node or type need be
gener ated, because the |abel nunber is expected to be an integer in the
data field. This instruction, also, does not require a cflag because
there is no information to be saved that is critical for backup, except
t he previous program counter, which is maintained automatically.

The instruction:
br 8

could be created in C as foll ows:
ihétruction instr;
i nstr.opcode = BR

instr.data.integer = 8;

Exanpl e 5:

This exanple shows an instruction using the constant addressing
node; hence it requires storing the constant in the data field. There is
no critical flag because the push operation does not store any critica
i nformati on.

The instruction:
push R Cl.5

could be created in C as foll ows:
ihétruction instr;
i nstr.opcode = PUSH,

instr.type = REAL;
instr.data.real = 1.5;

Exanpl e 6:

This is an exanple of how to generate the type field for the cast
i nstruction. This instruction casts an integer to a real. No ot her
fields are filled since all that is needed are the two types.

The instruction:
cast I,R

could be created in C as foll ows:

Instruction instr;

86

i nstr.opcode = CAST
instr.type = (I NTEGER << 4) | REAL;
The instructions of a conpiled E=code program should be kept in an
array nunbered starting at 0. The array position of an instruction is
al so its programaddress. The programaddress is inportant for the | abe

regi sters, as described bel ow

Creating Variable Reqgisters

The type definition for the variable register structure is in the
"variable.h" header file and is called VariableReg. The variable
registers are labelled starting at 0 and nust be kept track of by the
conpiler. The only field of concern to the conpiler witer is the size
field. Each variable in the source programtakes up a certain anount of
data nenory space and the conpiler nust keep track of this for each
variable register that is used. The size is neasured in DataWrds.
Recall that Datawrd is a data type representing the small est accessible
piece of nmenory, taking into account alignnent requirenents, and is
defined in the "datamem h" header file. The size of Datawrd is a defined
constant also in the "datamem h" header file and is the nunber of bits in
t he Dat aWwrd. These constants may be different from one conmputer to
anot her, depending on the nenory word size and al i gnnent requirenents for
that conputer. For the Enulator presented in Appendix A which was
created for an IBMPC, DataWwrd is defined to be of C type unsigned char

whi ch uses one byte or 8-bits of nenory.

Creating The Label Reqgisters

The structure for the label registers is defined in the "label.h"
header file and is called Label Reg. The | abel registers are nunbered
starting at 0 and nust be kept track of by the conpiler. The only field
in the |abel register structure that is inportant to the conmpiler witer

is the address field. This fieldis intended to hold the program address

87

of the correspondi ng | abel instruction. For exanple, the address field of
| abel register O will contain the programaddress of the instruction | abe

0.

Creating The Synbol Table

The synbol table can be built by creating an array of synbol table
entries and creating the scope blocks as described in Chapter 3. An
exanple is also given in Chapter 4. Al of the fields, except the type
field, are sinple C types and can be filled with standard C statenents.
The type field can be filled by assigning one of the foll owi ng enuner at ed
constants to the field: ADDRESS, | NTEGER, REAL, BOOLEAN, CHARACTER,
PROCEDURE, HEADER, END, or RECORD. These constants are defined in the
synbol table header file "synbol.h".

Creating The Packet Tabl e

The packet tabl e hol ds packet and scope i nfornmation for the conpil ed
program Its structure is defined in the "packet.h" header file and is
cal l ed Packet. Each packet is nunbered sequentially starting with 0, the
nunber representing the position of the packet in the packet table. All
fields in this structure are inportant to the conpiler witer and nust be
gi ven val ues during conpilation. The Packet structure consists of the

fields startaddr, endaddr, startline, startcol, endline, endcol, and

scope. The startaddr and endaddr fields hold the beginning and endi ng E-

code object program address for a packet. The startline, startcol,

endline, and endcol fields hold the beginning and ending |ines and col um
positions of the original program source code that corresponds to the
obj ect program packet of instructions starting at program address
startaddr and ending at program address endaddr. The scope field is an
i ndex into the synbol table pointing to the scope block for this packet.
The packet table nmust be organi zed so t hat each successi ve packet contains

hi gher nunbered program addresses. This does not necessarily nmean that

88

the startline, startcol, and so on, will be successively |larger, although

it is likely.

Fornmat of the (bject Code File

The object code file the conpiler builds nust contain all of the
structures listed above plus the original source code. The object code
file is broken up into sections, the order of which is not inportant.
Each section begins with a section header, followed by a count of the
nunber of itens in the section. The section header is just a C integer
type with a value of one of the defined constants: CODESECTI ON,
VARI ABLESECTI ON, LABELSECTI ON, SYMBOLSECTI ON, PACKETSECTI ON, and
SOURCESECTI ON. The count is also a Cinteger type and its val ue nmust be
the nunmber of items for that section that have been witten to the file.
So, to wite out the | abel section header and count, the follow ng C code
m ght be used:

section = LABELSECTI ON;

wite(file, section, sizeof(int));

wite(file, &count, sizeof(int));

CODESECTION is the section header for the E-code instruction
section. The instructions nust be in program address order and nust
i nclude an instruction for every program address fromO to the nunber of
instructions, mnus one. The count is the total number of instructions
witten to the object file, not the |ast program address.

VARI ABLESECTION is the section header for the variable registers.
The registers must be witten in order starting at 0 and include all
variable registers up to the nunber of variable registers, mnus one.
Each entry under VARI ABLESECTION is the size of the variable (to be stored
in the size field of the variable register structure). No ot her
information is to be included. The count is the total nunber of variable
regi sters used for the program not the last variable register used.

LABELSECTION is the section header for the |abel registers. The

registers nust be witten in order starting at 0 and include all | abel

89

registers up to the nunber of |abel registers, minus one. Only the
address field of the label register structure should be witten to the
object file for each label register. The count is the total nunber of
| abel registers used for the program not the | ast variable regi ster used.

SYMBOLSECTION is the section header for the synbol table. The
synbol table nmust be witten to the file exactly as it was created during
translation. The full structure should be witten to the object file for
each entry in the synbol table. The count is the total number of synbo
table entries used for the program

PACKETSECTION is the section header for the packet table. The
packets nust be written in order starting with packet nunber 0 and i ncl ude
all packets up to the nunber of packets, minus one. The entire packet
structure should be witten to the object file for each packet in the
packet table. The count is the total nunmber of packets, not the |ast
packet number.

SOURCESECTION is the section header for the original source code.
Each |ine of source should be witten in order, the first |ine nunbered O,
(this is inportant for use with the packet table) up to the nunber of
source lines, mnus one. Each line of source should be witten to the
object file followed by a null character marking the end of the source
line. The ending carriage return and line feed should not be witten to
the object file. The count is the total nunber of source lines, not the

| ast source |ine nunber.

90

CHAPTER 6

CONCLUSI ONS AND NEW DI RECTI ONS

New Directions for the Enul ator

The version of the E-machine emul ator presented here was desi gned
with procedural |anguages |ike Pascal and Cin nmind, since that they are
currently the nost common | anguages used for instruction. Thus FORTRAN
BASI C, Ada, Pascal, and Mdula 2 should all be successful in this
environnent as well. Oher |anguage types, such as LI SP and SMALLTALK are
al so certainly conpilable to E-code, but aninmation of these would require
different techniques. The E-machine has been designed to be flexible,
nodi fi abl e, and extensible in order to handle many types of high |evel
| anguages.

The design of the E-machine and Enulator are not intended to be
fixed. For the reasons stated above, it is expected that the E-machine
and Enulator will change over tine, either to nake things easier, or to
support a new concept. The purpose of the E-machine and Emul ator are to
provide a foundation for a tool useful in the teaching and |earning of
progranm ng | anguages and concepts fundanmental to conputer science, not
for a production environnent. Thus, the E-nachine is expected to change

as new features are included to support new concepts.

New Directions for the Program Ani nati on Project

Since, as of yet, there is no program animator, there are nany
directions that can be taken fromhere. The next step in the project is
to design an animator. At the sane tine, however, at |east one conpiler
needs to be devel oped for use with the animator. The first version of the
animator is likely to include rudinentary features for displaying variabl e

values, «current line of execution, paraneter correspondences, and

91

statenment counts for student progranmers. Unl i ke debuggers (see, for
exanpl e, [ALICE],[DR PASCAL], and [TURBQ, the ani mator shoul d be able to
di splay these things in a conpletely automated fashion, so that the utter
novi ce can watch the program in action. Reverse execution wll be
particularly useful to such a student, allow ng backing up to observe
conpl ex actions nunerous tinmes. Fundanental conputer science concepts,
such as tinme conplexity and space conplexity will be reinforced through
the ani mated di splay. Sinple experinments based on changi ng program i nput
will allow students to analyze the run tine behavior of prograns nore
effectively. The aninmation environment will also provide instructors with
an affective tool for in-class denbnstration of various concepts
under | yi ng programi ng and conputer science.

Eventual | y the ani mator nmay al so provi de vi sualization of algorithns
t hrough graphical displays simlar to those described in [Brown 88] and
[London 85]. Graphs and trees may be visualized ([Jabol onowski 89],
[Pazel 89], and [Reingold 81]), so that the nechanics of various
algorithnms, such as B-tree insertion, can be nore easily understood.
Recur si ve procedures ni ght be unravelled in sone visual fashion to get the
concept of recursion across better. The possibilities are endless. At
the very least, however, the ani mator nust sonehow di splay the mechanics
of prograns so that instructors can better get the ideas of program
dynam cs across to the students, and the students can view animted

prograns on their own for [|earning.

Concl usi ons

The E-machine and its emul ator provide the necessary foundation for
further devel opnent of a conprehensive program animation system for
teaching and |earning concepts fundanental to progranmi ng and conputer
sci ence. It follows as the logical next step in an ongoing project in
this arena (see [Patton 89], [Meng 83], [Ng 82-1, 82-2], and [Ross 81, 82,

88]). The special features of reverse execution, close associations with

92

the synbol table and source code of a high level |anguage program and
packet-at-a-tinme execution will greatly facilitate the devel opnent of an
animator. The resulting animation systemw ||l be useable for instruction
at both secondary and post-secondary institutions and coul d be devel oped
for use as a dynamic conmpanion to an introductory conputer science
t ext book.

The E-machine and the planned animation environnment are both
i ntended as evol utionary systens that will undergo constant inprovenent as
nore i s understood about programanimation and its effect on teaching and
| ear ni ng. Thus, this incarnation of the E-nachine, although conplete
should be considered transitory. Hopefully, the E-machine design
presented here, as well as the structure of the enulator, wll nake

nodi fi cations and extensions quite easy.

93

REFERENCES CI TED

ALl CE: The Personal Pascal. Looking dass Software Limted, 123 King St.
N. Waterloo, ON, N2J2X8. 1986.

Birch, M L., Patton, S. D, and Ross, R J. 1990. The E-machine: A
Virtual Computer in Support of Program Anination. Unpubl i shed

paper .

Brown, M H Exploring Algorithns Using Balsa-11. COWUTER vol. 21, no.
5, May 88, pp 14-36.

Dr. Pascal User Manual. Visible Software. P. O Box 7788, Princeton, NJ.
1989.

Hille, R F. and Hi gginbottom T. F. A System for Visible Execution of
Pascal Prograns. The Australian Conputer Journal. vol. 15, no. 2,
May 83, pp 76-77.

Jabol onowski, D. and Cuarna, V. GvB: A Tool for Manipulating and
Ani mati ng Graph Data Structures. Software--Practice and Experi ence,
vol. 19, no. 3, March 1989, pp 283-301.

London, R, and Duisbherg, R Animating Programs Using Snalltalk.
COWUTER, vol. 18, no. 8, August 1985, pp 61-71.

Meng- Kawal ek, L. A Pascal Pedagogical System for the Convertsati onal
Monitor System Unpubl i shed MsS project. Conput er Sci ence
Department, Washington State University. June 1983.

Ng, C. Ling Users Cuide. Unpubl i shed MsS project. Conput er Sci ence
Department, WAshington State University. June 1982.

. Ling Programmers Guide. Unpubl i shed Ms project. Conput er
Sci ence Departnent, Washington State University. June 1982.

Patton, S. D. The E-nmachi ne: Supporting the Teachi ng of Program Execution
Dynamics. M thesis. Conputer Science Departnent, Mntana State
University. June 1989.

Pazel, D. DS-Viewer--An Interactive G aphical Data Structure Presentation
Facility. |BM Systens Journal, vol. 28, no. 2, 1989, pp 307-323.

Reingold, E. and Tilford, J. Tidier Drawi ngs of Trees. |EEE Transactions
on Software Engi neering, vol se-7, no. 2, March 1981, pp 223-228.

Ross, R J. LOPLE: A Dynamic Library of Programm ng Language Exanpl es.
ACM SI GCUE Bul I etin, 1981.

. Teaching Programm ng to the Deaf. ACM SI GCAPH Newsl etter, no.
30, Autumm 1982, pp 18-24.

. DYNAMOD USER S GUIDE Version 2.0 Release 1.1. Technical Report
88-1, Conputer Science Departnent, Montana State University. June
1988.

Tur bo Debugger 2.0. Borland International. 1800 Green Hills Road, Scotts
Val l ey, California. 1990.

94

APPENDI X

Fi gure 28
Ermul at or Sour ce Code

decex. h
/* decex. h: decode/ execute header */

/* An enuneration of all machi ne operations available in the E-nmachine. */
typedef enum {
PUSH, PUSHA, POP, PCPI R, POPAR, LOADI R, LOADAR
ADD, SUB, MJULT, DIV, NEG AND, OR, XOR, NOT, SHL, SHR MDD,
CAST, LABEL, BR, BRT, BRF, EQ., NEQ., LESS, LEQ., GIR, GEQ., CALL,
RETURN, ALLOC, UNALLOC, INST, UNINST, LINK, UNLINK, NOP, LASTOP
} Opcode; /* LASTOP is used to mark the size of the enuneration. */

typedef enum{ CRITICAL, NONCRI TICAL } ModeType;

typedef struct {
Opcode opcode;
ModeType node;
unsi gned char type;
Dat aVal ue data
i nt addr node;

} Instruction;

typedef int ProgAddress;

/* Prototype for execution function, which executes the given machine
instruction with the given decoded argunents. */

voi d execut epacket();

voi d setpc(ProgAddress);
voi d set ppc(ProgAddress);
voi d getpc(ProgAddress *);
voi d get ppc(ProgAddress *);

decex. ¢
/* decex.c: Fetch/Decode/ Execute Mdul e */

#i ncl ude "dat amem h"
#i ncl ude "decex. h"

#i ncl ude "prognem h"
#i nclude "faul t. h"

#i nclude "fl ags. h"

#i ncl ude "decaddr. h"
#i ncl ude "execute. h"”
#i ncl ude "vari abl e. h"
#i ncl ude "synbol . h"
#i ncl ude "packet.h"

95

Fi gure 28 (continued)

/* Decode/ Execute information table. */
struct {

void (*func)();

ArgType expect ed;
} opinfo[LASTOP] = {

push, DATA,
pusha, ADDR,
pop, ADDR,
popi r, NONE,
popar, NONE,
| oadir, DATA,
| oadar, DATA,
add, NONE,
sub, NONE,
mul t, NONE,
di v, NONE,
neg, NONE,
and, NONE,
or, NONE,
xor, NONE,
not, NONE,
shl, DATA,
shr, DATA,
nod, NONE,
cast, NONE,
| abel , NONE,
br, NONE,
brt, NONE,
brf, NONE,
eql, NONE,
neql, NONE,
| ess, NONE,
[eql, NONE,
gtr, NONE,
geqgl, NONE,
cal |, NONE,
returnf, NONE,
al l oc, DATA,
unal | oc, DATA,
i nst, NONE,
uni nst, NONE,
i nk, NONE,
unl i nk, NONE,
nop, NONE };
Pr ogAddr ess prograncounter = 0, previouspc = -1;

Packet currentpacket;
Packet Num currpacknum = O;
voi d execut epacket() {
Dat aAddr ess addr ess;
Dat aval ue dat a;
Instruction instr;
newpacket () ;

fi ndpacket (progranctounter, ¤tpacket, &currpacknum;
whil e (prograncounter >= currentpacket.startaddr &&

96
Fi gure 28 (continued)

prograncount er <= current packet.endaddr) {
reset f | ag(BRANCH) ;
getinstruction(prograncounter, & nstr);
decodeaddr (i nstr, opinfo[instr.opcode].expected, &address, &data);
(*opinfo[instr.opcode].func)(instr, address, data);
if (getflag(BRANCH) == FALSE) {
previ ouspc = prograncounter;
i ncpe();

fi ndpacket (progranctounter, ¤tpacket, &currpacknum;

/* Make program counter point to next instruction. */
void incpc() {

if (getflag(FORWARD) == TRUE) {
pr ogr ancount er ++;

el se {
pr ogr ancount er - - ;

}

/* Set program counter to particular address. Wuld be used
to handl e a branch. */
voi d setpc(ProgAddress address) {

prograncounter = address;

voi d set ppc(ProgAddress address) {

previ ouspc = address;

voi d getpc(ProgAddress *address) {

*address = prograncounter;

voi d get ppc(ProgAddress *address) {

*addr ess = previouspc;

}

void reverse() {
ProgAddr ess tenp;

if (getflag(FORWARD) == TRUE) {
reset fl ag(FORWARD) ;

el se {
set f | ag(FORWARD) ;

tenp = prograncounter;

97

Fi gure 28 (continued)

prograncounter = previ ouspc;
previ ouspc = tenp;

voi d get currpacket (Packet *packet) {

*packet = currentpacket;

voidinit() {

fi ndpacket (prograncount er, ¤tpacket, &currpacknuny;

decaddr. h
/* decaddr. h: Decode Address header */

/* Bit positions of types of addressing nodes. */
enum { | MMEDI ATE = 1, VARIABLE = 2, ADDRREG = 4, | NDEXED = 8,
OFFSET = 16, | NDI RECT = 32, | NDEXFIRST = 64 };

/* An instruction can expect data, a data address, or nothing. */
typedef enum {

DATA, ADDR, NONE
} ArgType;

voi d setar(DataAddress);

void getar(DataAddress *);

void setir(IntegerType);

void getir(IntegerType *);

voi d decodeaddr (Instruction, ArgType, DataAddress *, DataValue *);

decaddr.c
/* decaddr.c: Address Mbde Decoder Mbdul e */

#i ncl ude "dat amem h"
#i ncl ude "decex. h"
#i ncl ude "prognmem h"
#i nclude "faul t. h"
#i ncl ude "decaddr. h"
#i ncl ude "vari abl e. h"

/* The index and address regi sters. Declared as DataVal ue to
be conpatible with the Save Stack. */

Dat aVal ue i ndexr eg;

Dat aVal ue addr essr eg;

void decodeaddr(Instruction instr, ArgType expected, DataAddress
*addr ess,
Dat aVal ue *data) {

Dat aVal ue tenp
Dat aWwor d defi ned,;

if (expected != NONE) {

98

Fi gure 28 (continued)

if (instr.addrnmode & | MVEDI ATE) {
*address = NULLDATAADDR
*data = instr.data;

el se {
if (instr.addrnode & ADDRREG {
*addr ess = addressreg. addr ess;

el se {
getvaraddress(instr.data.integer, address);

}
if (instr.addrnode & | NDEXED) {
*address += indexreg.integer * datasize(instr.type);

}
else if (instr.addrnode & OFFSET) {
*address += indexreg.integer;

}
else if (instr.addrnmode & | NDI RECT) {
readdat a(ADDRESS, *address, data, &defined);

if (defined ==
f aul t (UNDEFDATA) ;
!
if (getfault() == NOFAULT)
if (*address != NULLDATAADDR)

readdata(instr.type, *address, data, &defined);

}

}

if ((expected == DATA) && (defined == 0)) {

f aul t (UNDEFDATA,) ;

}

else if ((expected == ADDR) && (*address == NULLDATAADDR)) ({
faul t (1 LLEGALMODE) ;

}

voi d setar(DataAddress address) {

addr essreg. address = address;

voi d getar(DataAddress *address) {

*address = addressreg. addr ess;

}
void setir(IntegerType index) {

i ndexreg. i nteger = index;

void getir(IntegerType *index) {

*index = indexreg.integer;

}

99

Fi gure 28 (continued)

prognmem h
/* progmem h: Program Menory header */

#defi ne NULLPROGADDR (ProgAddress)-1
voi d getinstruction(ProgAddress, Instruction *);
voi d incpc();

voi d setpc(ProgAddress);

prognmem c
/* progmemc: Program Menory Mdule */

#i ncl ude "datamem h"
#i ncl ude "decex. h"
#i ncl ude "prognmem h"
#i nclude "fault.h"
#i ncl ude "decaddr. h"
#i ncl ude <stdlib. h>

/* Program Menory structure. */
I nstruction *progranmem
static ProgAddress lastlocation = O;

/* Program counter. */
static ProgAddress progcounter

/* Return next instruction to be executed. */
void getinstruction(ProgAddress address, Instruction *instr) {

if ((address < 0) || (address > lastlocation)) {
/* ERROR: bad program address. */
f aul t (BADPROGADDR) ;

el se {
*instr = progranmmen| addr ess];

}

/* Load programinstructions froma file. */
void | oadprogram(int fileid) {

I nt eger Type si ze;
Pr ogAddress i;

if (sizeof(size) !'=read(fileid, &size, sizeof(size))) {
/* ERROR bad file format. */
faul t (BADFI LE) ;

el se {
progranmmem = cal | oc(si ze, sizeof(Instruction));
i f (progranmem == NULL)
/* Not enough system nenory left. */
faul t (OQUTVEM ;

el se {
i = 0;

100

Fi gure 28 (continued)

while ((getfault() == NOFAULT) && (i < size))
if (read(fileid, & programen{i]), sizeof(lnstruction)) !=
si zeof (I nstruction)) fault(BADFILE);

| astl ocation = size - 1;
set pc((ProgAddress) 0);

execute. h
/* execute.h: Instruction Execution Mdul e header */

voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d

voi d

push(I nstruction, DataAddress, DataVal ue);
pusha(l nstruction, DataAddress, DataVal ue);
pop(l nstruction, DataAddress, DataVal ue);
popir (I nstruction, DataAddress, DataVal ue);
popar (I nstruction, DataAddress, DataVal ue);
| oadi r (I nstruction, DataAddress, DataVal ue);
| oadar (I nstruction, DataAddress, DataVal ue);
add(I nstruction, DataAddress, DataVal ue);
nmul t (I nstruction, DataAddress, DataVal ue);
sub(l nstruction, DataAddress, DataVal ue);

di v(Instruction, DataAddress, DataVal ue);
neg(l nstruction, DataAddress, DataVal ue);
and(I nstruction, DataAddress, DataVal ue);
or(lnstruction, DataAddress, DataVal ue);
xor (I nstruction, DataAddress, DataVal ue);
not (I nstruction, DataAddress, DataVal ue);
shl (I nstruction, DataAddress, DataVal ue);
shr (I nstruction, DataAddress, DataVal ue);
br (I nstruction, DataAddress, DataVal ue);
brt(lnstruction, DataAddress, DataVal ue);
brf (I nstruction, DataAddress, DataVal ue);
eql (I nstructi on, DataAddress, DataVal ue);

neql (I nstruction, DataAddress, DataVal ue);

101

Fi gure 28 (continued)

voi d | ess(lnstruction, DataAddress, DataVal ue);
void legl (I nstruction, DataAddress, DataVal ue);
void gtr(lnstruction, DataAddress, DataVal ue);
voi d geql (I nstruction, DataAddress, DataVal ue);
voi d nod(Instruction, DataAddress, DataVal ue);
voi d | abel (I nstruction, DataAddress, DataVal ue);
void call (I nstruction, DataAddress, DataVal ue);
voi d cast(lnstruction, DataAddress, DataVal ue);
void returnf(Instruction, DataAddress, DataVal ue);
void alloc(lnstruction, DataAddress, DataVal ue);
voi d unal l oc(I nstruction, DataAddress, DataVal ue);
void inst(lnstruction, DataAddress, DataVal ue);
voi d uninst (I nstruction, DataAddress, DataVal ue);
void link(lInstruction, DataAddress, DataVal ue);
voi d unlink(lnstruction, DataAddress, DataVal ue);

voi d nop(lnstruction, DataAddress, DataVal ue);

execute.c ' '
/* execute.c: lnstruction Execution Mdule */

#i ncl ude "dat amem h"
#i ncl ude "decex. h"
#i ncl ude "progmem h"
#i nclude "faul t. h"
#i nclude "fl ags. h"
#i ncl ude "save. h"
#i ncl ude "eval . h"
#i ncl ude "I abel . h"
#i ncl ude "vari abl e. h
#i ncl ude "execute. h"”

voi d push(lnstruction instr, DataAddress address, DataVal ue data) ({

if (getflag(FORWARD) == TRUE) {
pusheval (dat a) ;

el se {
popeval (&dat a) ;

}

voi d pusha(lnstruction instr, DataAddress address, DataVal ue data) {

102

Fi gure 28 (continued)

Dat aVal ue tenpdat a;

if (getflag(FORWARD) == TRUE) {
t enpdat a. addr ess = addr ess;
pusheval (tenpdat a) ;

el se {
popeval (&dat a) ;

}

voi d nop(lnstruction instr, DataAddress address, DataValue data) {

/* This procedure does exactly what the instruction is suppose to do */
/* NOTHI NG */

}

voi d pop(lnstruction instr, DataAddress address, DataValue data) {

Dat aVal ue tenpdat a;
Dat aWwor d defi ned,;

if (getflag(FORWARD) == TRUE) {
if (instr.npbde == CRITICAL) {
readdata(instr.type, address, &t enpdata, &defined);
savedat a(t enpdata, instr.type, defined);

}
popeval (& enpdat a) ;
writedata(instr.type, address, tenpdata);

el se {
pusheval (dat a) ;
if (instr.nobde == CRITICAL) {
unsavenen(addr ess, datasize(instr.type));
}
}
}

voi d popar(lnstruction instr, DataAddress address, DataVal ue data) ({

Dat aVal ue tenpdat a;
Dat aWwor d defi ned,;

if (getflag(FORWARD) == TRUE) {

if (instr.nbde == CRITICAL) {

getar (& enpdat a. address);
savedat a(t enpdata, ADDRESS, H GHWORD) ;

}
popeval (& enpdat a) ;
set ar (t enpdat a. addr ess) ;

el se {
get ar (& enpdat a. addr ess) ;
pusheval (t enpdat a) ;
if (instr.node == CRITICAL) {
unsavedat a(& enpdat a, ADDRESS, &defi ned);
}
}

103

Fi gure 28 (continued)

}

void popir(Instruction instr, DataAddress address, DataVal ue data) ({

Dat aVal ue tenpdat a;
Dat aWr d defi ned;

if (getflag(FORWARD) == TRUE) {
if (instr.node == CRITICAL) {
getir (& enpdata.integer);
savedat a(t enpdat a, | NTEGER, H GHWORD) ;

}
popeval (& enpdat a) ;
setir(tenpdata.integer);

el se {
getir (& enpdata.integer);
pusheval (tenpdat a) ;
if (instr.nobde == CRITICAL) {
unsavedat a(& enpdat a, | NTEGER, &defi ned);
setir(tenpdata.integer);

}
}

void | oadar(lnstruction instr, DataAddress address, DataValue data) {

Dat aVal ue tenpdat a;
Dat aWwor d defi ned,;

if (getflag(FORWARD) == TRUE) {

if (instr.node == CRITICAL) {

getar (& enpdat a. address);
savedat a(t enpdat a, ADDRESS, H GHWORD) ;

set ar (dat a. addr ess) ;
el se {
if (instr.npde == CRITI CAL)
unsavedat a(& enpdat a, ADDRESS, &defi ned);

set ar (t enpdat a. addr ess) ;

}

void loadir(lnstruction instr, DataAddress address, DataValue data) {

Dat aVal ue tenpdat a;
Dat aWwor d defi ned,;

if (getflag(FORWARD) == TRUE)
if (instr.node == CRITICAL) {
getir (& enpdata.integer);
savedat a(t enpdat a, | NTEGER, H GHWORD) ;

setir(data.integer);
el se {

if (instr.npde == CRITI CAL)
unsavedat a(& enpdat a, | NTEGER, &defi ned);

104

Fi gure 28 (continued)

}
setir(tenpdata.integer);
}

voi d sub(lnstruction instr, DataAddress address, DataValue data) {

Dat aVal ue opl, op2, result;
Dat aWwor d defi ned,;

if (getflag(FORWARD) == TRUE) {
popeval (&opl);
popeval (&op2);
if (getfault() == NOFAULT) {
if (instr.nbde == CRITICAL) {
savedat a(opl, instr.type, H GHORD);
savedat a(op2, instr.type, H GHORD);

switch(instr.type) {
case | NTEGER:

result.integer = op2.integer - opl.integer
pusheval (result);

br eak;
case REAL:
result.real = op2.real - opl.real
pusheval (result);
br eak;

case CHARACTER:
result.character = op2.character - opl.character
pusheval (result);
br eak;

case BOOLEAN
resul t. bool ean = op2. bool ean * opl. bool ean
pusheval (result);
br eak;

case ADDRESS:
resul t.address = op2.address - opl. address;
pusheval (result);
br eak;
}
}

el se {
popeval (& esult);
if (instr.nobde == CRITICAL) {
unsavedat a(&op2, instr.type, &defined);
unsavedat a(&opl, instr.type, &defined);

%usheval(opZ);
} pusheval (opl);
}

void add(Instruction instr, DataAddress address, DataValue data) {

105

Fi gure 28 (continued)

Dat aVal ue opl, op2, result;
Dat aWwr d defi ned;

if (getflag(FORWARD) == TRUE) {
popeval (&opl);
popeval (&op2);
if (getfault() == NOFAULT) {
if (instr.nopde == CRITICAL) {
savedat a(opl, instr.type, H GHORD);
savedat a(op2, instr.type, H GHWORD);

}
switch(instr.type) {
case | NTEGER:

result.integer = op2.integer + opl.integer
pusheval (result);

br eak;
case REAL:
result.real = op2.real + opl.real
pusheval (result);
br eak;

case CHARACTER:
result.character = op2.character + opl.character
pusheval (result);
br eak;

case BOOLEAN
resul t. bool ean = op2. bool ean | opl. bool ean
pusheval (result);
br eak;

case ADDRESS:
resul t.address = op2.address + opl. address;
pusheval (result);
br eak;
}
}

el se {
popeval (& esult);
if (instr.nobde == CRITICAL) {
unsavedat a(&op2, instr.type, &defined);
unsavedat a(&opl, instr.type, &defined);

%usheval(opZ);
} pusheval (opl);
}

void div(Instruction instr, DataAddress address, DataVal ue data)

Dat aVal ue opl, op2, result;
Dat aWwr d defi ned;

if (getflag(FORWARD) == TRUE) {
popeval (&opl);
popeval (&op2);
if (getfault() == NOFAULT) {

106

Fi gure 28 (continued)

if (instr.nmode == CRITICAL) {
savedat a(opl, instr.type, H GHWORD);
savedat a(op2, instr.type, H GHWORD);

}
switch(instr.type) {

case | NTEGER:
if (opl.integer !'=0) {
result.integer = op2.integer / opl.integer
pusheval (result);

el se {
faul t (Dl VBYZERO) ;
br eak;
case REAL:
if (opl.real !'=0.0) {
result.real = op2.real / opl.real

pusheval (resul t);

el se {
faul t (DI VBYZERO);

br eak;

case CHARACTER:
if (opl.character !
resul t. character
pusheval (result);

{

0)
op2.character / opl.character

el se {
faul t (D VBYZERO);

br eak;

case BOOLEAN
fault (I LLEGALTYPE) ;
br eak;

case ADDRESS:
fault (I LLEGALTYPE) ;
br eak;

}
}
el se {
popeval (& esult);
if (instr.nmode == CRITICAL) {

unsavedat a(&op2, instr.type, &defined);
unsavedat a(&opl, instr.type, &defined);

}
pusheval (op2);
pusheval (opl);

}
}

void nmod(Instruction instr, DataAddress address, DataVal ue data)

Dat aVal ue opl, op2, result;

107

Fi gure 28 (continued)

Dat awbrd defi ned;

if (getflag(FORWARD) == TRUE) {
popeval (&opl);
popeval (&op2);
if (getfault() == NOFAULT) {
if (instr.nbde == CRITICAL) {
savedat a(opl, instr.type, H GHORD);
savedat a(op2, instr.type, H GHORD);

}
switch(instr.type) {

case | NTEGER:
if (opl.integer != 0)
result.integer = op2.integer % opl.integer;
pusheval (result);

el se {
faul t (DI VBYZERO);

br eak;

case REAL:
fault (I LLEGALTYPE) ;
br eak;

case CHARACTER:
if (opl.character != 0)
result.character = op2.character % opl.character
pusheval (result);

el se {
faul t (Dl VBYZERO);

br eak;

case BOOLEAN:
fault (I LLEGALTYPE) ;
br eak;

case ADDRESS:
fault (I LLEGALTYPE) ;
br eak;

}
}
el se {
popeval (& esult);
if (instr.nmode == CRITICAL) {

unsavedat a(&op2, instr.type, &defined);
unsavedat a(&opl, instr.type, &defined);

i)usheval (op2);
| pusheval (opl);
}

void mult(lInstruction instr, DataAddress address, DataVal ue data)

Dat aVal ue opl, op2, result;

108

Fi gure 28 (continued)

Dat awbrd defi ned;

if (getflag(FORWARD) == TRUE) {
popeval (&opl);
popeval (&op2);
if (getfault() == NOFAULT) {
if (instr.nbde == CRITICAL) {
savedat a(opl, instr.type, H GHORD);
savedat a(op2, instr.type, H GHORD);

}
switch(instr.type) {
case | NTEGER:

result.integer = op2.integer * opl.integer
pusheval (result);

br eak;
case REAL:
result.real = op2.real * opl.real
pusheval (result);
br eak;

case CHARACTER:
result.character = op2.character * opl.character
pusheval (result);
br eak;

case BOOLEAN
resul t. bool ean = op2. bool ean & opl. bool ean
pusheval (result);
br eak;

case ADDRESS:
fault (I LLEGALTYPE) ;
br eak;
}
}

el se {
popeval (& esult);
if (instr.node == CRITICAL) {
unsavedat a(&op2, instr.type, &defined);
unsavedat a(&opl, instr.type, &defined);

%usheval(opZ);
| pusheval (opl);
}

void and(lnstruction instr, DataAddress address, DataVal ue data)

Dat aVal ue opl, op2, result;
Dat aWwor d defi ned,;

if (getflag(FORWARD) == TRUE) {
popeval (&opl);
popeval (&op2);
if (getfault() == NOFAULT) {
if (instr.nbde == CRITICAL) {
savedat a(opl, instr.type, H GHORD);

109

Fi gure 28 (continued)

savedat a(op2, instr.type, H GHORD);
switch(instr.type) {

case | NTEGER:
result.integer = op2.integer & opl.integer
pusheval (result);
br eak;

case REAL:
fault (I LLEGALTYPE) ;
br eak;

case CHARACTER:
result.character = op2.character & opl.character
pusheval (result);
br eak;

case BOOLEAN
resul t. bool ean = op2. bool ean & opl. bool ean
pusheval (result);
br eak;

case ADDRESS:
faul t (1 LLEGALTYPE);
br eak;
}
}

el se {
popeval (& esult);
if (instr.node == CRITICAL) {
unsavedat a(&op2, instr.type, &defined);
unsavedat a(&opl, instr.type, &defined);

Lusheval(opZ);
| pusheval (opl);
}

void or(Instruction instr, DataAddress address, DataVal ue data) ({

Dat aVal ue opl, op2, result;
Dat aWwor d defi ned,;

if (getflag(FORWARD) == TRUE) {
popeval (&opl);
popeval (&op2);
if (getfaul t() == NOFAULT) {
if (instr.nbde == CRITICAL) {
savedata(opl, instr.type, H GHWORD);
savedat a(op2, instr.type, H GHORD);

}
switch(instr.type) {

case | NTEGER:
result.integer = op2.integer | opl.integer
pusheval (result);
br eak;

110

Fi gure 28 (continued)

case REAL:
fault (I LLEGALTYPE) ;
br eak;

case CHARACTER:
result.character = op2.character | opl.character
pusheval (result);
br eak;

case BOOLEAN
resul t. bool ean = op2. bool ean | opl. bool ean
pusheval (result);
br eak;

case ADDRESS:
fault (I LLEGALTYPE) ;
br eak;

}
}
el se {
popeval (& esult);
if (instr.nobde == CRITICAL) {

unsavedat a(&op2, instr.type, &defined);
unsavedat a(&opl, instr.type, &defined);

%usheval(opZ);
} pusheval (opl);
}

void xor(lnstruction instr, DataAddress address, DataVal ue data) {

Dat aVal ue opl, op2, result;
Dat aWwr d defi ned;

if (getflag(FORWARD) == TRUE) {
popeval (&opl);
popeval (&op2);
if (getfault() == NOFAULT) {
if (instr.node == CRITICAL) {
savedat a(opl, instr.type, H GHWORD);
savedat a(op2, instr.type, H GHWORD);

}
switch(instr.type) {

case | NTEGER:
result.integer = op2.integer ~ opl.integer
pusheval (result);
br eak;

case REAL:
fault (I LLEGALTYPE) ;
br eak;

case CHARACTER:
result.character = op2.character ~ opl.character
pusheval (result);
br eak;

111

Fi gure 28 (continued)

case BOOLEAN
resul t. bool ean = op2. bool ean ~ opl. bool ean
pusheval (result);
br eak;

case ADDRESS:.
fault (I LLEGALTYPE) ;
br eak;
}
}

el se {
popeval (& esult);
if (instr.node == CRITICAL) {
unsavedat a(&op2, instr.type, &defined);
unsavedat a(&opl, instr.type, &defined);

%usheval(opZ);
} pusheval (opl);
}

void shl (Instruction instr, DataAddress address, DataValue data) {

Dat aVal ue opl, result;
Dat aWwr d defi ned;

if (getflag(FORWARD) == TRUE) {
popeval (&opl);
if (getfault() == NOFAULT) {
if (instr.nbde == CRITICAL) {
savedat a(opl, instr.type, H GHORD);

switch(instr.type) {

case | NTEGER:
result.integer = opl.integer << data.integer
pusheval (result);
br eak;

case REAL:
fault (I LLEGALTYPE) ;
br eak;

case CHARACTER:
result.character = opl.character << data.integer
pusheval (result);
br eak;

case BOOLEAN
fault (I LLEGALTYPE) ;
br eak;

case ADDRESS:
resul t.address = opl. address << data.integer
pusheval (result);
br eak;
}
}
}

112

Fi gure 28 (continued)

el se {
popeval (& esult);
if (instr.npde == CRITI CAL)
unsavedat a(&opl, instr.type, &defined);

%usheval(opl);
}

void shr(lnstruction instr, DataAddress address, DataValue data) {

Dat aVal ue opl, result;
Dat aWwor d defi ned,;

if (getflag(FORWARD) == TRUE) {
popeval (&opl);
if (getfaul t() == NOFAULT) {
if (instr.nbde == CRITICAL) {
savedat a(opl, instr.type, H GHWORD);

switch(instr.type) {

case | NTEGER:
result.integer = opl.integer >> data.integer
pusheval (result);
br eak;

case REAL:
fault (I LLEGALTYPE) ;
br eak;

case CHARACTER:
result.character = opl.character >> data.integer
pusheval (result);
br eak;

case BOOLEAN
fault (I LLEGALTYPE) ;
br eak;

case ADDRESS:
resul t.address = opl.address >> data.integer
pusheval (result);
br eak;

}
}

el se {
popeval (& esult);
if (instr.nobde == CRITICAL) {
unsavedat a(&opl, instr.type, &defined);
}
pusheval (opl);
}

void not(lnstruction instr, DataAddress address, DataVal ue data) {

Dat aVal ue op, result;

113

Fi gure 28 (continued)

popeval (&op) ;
if (getfault()

== NOFAULT) {

switch(instr.type) {
case | NTEGER:

result.integer = op.integer " OXFFFFFFFF;

pusheval (resul t);
br eak;

case REAL:
fault (I LLEGALTYPE) ;
br eak;

case CHARACTER:
result.character =
pusheval (result);
br eak;

case BOOLEAN
resul t. bool ean =
pusheval (result);
br eak;

case ADDRESS:
fault (I LLEGALTYPE) ;
br eak;
}
}
}

void eql (I nstruction instr,

Dat aVal ue opl, op2,
Dat aWor d defi ned,;

result;

op. character

(op. bool ean ==

/* addresses cannot

Dat aAddr ess addr ess,

A OxFF,;

TRUE) ? FALSE : TRUE;

be negated */

Dat aVal ue data) {

if (getflag(FORWARD) == TRUE) {
popeval (&opl);
popeval (&op2);
if (getfault() == NOFAULT) {
if (instr.node == CRITICAL) {
savedat a(opl, instr.type, H GHWORD);
savedat a(op2, instr.type, H GHWORD);

}
switch(instr.type) {

case | NTEGER
if (op2.integer

resul t. bool ean = TRUE
el se {
resul t. bool ean = FALSE
}
pusheval (result);
br eak;
case REAL:
if (op2.real == opl.real) {

resul t. bool ean = TRUE

}

opl.integer) {

114

Fi gure 28 (continued)

el se {
resul t. bool ean = FALSE

pusheval (resul t);
br eak;

case CHARACTER:
i f (op2.character == opl.character) {
resul t. bool ean = TRUE

el se {
resul t. bool ean

FALSE;

pusheval (result);
br eak;

case BOOLEAN
if (op2.boolean =
resul t. bool ean

opl. bool ean) {
TRUE;

el se {
resul t. bool ean = FALSE

pusheval (resul t);
br eak;

case ADDRESS:.

if (op2.address == opl. address) {

resul t. bool ean TRUE
el se {
resul t. bool ean = FALSE

pusheval (result);
br eak;
}
}

el se {
popeval (& esult);
if (instr.node == CRITICAL) {
unsavedat a(&op2, instr.type, &defined);
unsavedat a(&opl, instr.type, &defined);

%usheval(opZ);
| pusheval (opl);
}

void negl (I nstruction instr, DataAddress address,

Dat aVal ue opl, op2, result;
Dat aWwor d defi ned,;

if (getflag(FORWARD) == TRUE) {
popeval (&opl);
popeval (&op2);
if (getfault() == NOFAULT) {
if (instr.nbde == CRITICAL) {
savedat a(opl, instr.type, H GHORD);

Dat aVal ue data) {

115

Fi gure 28 (continued)

savedat a(op2, instr.type, H GHORD);
switch(instr.type) {

case | NTEGER:

if (op2.integer != opl.integer) {

resul t. bool ean TRUE
el se {
resul t. bool ean = FALSE
pusheval (result);
br eak;
case REAL:
if (op2.real !'= opl.real) {

resul t. bool ean = TRUE

el se {
resul t. bool ean = FALSE

pusheval (result);
br eak;

case CHARACTER:
if (op2.character != opl.character) {
resul t. bool ean = TRUE

el se {
resul t. bool ean

FALSE;

pusheval (resul t);
br eak;

case BOOLEAN

if (op2.boolean != opl. bool ean) {

resul t. bool ean TRUE
el se {
resul t. bool ean = FALSE

}
pusheval (result);
br eak;

case ADDRESS:

if (op2.address != opl.address) {

resul t. bool ean TRUE
el se {
resul t. bool ean = FALSE

pusheval (result);
br eak;
}
}

el se {
popeval (& esult);
if (instr.nobde == CRITICAL) {
unsavedat a(&op2, instr.type, &defined);

116

Fi gure 28 (continued)

unsavedat a(&opl, instr.type, &defined);

}
pusheval (op2);
pusheval (opl);

}
}
void less(lnstruction instr, DataAddress address, DataVal ue data) {

Dat aVal ue opl, op2, result;
Dat aWwr d defi ned;

if (getflag(FORWARD) == TRUE) {
popeval (&opl);
popeval (&op2);
if (getfault() == NOFAULT) {
if (instr.node == CRITICAL) {
savedata(opl, instr.type, H GHWORD);
savedat a(op2, instr.type, H GHWORD);

}
switch(instr.type) {

case | NTEGER
if (op2.integer < opl.integer) {
resul t. bool ean = TRUE

el se {
resul t. bool ean = FALSE

}
pusheval (result);
br eak;

case REAL:
if (op2.real < opl.real) {
resul t. bool ean = TRUE

el se {
resul t. bool ean = FALSE

pusheval (resul t);
br eak;

case CHARACTER:
if (op2.character < opl.character) {
resul t. bool ean = TRUE

el se {
resul t. bool ean = FALSE

pusheval (result);
br eak;

case BOOLEAN
i f (op2.bool ean < opl. bool ean) {
resul t. bool ean = TRUE

el se {
resul t. bool ean = FALSE

pusheval (result);

117

Fi gure 28 (continued)

br eak;

case ADDRESS:
if (op2.address < opl.address) {
resul t. bool ean = TRUE

el se {
resul t. bool ean = FALSE

pusheval (result);
br eak;
}
}

el se {
popeval (& esult);
if (instr.node == CRITICAL) {
unsavedat a(&op2, instr.type, &defined);
unsavedat a(&opl, instr.type, &defined);

%usheval(opZ);
| pusheval (opl);
}

void legl (Instruction instr, DataAddress address,

Dat aVal ue opl, op2, result;
Dat aWwor d defi ned,;

if (getflag(FORWARD) == TRUE) {
popeval (&opl);
popeval (&op2);
if (getfault() == NOFAULT) {
if (instr.nbde == CRITICAL) {
savedat a(opl, instr.type, H GHORD);
savedat a(op2, instr.type, H GHORD);

}
switch(instr.type) {

case | NTEGER:
if (op2.integer <= opl.integer) {
resul t. bool ean = TRUE

el se {
resul t. bool ean = FALSE

pusheval (resul t);
br eak;

case REAL:
if (op2.real <= opl.real) {
resul t. bool ean = TRUE

el se {
resul t. bool ean = FALSE

pusheval (result);
br eak;

Dat aVal ue data) {

118

Fi gure 28 (continued)

case CHARACTER:
if (op2.character <= opl.character) {
resul t. bool ean = TRUE

el se {
resul t. bool ean = FALSE

pusheval (resul t);
br eak;

case BOOLEAN
i f (op2.bool ean <= opl. bool ean) {
resul t. bool ean = TRUE

el se {
resul t. bool ean = FALSE

}
pusheval (result);
br eak;

case ADDRESS:
if (op2.address <= opl. address) {
resul t. bool ean = TRUE

el se {
resul t. bool ean = FALSE

pusheval (result);
br eak;
}
}

el se {
popeval (& esult);
if (instr.nobde == CRITICAL) {
unsavedat a(&op2, instr.type, &defined);
unsavedat a(&opl, instr.type, &defined);

%usheval(opZ);
} pusheval (opl);
}

void gtr(Instruction instr, DataAddress address, DataValue data) {

Dat aVal ue opl, op2, result;
Dat aWwr d defi ned;

if (getflag(FORWARD) == TRUE) {
popeval (&opl);
popeval (&op2);
if (getfault() == NOFAULT) {
if (instr.node == CRITICAL) {
savedata(opl, instr.type, H GHWORD);
savedat a(op2, instr.type, H GHWORD);

}
switch(instr.type) {

case | NTEGER:
if (op2.integer > opl.integer) {

119

Fi gure 28 (continued)

resul t. bool ean = TRUE
el se {
resul t. bool ean = FALSE

}
pusheval (result);
br eak;

case REAL:
if (op2.real > opl.real) {
resul t. bool ean = TRUE

el se {
resul t. bool ean = FALSE

pusheval (result);
br eak;

case CHARACTER:
if (op2.character > opl.character) {
resul t. bool ean = TRUE

el se {
resul t. bool ean = FALSE

pusheval (result);
br eak;

case BOOLEAN
i f (op2.bool ean > opl. bool ean) {
resul t. bool ean = TRUE

el se {
resul t. bool ean = FALSE

pusheval (resul t);
br eak;

case ADDRESS:
if (op2.address > opl.address) {
resul t. bool ean = TRUE

el se {
resul t. bool ean = FALSE

pusheval (result);
br eak;
}
}

el se {
popeval (& esult);
if (instr.node == CRITICAL) {
unsavedat a(&op2, instr.type, &defined);
unsavedat a(&opl, instr.type, &defined);

}
pusheval (op2);
pusheval (opl);

120

Fi gure 28 (continued)

voi d geql (I nstruction instr, DataAddress address, DataVal ue data) ({

Dat aVal ue opl, op2, result;
Dat aWwor d defi ned,;

if (getflag(FORWARD) == TRUE) {
popeval (&opl);
popeval (&op2);
if (getfaul t() == NOFAULT) {
if (instr.nbde == CRITICAL) {
savedat a(opl, instr.type, H GHWORD);
savedat a(op2, instr.type, H GHORD);

}
switch(instr.type) {
case | NTEGER:
if (op2.integer >= opl i nteger) {
resul t. bool ean = TRUE;

el se {
resul t. bool ean

FALSE;

pusheval (result);
br eak;

case REAL:
if (op2.real >= opl.real) {
resul t. bool ean = TRUE

el se {
resul t. bool ean = FALSE

pusheval (resul t);
br eak;

case CHARACTER:
if (op2.character >= opl.character) {
resul t. bool ean = TRUE

el se {
resul t. bool ean

FALSE;

pusheval (result);
br eak;

case BOOLEAN

i f (op2.bool ean >= opl. bool ean) {

resul t. bool ean TRUE
el se {
resul t. bool ean = FALSE

pusheval (resul t);
br eak;

case ADDRESS:
if (op2.address >
resul t. bool ean

opl. address) {
TRUE;

el se {

121

Fi gure 28 (continued)

resul t. bool ean = FALSE

pusheval (result);
br eak;
}
}

el se {
popeval (& esult);
if (instr.nobde == CRITICAL) {
unsavedat a(&op2, instr.type, &defined);
unsavedat a(&opl, instr.type, &defined);

}
pusheval (op2);
pusheval (opl);

}
}

void neg(lnstruction instr, DataAddress address, DataValue data) {
Dat aVal ue op, result;

popeval (&op) ;
if (getfault() == NOFAULT) {

switch(instr.type) {
case | NTEGER:

result.integer = -op.integer;
pusheval (result);
br eak;

case REAL:
result.real = -op.real
pusheval (result);
br eak;

case CHARACTER:
result.character = -op.character
pusheval (result);
br eak;

case BOOLEAN
resul t. bool ean = (op. bool ean == TRUE) ? FALSE : TRUE
pusheval (result);
br eak;

case ADDRESS: /* addresses cannot be negated */
faul t (1 LLEGALTYPE) ;
br eak;
}
}
}

void cast(lnstruction instr, DataAddress address, DataVal ue data) {

Dat aVal ue opl, result;
Dat aWr d defi ned;

if (getflag(FORWARD) == TRUE) {

122

Fi gure 28 (continued)

popeval (&opl);

if (getfault() == NOFAULT) {
if (instr.nbde == CRITICAL) {
savedat a(opl, instr.type, H GHORD);

}
switch((instr.type & OxFO) >> 4) {

case | NTEGER:
switch (instr.type & OxOF) {

case | NTEGER:

br eak;
case REAL:
result.real = (Real Type) opl.integer;
pusheval (result);
br eak;

case CHARACTER:
result.character = (CharacterType) opl.integer;

pusheval (resul t);
br eak;

defaul t:
faul t (1 LLEGALTYPE) ;

br eak;

}

case REAL:
switch (instr.type & OxOF) {

case REAL:
br eak;

case | NTEGER:
result.integer = (IntegerType)opl.real;

pusheval (resul t);
br eak;

case CHARACTER:
result.character = (CharacterType) opl.real;

pusheval (result);
br eak;

defaul t:
faul t (1 LLEGALTYPE);

br eak;

}

case CHARACTER:
switch (instr.type & OxO0F) {

case CHARACTER:
br eak;

case REAL:
result.real = (Real Type) opl.character;

pusheval (result);
br eak;

123

Fi gure 28 (continued)

case | NTEGER:
result.integer = (IntegerType) opl.character;
pusheval (result);

br eak;

def aul t :
faul t (1 LLEGALTYPE) ;
br eak;

}
}
}
el se {

popeval (& esult);
if (instr.npde == CRITI CAL)
unsavedat a(&opl, instr.type, &defined);

}
pusheval (opl);

void link(lInstruction instr, DataAddress address, DataVal ue data) {
Dat aVal ue tenpdat a;

if (getflag(FORWARD) == TRUE) {
popeval (& enpdat a) ;
pushvari abl e(i nstr. data.integer, tenpdata.address);

el se {
popvari abl e(i nstr. data.integer, &tenpdata.address);
pusheval (tenpdat a) ;

}
}
void unlink(lnstruction instr, DataAddress address, DataValue data) {

Dat aVal ue tenpdat a;
Dat aWwor d defi ned,;

if (getflag(FORWARD) == TRUE) {
popvari abl e(i nstr.data.integer, & enpdata.address);
savedat a(t enpdat a, ADDRESS, H GHWORD) ;

el se {
unsavedat a(& enpdat a, ADDRESS, &defi ned);
pushvari abl e(i nstr. data.integer, tenpdata.address);
}
}

void alloc(Instruction instr, DataAddress address, DataVal ue data) ({
Dat aVal ue tenpdat a;

if (getflag(FORWARD) == TRUE) {
t enpdat a. addr ess = NULLDATAADDR,
al | ocdat a(& enpdat a. addr ess, data.integer);
pusheval (tenpdat a) ;

124
Fi gure 28 (continued)

el se {
popeval (& enpdat a) ;
unal | ocdat a(t enpdat a. addr ess, data.integer);
}
}

void unalloc(Instruction instr, DataAddress address, DataVal ue data) ({

Dat aVal ue tenpdat a;
Dat aWwr d defi ned;

if (getflag(FORWARD) == TRUE) {
popeval (& enpdat a) ;
if (instr.nobde == CRITICAL) {
savenen(tenpdata.address, data.integer);
savedat a(t enpdat a, ADDRESS, HI GHWORD) ;

}
unal | ocdat a(t enpdat a. addr ess, data.integer);

el se {
t enpdat a. addr ess = NULLDATAADDR,
if (instr.npbde == CRITICAL) {
unsavedat a(& enpdat a, ADDRESS, &defi ned);

al | ocdat a(& enpdat a. address, data.integer);
if (instr.nobde == CRITICAL) {
unsavenen(t enpdat a. address, data.integer);

| i)usheval (tenpdat a) ;
}

void inst(lnstruction instr, DataAddress address, DataVal ue data) {

Dat aVal ue tenpdat a;
I nt eger Type si ze;

if (getflag(FORWARD) == TRUE) {
getvarsi ze(instr.data.integer, &size);
t enpdat a. addr ess = NULLDATAADDR,
al | ocdat a(& enpdat a. addr ess, si ze);
i f (tenpdata.address != NULLDATAADDR) {
pushvari abl e(i nstr. data.integer, tenpdata.address);

el se {
faul t (QUTVEM ;

el se {
popvari abl e(i nstr.data.integer, & enpdata.address);
getvarsi ze(instr.data.integer, &size);
unal | ocdat a(t enpdat a. addr ess, si ze);
}
}

void uninst(lnstruction instr, DataAddress address, DataValue data) {
Dat aVal ue tenpdat a;

I nt eger Type si ze;
Dat aWor d defi ned,;

125
Fi gure 28 (continued)

if (getflag(FORWARD) == TRUE) {
getvaraddress(instr.data.integer, & enpdata.address);
getvarsi ze(instr.data.integer, &size);
if (instr.node == CRITICAL) {
savenen(t enpdat a. addr ess, si ze);

unal | ocdat a(t enpdat a. addr ess, si ze);
popvari abl e(i nstr. data.integer, &tenpdata.address);
if (instr.node == CRITICAL) {

savedat a(t enpdat a, ADDRESS, H GHWORD) ;

}

el se {
t enpdat a. addr ess = NULLDATAADDR
getvarsi ze(instr.data.integer, &size);
if (instr.nmode == CRITICAL)
unsavedat a(& enpdat a, ADDRESS, &defi ned);

al | ocdat a(& enpdat a. addr ess, si ze);
pushvari abl e(i nstr. data.integer, tenpdata.address);
if (instr.node == CRITICAL) {
unsavenen(t enpdat a. addr ess, si ze);
}
}
}

void br(Instruction instr, DataAddress address, DataVal ue data) ({
Pr ogAddr ess progaddr, progaddr?2;

if (getflag(FORWARD) == TRUE) {
getl abel address(instr.data.integer, &progaddr?2);
if (getfault() == NOFAULT) {
get pc(&pr ogaddr) ;
set ppc(progaddr);
set pc(progaddr2);
set f | ag(BRANCH) ;
}
}
}

void brt(lnstruction instr, DataAddress address, DataValue data) {

Dat aVal ue tenpdata
Dat aWwr d defi ned;
Pr ogAddr ess progaddr, progaddr?2;

if (getflag(FORWARD) == TRUE) {
popeval (& enpdat a) ;
if (instr.nobde == CRITICAL) {
savedat a(t enpdata, BOOLEAN, HI GHWORD) ;

}
i f (tenpdata. bool ean == TRUE) {
get | abel address(instr.data.integer, &progaddr?2);
i f (getfaul t() == NOFAULT) {
get pc(&pr ogaddr) ;
set ppc(progaddr) ;
set pc(progaddr 2);
set f | ag(BRANCH) ;

126

Fi gure 28 (continued)

}
}

el se {
if (instr.nmode == CRITICAL)
unsavedat a(& enpdat a, BOOLEAN, &defi ned);
pusheval (tenpdat a) ;

el se {
t enpdat a. bool ean = TRUE;
pusheval (tenpdat a) ;

}
}

void brf(lnstruction instr, DataAddress address, DataVal ue data) {

Dat aVal ue tenpdat a;
Dat aWwr d defi ned;
Pr ogAddr ess progaddr, progaddr?2;

if (getflag(FORWARD) == TRUE) {
popeval (& enpdat a) ;
if (instr.node == CRITICAL) {
savedat a(t enpdata, BOOLEAN, H GHWORD) ;

}
i f (tenpdata. bool ean == FALSE) {
getl abel address(instr.data.integer, &progaddr?2);
if (getfault() == NOFAULT) {
get pc(&pr ogaddr) ;
set ppc(progaddr) ;
set pc(progaddr2);
fetfl ag(BRANCH) ;

}

el se {
if (instr.npde == CRITI CAL)
unsavedat a(& enpdat a, BOOLEAN, &defi ned);
pusheval (tenpdat a) ;

el se {
t enpdat a. bool ean = FALSE;
pusheval (tenpdat a) ;

}
}

void label (Instruction instr, DataAddress address, DataVal ue data) ({
Pr ogAddr ess progaddr;

if (getflag(FORWARD) == TRUE) {
get ppc(&progaddr);
pushl abel (i nstr. data.integer, progaddr);

el se {
get pc(&pr ogaddr) ;
set ppc(progaddr) ;
popl abel (i nstr. data.integer, &progaddr);

127
Fi gure 28 (continued)

set pc(progaddr);
set f | ag(BRANCH) ;

}

}

void call (Instruction instr, DataAddress address, DataVal ue data) {
Pr ogAddr ess progaddr;

if (getflag(FORWARD) == TRUE) {
get pc(&pr ogaddr) ;
set ppc(progaddr) ;
pushcal | (progaddr +1);
get | abel address(instr.data.integer, &progaddr);
set pc(progaddr);
set f | ag(BRANCH) ;

el se {

}
void returnf(lnstruction instr, DataAddress address, DataVal ue data) {
Pr ogAddr ess progaddr;

if (getflag(FORWARD) == TRUE) {
get pc(&pr ogaddr) ;
set ppc(progaddr);
popcal | (&pr ogaddr) ;
set pc(progaddr);
set f | ag(BRANCH) ;

}

}

dat amem h
/* datamem h: data menory header */

/* definitions for menory word types and sizes */
t ypedef unsi gned char Dat aWrd;

t ypedef unsigned int Doubl eWrd;

#defi ne WORDSI ZE 8

#def i ne DBLWORDSI ZE 16

#def i ne H GHWORD OxFFFFu

#def i ne H GHDBLWORD OxFFFFFFFFul

/* Enunmeration of basic E-nachine data types. */
t ypedef enum {

BOOLEAN, | NTEGER, REAL, ADDRESS, CHARACTER, LASTTYPE
} Dat aType;

/* Type definition for DataAddress, which is used to access data nenory.
*/
t ypedef unsigned int DataAddress;

#defi ne NULLDATAADDR (Dat aAddress)-1

/* Type definitions for basic E-machine data types. Needed for casting
vold pointers. These nay be different on different nmachines. i.e.
32 bits is a good size for an integer which long int is for Turbo C

128

Fi gure 28 (continued)

on an IBMPC, but is only int on a VAX. */
typedef enum{ FALSE, TRUE } Bool eanType;
typedef |ong int IntegerType;
typedef float Real Type;
t ypedef Dat aAddress AddressType;
t ypedef char Character Type;

/* DataValue is a union of all the basic E-machine types. This allows
for easy storage of all data types. */
typedef union {
Bool eanType bool ean
I nt eger Type i nt eger
Real Type real
Addr essType addr ess;
Char act er Type character;
} Dat aVal ue;

i nt datasize(DataType);

/* writedata pl aces DataVal ue at Dat aAddress and marks Dat aAddress as
defined. */
void witedata(DataType, DataAddress, DataValue);

/* readdata returns DataVal ue from Dat aAddr ess. */
voi d readdat a(Dat aType, DataAddress, DataValue *, Datawrd *);

/* undefine nmarks the Dat aAddress as undefined. */
voi d undefi ne(Dat aAddress, DataVal ue);

/* clear clears all of the data nmenory space and marks it undefined. */
void clear(void);

/* allocate returns the DataAddress of a free area if one exists. */
voi d al |l ocdat a(DataAddress *, |IntegerType /* size */);

/* unal |l ocate frees the data at DataAddress and marks it as undefined. */
voi d unal | ocdat a(Dat aAddress, |ntegerType /* size */);

/* save a block of nmenory on the save stack */
voi d savenen(DataAddress, |ntegerType /* size */);

/* restore a block of menory fromthe save stack */
voi d unsavenen(DataAddress, |IntegerType /* size */);

dat amem ¢
/* datamem c: Data Menory Modul e */

#i ncl ude "dat amem h"
#i nclude "faul t. h"

/* Array used to hold sizeof(data types) constants so they can
be easily retrieved. */

int sizedata[LASTTYPE] = {
si zeof (Bool eanType),
si zeof (I nt eger Type),
si zeof (Real Type),

129

Fi gure 28 (continued)

si zeof (Addr essType),
si zeof (Char act er Type)

};

/* MAXDATA should be a multiple of WORDSI ZE so that the defined data
structure will be big enough. */
#defi ne MAXDATA (Dat aAddress) 8192

/* Size of the free menory list structure. */
#def i ne MAXFREEMEM 1024

/* Free nenory list structure. */
struct {
Dat aAddr ess | ower, upper;
} freenen] MAXFREEMEM = {0, MAXDATA - 1};
int lastentry = 0;

/* Data Menory structure. */
Dat aWor d dat anen] MAXDATA] ;

/* Data Defined structure. */
Dat aWor d dat adef i ned] MAXDATA/ WORDSI ZE] = {
o, 0,0 0,0 0,0 0,0 00 O0,b 0,0 000, O0b O0,h0 00 0,0 0,0 00 00 0,0 0,00 0,01

/* A procedure to provide sizeof(data types) to other nodules. */
i nt datasize(DataType type) {

return(sizedata[type]);

/* Store data and mark it as defined. */
void witedata(DataType type, DataAddress address, DataValue data) {

voi d *dataptr;
Doubl eWord t enpdef ;

i f (address >= MAXDATA) {
faul t (BADDATAADDR) ;

el se {
(char *)dataptr = &(datameniaddress]);
switch(type) {

case | NTEGER:
*((Integer Type *)dataptr) = data.integer;
br eak;

case BOOLEAN
*((Bool eanType *)dataptr)
br eak;

dat a. bool ean;

case REAL:
*((Real Type *)dataptr) = data.real;
br eak;

case ADDRESS:
*((AddressType *)dataptr) = data. address;
br eak;

130

Fi gure 28 (continued)

case CHARACTER:
*((CharacterType *)dataptr) = data.character;
br eak;

/* This part marks all nenory | ocations occupied by the data
as defined. */

t enpdef = (Doubl eWor d) (H GHDBLWORD << (DBLWORDSI ZE - si zedata[type]))

>>
(address % WORDSI ZE) ;
dat adef i ned[(addr ess/ WORDSI ZE) + 1] | = (Dat aWrd)tenpdef;
dat adef i ned[addr ess/ WORDSI ZE] | = (Dat awrd) (t enpdef >> WORDSI| ZE) ;
}

}

/* Read data at a particular location. Al nmenory |ocations
occupi ed by the data nmust be marked as defined otherw se
t he Bool eanType will be marked as Fal se and the contents
of data i s unknown. */
voi d readdata(DataType type, DataAddress address, DataVal ue *data,
Dat aWword *defined) {

voi d *dataptr;
i nt base, offset;
Doubl eWord def;

if ((address >= MAXDATA) || (address < 0))
{ /'* ERROR bad address. */
f aul t (BADDATAADDR) ;

el se {
base = addr ess/ WORDSI| ZE;
of fset = address % WORDSI ZE;

def = (Doubl eWord) ((Doubl eWor d) dat adef i ned[base] << WORDSI ZE |
dat adef i ned[base + 1]) >>
(DBLWORDSI ZE - offset - sizedata[type]);
*defined = (Datawrd)def & ((Datawrd)H GHAWORD >> (WORDSIZE -
si zedata[type]));
(char *)dataptr = &(datameniaddress]);
switch(type) {

case | NTEGER:
dat a->i nteger = *((IntegerType *)dataptr);
br eak;

case BOOLEAN:
dat a- >bool ean = *((Bool eanType *)dataptr);
br eak;

case REAL:
data->real = *((Real Type *)dataptr);
br eak;

case ADDRESS:
dat a- >address = *((AddressType *)dataptr);
br eak;

case CHARACTER:
dat a- >character = *((CharacterType *)dataptr);
br eak;

131

Fi gure 28 (continued)

/* Allocate a block of data menory according to the free nmenory
list or requested address. */
voi d al |l ocdat a(Dat aAddress *address, |ntegerType size) {

int i,index;

i ndex = O;
i f (*address == NULLDATAADDR) {
/* Allocate any data nenory bl ock big enough. */
while((index <= lastentry) && (freeneniindex]. upper
- freenmenfindex].lower + 1 < size)) {
i ndex++;

/* |If past the end of the free nenory list, there is no
bl ock of menory | arge enough. */
if (index > lastentry) {
fault (QUTMEM ; *address = NULLDATAADDR,

}
el se {
*address = freemeniindex].| ower;
freemenii ndex] .l ower += size;
if (freemenindex].lower == freeneniindex]. upper) {
/* Adjust the free list if this block is now enmpty. */
do {
i ndex++;
freemeniindex-1] = freeneniindex];
} while (index < lastentry);
| astentry--;
}
}
el se {

/* Allocate a specific block in data nenory. */
if (*address + size > MAXDATA) size = MAXDATA - *address - 1;

i ndex = O;

while ((index <= lastentry) & (freenmeniindex].|ower <= *address)) {
i ndex++;

}

i ndex--;

i f ((*address < freemenii ndex] .| owner) |] (*address >

freemenii ndex] . upper)
|| (freeneniindex].upper - *address + 1 < size)) {
/* attenpted to allocate a specific area of nenory, but
at least part of it is already allocated. */
faul t (MEMALLOC); *address = NULLDATAADDR,

el se {
/* Specific block can be allocated, so adjust free table. */
if (*address == freeneniindex].lower) {

/* Allocated block starts at the beginning of the free bl ock,
so the | ower bound can be adjusted. */
freemeniindex] .l ower += size - 1;

}

132

Fi gure 28 (continued)

else if (*address == freenen{index]. upper)
/* Allocated block ends at the end of the free block, so the
upper bound can be adjusted. */
freemenii ndex] . upper = *address - 1;

el se {
/* Allocated block is in the mddle of the free block, so
the free table nust be expanded to split this free bl ock. */
for (i = lastentry; i >= index; i--)
freemen{i + 1] = freenenii];

[astentry++
freemenii ndex] . upper = *address;
freemen{index + 1].lower = *address + size;
}
}
}
}

/* Make sone previously allocated bl ock available for allocation
again. */
voi d unal | ocdat a(Dat aAddress address, |ntegerType size) {

int index, i;

i ndex = O;

/* Find where this block fits in the free menory list. */

while ((index <= lastentry) && (freenmeniindex].|ower <= address)) {
i ndex++;

f (index > lastentry) {
| astentry++
freemeni| astentry]. | ower
freemeni| astentry]. upper

addr ess;
address + size - 1;

}
el se {
if (address + size == freenen{index].|ower) {
freemenii ndex] .| ower = address;
else if (freemeniindex-1].upper + 1 == address) {
freemenii ndex- 1] . upper = address + size - 1,
el se {
for (i = lastentry; i >=index; i--) {
freemenii+1] = freenenfi];
| astentry++
freemenii ndex] .| ower = address;
freemenii ndex] . upper = address + size - 1;
}
}

voi d savenen(DataAddress address, |ntegerType size) {

Dat aWwbr d def ;
int i, base, offset;

133

Fi gure 28 (continued)

for (i 0; i < size; i++)
base (address + i)/ WORDSI ZE;
of fset = (address + i) %\ORDSI ZE;
def = (1 << (WORDSI ZE - offset)) & (datanenibase]);
pushsave(&dat ameni address+i], def, 1);

/* offset = address % WORDSI ZE; */

/* Clear all bits except those that represent the data */
def = dat adefi ned[address/ WORDSI ZE] << of fset >> offset;*/

~
* ok

/* push first partial DATAWORD onto save stack */
/* pushsave(&dat aneni addr ess], (Doubl eWrd)def, WORDSIZE - offset);*/

/* push all full DATAWDRD s onto save stack */
[* for (i =0; i < (size - WRDSIZE + of fset)/WORDSI ZE;, i ++) {
pushsave(&dat anenf address + i * 8],
(Doubl eWr d) dat adef i ned[address + i], WORDSI ZE) ;
} 1

/* push last partial DATAWORD onto save stack */
/* offset = (size - WORDSIZE + offset) % WORDSI ZE; */
/* def = datadefined[address + i] >> (WORDSIZE - offset);*
g* pushsave(dat anenf address + i * 8], def, offset);*

voi d unsavenen(Dat aAddress address, |IntegerType size) {

int tenpsize, i, offset;
Dat awbrd def;

/* tenpsize = (address + size) % WORDSI ZE;

popsave(&dat aneni address + size - tenpsize], &def, tenpsize);
dat adef i ned[(address + size - 1)/WORDSI ZE] | = def <<
(WORDSI ZE - tenpsize);

for (i = (size - tenpsize)/ WORDSIZE; i >= 0; i--) {
popsave(&dat anenf address + i * WORDSI ZE] ,
&dat adef i ned[(address/ WORDSI ZE) + i], WORDSI ZE);
}

popsave(dat anenf addr ess], datadefined[address], WORDSI ZE -
(address % WORDSI ZE)) ; */

for (i =size - 1; i >=0; i--) {
popsave(&dat aneni address + i], &def, 1);
dat adef i ned[(addr ess +|)/WRDSI ZE] | = def << (WORDSIZE - (address +
i) 9AORDSI ZE) ;

}

vari abl e. h
/* variable.h: variable register header */

/* This allows for 64K vari able registers on on IBMPC. The actual nunber
of allowable registers is smaller than this, since only 64K bytes can

134

Fi gure 28 (continued)

be used to store the set of registers. */
t ypedef | ntegerType Vari abl eReg;

/* getvaraddress returns the data address of the current instance of
Vari abl eReg. */
voi d getvaraddress(Vari abl eReg, Dat aAddress *);

/* getvarsize returns the size of VariableReg. */
voi d getvarsize(Variabl eReg, IntegerType *);

/* pushvari abl e pushes a new data address onto the VarRegi ster stack. */
voi d pushvari abl e(Vari abl eReg, DataAddress);

/* popvari abl e renoves the top data address fromthe VarRegi ster stack. */
voi d popvari abl e(Vari abl eReg, Dat aAddress *);

vari able.c
/* variable.c: Variable Register/Stack Mdule */

#i ncl ude "datamem h"
#i ncl ude "decex. h"
#i ncl ude "prognem h"
#i ncl ude "vari abl e. h"
#i nclude "faul t. h"
#i ncl ude <al |l oc. h>

/* Variable Stack structure. */
typedef struct vs {

Dat aAddr ess addr ess;

struct vs *next;
} Var St ack;

/* Variable Register Table. */
struct VR {

I nt eger Type si ze;

Var St ack *stack

} il
static unsigned int |lastreg = O;
struct VR *varregs;

/* Returns current data nenory address of variable. */
voi d getvaraddress(Variabl eReg varreg, DataAddress *address) {

if (varreg > lastreg) {
faul t (BADVARREG) ;

el se {
if (varregs[varreg].stack == NULL) {
*address = NULLDATAADDR,

el se {
*address = varregs[varreg].stack->address;

}
}

/* Returns size of variable. */

135

Fi gure 28 (continued)

voi d getvarsi ze(Variabl eReg varreg, IntegerType *size) {

if (varreg > lastreg) {
faul t (BADVARREG) ;

el se {
*size = varregs|[varreqg].size
}

}
voi d pushvari abl e(Vari abl eReg varreg, DataAddress address) {

Var St ack *tenp;

if (varreg > lastreg) {
faul t (BADVARREG) ;

el se {
tenp = mall oc(sizeof (Var St ack));
if (tenmp == NULL)
faul t (QUTVEM ;

el se {
t enp- >addr ess = address;
t enp- >next = varregs[varreg].stack
varregs[varreg].stack = tenp;

}
}
}

voi d popvari abl e(Vari abl eReg varreg, DataAddress *address) {
Var St ack *tenp;

if (varreg > lastreg) {
faul t (BADVARREG) ;

el se {
if (varregs[varreg].stack == NULL) {
faul t (VARNOTALLQOO) ;

el se {
*address = varregs[varreg].stack->address;
tenp = varregs[varreg].stack
varregs[varreg].stack = varregs[varreg]. stack->next;
free(tenp);

/* Load variable sizes froma file. */
void | oadvarregs(int fileid) {

I nt eger Type si ze;
Vari abl eReg i ;

if (sizeof(size) !'=read(fileid, &size, sizeof(size))) {
/* ERROR bad file format. */
f aul t (BADFI LE)

136

Fi gure 28 (continued)

el se {
varregs = calloc(size, sizeof(lnstruction));
if (varregs == NULL) {
/* Not enough system nenory left. */
faul t (QUTVEM ;

el se {
i = 0;
while ((getfault() == NOFAULT) && (i < size)) {
if (read(fileid, & varregs[i].size), sizeof(IntegerType)) !=
si zeof (I nteger Type)) fault (BADFI LE)

| astreg = size - 1,

| abel . h
/* label.h: Label Register/Stack header */

/* This allows for 64K variable registers on on IBMPC. The actual nunber
of allowable registers is smaller than this, since only 64K bytes can
be used to store the set of registers. */

t ypedef IntegerType Label Reg;

/* getl abel address returns the program address at whi ch Label resides. */
voi d getl abel address(Label Reg, ProgAddress *);

/* pushl abel pushes a program address onto the Label stack. */
voi d pushl abel (Label Reg, ProgAddress);

/* popl abel returns the top program address fromthe Label stack. */
voi d popl abel (Label Reg, ProgAddress *);

| abel . c
/* label.c: Label Register/Stack Mddule */

#i ncl ude "dat amem h"
#i ncl ude "decex. h"
#i ncl ude "prognmem h"
#i nclude "faul t. h"
#i ncl ude "I abel . h"
#i ncl ude <al |l oc. h>

/* Label Stack structure. */
typedef struct Is {

Pr ogAddr ess addr ess;

unsi gned count;

struct |s *next;
} Label St ack;

/* Label Register Table. */
struct LR {

Pr ogAddr ess addr ess;
Label St ack *stack;

b

static unsigned int |lastreg = O;

137

Fi gure 28 (continued)

struct LR *| abel regs;

/* Get the program address of the |abel instruction */
voi d getl abel address(Label Reg | abel reg, ProgAddress *address) {

if ((labelreg > lastreg) || (labelreg < 0)) {
/* ERROR: bad | abel register nunber. */
faul t (BADLABELREG) ;

el se {
*address = | abel regs[| abel reg] . addr ess;
}

}

/* Save the address fromwhich the | abel was reached. */
voi d pushl abel (Label Reg | abel reg, ProgAddress address) {
Label St ack *tenp;

if ((labelreg > lastreg) || (labelreg < 0)) {
/* ERROR: bad | abel register nunber. */
faul t (BADLABELREG) ;

el se
if ((labelregs[labelreg].stack == NULL)

abel regs[| abel reqg] . st ack->address ! = address)) {

np = nmal | oc(si zeof (Label Stack));

tenmp == NULL) {

t (QUTMVEM ;

t enp- >addr ess = addr ess;

t enp- >count = 1;

tenp->next = | abel regs[| abel reg]. stack
| abel regs[| abel reg].stack = tenp;

el se {
| abel regs[| abel reg] . st ack- >count ++;

}
}

/* Return the address fromwhich a | abel was reached. */
voi d popl abel (Label Reg | abel reg, ProgAddress *address) {

Label St ack *tenp;
if ((labelreg > lastreg) || (labelreg < 0)) {

/* ERROR: bad | abel register nunber. */
faul t (BADLABELREG) ;

el se {
*address = | abel regs[| abel req] . st ack- >addr ess;
| abel regs[| abel reg] . st ack->count - -;
if (labelregs[labelreg].stack->count == 0) {
tenp = | abel regs[| abel reg]. st ack;
| abel regs[| abel reg].stack = I abel regs[| abel reg]. stack->next;
free(tenp);

138

Fi gure 28 (continued)

}
/* Load | abel addresses froma file. */
voi d | oadl abelregs(int fileid) {
| nt eger Type si ze;
Label Reg 1 ;
if (sizeof(size) !'=read(fileid, &size, sizeof(size))) {

/* ERROR: bad file format. */
f aul t (BADFI LE) ;

el se {
| abel regs = cal | oc(size, sizeof(lnstruction));
if (labelregs == NULL)
/* Not enough system nenory left. */
faul t (QUTVEM ;

el se {
i = 0;
while ((getfault() == NOFAULT) && (i < size)) {
if (read(fileid, &labelregs[i].address), sizeof(ProgAddress)) !=
si zeof (ProgAddress)) fault(BADFI LE);

| astreg = size - 1,

eval . h
/* eval .h: Evaluation Stack Header */

/* pusheval places DataValue on top of the evaluation stack */
extern void pusheval (DataVal ue);

/* popeval returns the top DataValue fromthe eval uation stack. */
extern void popeval (DataVal ue *);

eval . c
/* eval.c: Evaluation Stack Mdule */

#i ncl ude "dat amem h"
#i ncl ude "eval . h"
#i nclude "fault.h"

/* Eval uation stack size. */
#defi ne MAXEVAL 512

/* Evaluation Stack structure. */
Dat aVal ue eval st ack] MAXEVAL] ;
static int evaltop = 0;

voi d pusheval (DataVal ue data) {

if (evaltop >= MAXEVAL) {
faul t (EVALOVRFLW ;
}

139

Fi gure 28 (continued)

el se {
eval st ack[eval t op++] = dat a;

}
}
voi d popeval (DataVal ue *data) {

if (evaltop == 0) {
faul t (EVALEMPTY) ;

el se {
*dat a=eval st ack[--eval top];

}
}

call.h
/* call.h: call stack header */

/* pushcall places a program address onto the call stack. */
extern void pushcall (ProgAddress);

/* popcall returns the top program address on the call stack. */
extern void popcall (ProgAddress *);

/* call.c: Call Stack Module */

#i ncl ude "dat amem h"
#i ncl ude "decex. h"
#i ncl ude "progmem h"
#include "fault.h"

#defi ne MAXCALL 1024

/* Call Stack structure. */

Pr ogAddr ess cal | st ack[MAXCALL] ;

static unsigned int calltop = O;

voi d pushcal | (ProgAddress address) {

if (calltop >= MAXCALL) {
faul t (CALLOVRFLW ;

el se {
cal | stack[cal | top++] = address;

}
voi d popcal | (ProgAddress *address) {

if (calltop == {
faul t (CALLEMPTY) ;

el se {
*address = cal I stack[--calltop];

140

Fi gure 28 (continued)

save. h
/* save. h: save stack header */

/* savedata pushes DataVal ue onto the save stack. */
voi d savedata(DataVal ue, DataType, Datawrd /* defined */);

/* unsavedata returns the top DataValue fromthe top of the
save stack. */
voi d unsavedat a(DataVal ue *, DataType, DataWrd *);

save. C
/* save.c: Save Stack Mdule */

#i ncl ude "dat amem h"
#i nclude "faul t. h"
#i nclude "fl ags. h"
#i ncl ude "save. h"

/* Save Stack and Packet Queue size */
#defi ne MAXSAVE 4096
#defi ne MAXPACK 1024

/* Save Stack structure */
Dat aWor d savest ack|[MAXSAVE] ;
static unsigned int savetop = 0, savebottom = O;

/* Save Stack defined bits structure */
Dat aWor d savedefi ned] MAXSAVE >> 3];

/* Packet Queue structure */
unsi gned int packet queue[MAXPACK]
static unsigned int packettop = 0, packetbottonr O;

voi d pushsave(DataWrd *data, Doubl eWwrd defi ned,
int size) {

int base, offset, i;
Doubl eWord def ;
Bool eanType ok;

base = savet op/ WORDSI ZE;
of fset = savetop % WORDSI ZE

/* Set up data defined bits to match save stack
defined bit positions. */
def = defined << (DBLWORDSI ZE - offset);

/* Ol ear save stack defined bits so they can be properly
set when ored with the data defined bits. */
savedef i ned[base] &= (DataWord) ((def ~ H GHDBLWORD)
>> WORDSI ZE) ;
savedefi ned[base + 1] &= (DataWrd) (def ~ H GHDBLWORD) ;

/* O the data defined bits with the cleared save stack
defined bits so the defined status of the data is
al so save on the save stack. */

141

Fi gure 28 (continued)

savedefi ned[base] |= (Datawrd)(def >> WORDS| ZE);

savedefi ned[base + 1] | = (DataWrd) def;

/* Now push the actual data onto the save stack. */
i =0;

ok = TRUE;

while (i < size & ok == TRUE) {
savest ack[savet op++] = data[i];
savet op % MAXSAVE;
i ++;
if (savebottom == savetop) {
i f (packettop == packetbottom {
ok = FALSE;
savetop = 0O;
savebottom = 0;

el se {

savebott om = packet queue[packet bott om++] ;
packet bott om % MAXPACK;

voi d savedata(DataVal ue data, DataType type, Datawrd defined) {
defined >>= WORDSI ZE - dat asi ze(type);

pushsave((Dat awrd *) &data, (Doubl eWrd)defi ned,
dat asi ze(type));

voi d popsave(DataWrd *data, Datawrd *defined, int size) {
i nt base, offset, i;
base = (savetop - size)/ WORDSI ZE;
of fset = (savetop - size) WNORDSI ZE;

*defined = ((savedefined[base] << WORDSI ZE) | savedefi ned[base+1])
>> (WORDSI ZE - offset - size);

for (i = size-1; i >=0; i--) {

data[i] = savestack][--savetop];
savet op % MAXSAVE;

}
}

voi d unsavedat a(Dat aVal ue *data, DataType type, Datawrd *defined) ({
popsave((Datawrd *)data, defined, datasize(type));

voi d newpacket () {

packett op++;

142

Fi gure 28 (continued)

packettop % MAXPACK

i f (packettop == packetbottom {
savebott om = packet queue[packet bottoni;
savebot t omt++;
savebott om % MAXPACK

packet queue[packettop] = savetop

pachet. h
/* packet.h: Packet Modul e header */

t ypedef struct
Pr ogAddr ess startaddr, endaddr;
int startline, startcol, endline, endcol
Synbol Entry scope

} Packet;

t ypedef unsigned int Packet Num

voi d findpacket (ProgAddress, Packet *, PacketNum *);

voi d get packet (Packet Num Packet *);

packet.c
/* packet.c: Packet Mdule */

#i ncl ude "dat anem h"
#i ncl ude "decex. h"
#i ncl ude "progmem h"
#i ncl ude "vari abl e. h"
#i ncl ude "synbol . h"
#i ncl ude "packet.h"

/* Packet table structure */
Packet *packettabl e;

Packet Num | ast packet = O;

voi d findpacket (ProgAddress address, Packet *pack

Packet Num *num) {

int top, bottom

top = | ast packet;
*num = | ast packet;
bottom = 0;

while (top > bottom {
*num = (top + botton)/2;
i f (address > packettabl e[*nuni.endaddr) {
bottom = *num + 1;

el se {
top = *num

}
i f (address >= packettabl e[top].startaddr &&
address <= packettabl e[t op].endaddr) {

143

Fi gure 28 (continued)

*pack = packettabl e[top];
*num = top;

el se {
pack->startaddr = NULLPROGADDR
*num = -1;

}

voi d get packet (Packet Num num Packet *pack) {

if (num > [astpacket || num< 0) {
pack->startaddr = NULLPROGADDR;

el se {
*pack = packettabl e[nun;

fault.h
/* fault.h: fault handl er header */

t ypedef enum {
NOFAULT, EVALOVRFLW EVALEMPTY, CALLOVRFLW CALLEMPTY, |LLEGALI NSTR,
| LLEGALTYPE, BADVARREG, BADLABELREG BADPROGADDR, BADDATAADDR,
BADFI LE, OQUTMEM VARNOTALLOC, | LLEGALFLAG SAVEUNDRFLW
UNDEFDATA, | LLEGALMODE, DI VBYZERO, MEMALLOC, LASTFAULT
} Faul t Type;

void fault(FaultType);
void faul tmsg(Faul t Type, char *);

Faul t Type getfault(void);

t.c: Fault Handl er Module */

#i nclude "faul t. h"
#i ncl ude <stdlib. h>

/* Holds the last fault that occurred. */
Faul t Type lastfault;

/* Messages associated with faults. */
static char *faul t msgs[LASTFAULT] = {

"No fault.",

"Eval uation stack overflow ",

"Eval uation stack underflow ",

"Call stack overflow ",

"Call stack underflow ",

"I'l'legal instruction.",

"Il'l egal data type for instruction."”,

"Bad variable register.",

"Bad | abel register.",

"Bad program address.",

"Bad data address.",

"Error in input file.",

144
Fi gure 28 (continued)

"Qut of data nmenory.",

“"Variabl e not allocated.",

"Save stack underfl ow, no nore backup allowed."
"Undefi ned data accessed."

"Il egal address node for opcode.",

"Divide by zero."

"Attenpted to allocate already allocated nenory."

/* Register fault occurrence. */
void fault(FaultType faultnum) {

lastfault = faul t num

}

/* Return pointer to nessage explaining fault. */
void faultnmsg(Faul t Type faultnum char *msg) {

if (faultnum >= LASTFAULT) {
msg = NULL;

el se {
nsg = faul tnsgs[faul tnuni;

}
Faul t Type getfault() {

return(lastfault);

}

ags. h
f

fl
/* flags.h: Flags Mdul e header */

/* These are the various flags used in the E-machine. */
typedef enum {
SAVEEMPTY, FAULT, FORWARD, BRANCH, LASTFLAG
} FlagType;
void setflag(FlagType);
void resetflag(FlagType);

Bool eanType getflag(Fl agType);

égs.c: Machi ne Fl ag Modul e */

#i ncl ude "dat amem h"
#i nclude "fl ags. h"
#include "fault.h"

/* Flag Set structure. */
stati c Bool eanType flags[LASTFLAG ;

/* Set a flag value to TRUE. */
void setflag(FlagType flag) {

145

Fi gure 28 (continued)

if (flag >= LASTFLAG {
faul t (| LLEGALFLAG) ;

el se {
flags[flag] = TRUE;

}

/* Set a flag value to FALSE. */
void resetflag(FlagType flag) {

if (flag >= LASTFLAG {
faul t (1 LLEGALFLAG) ;

el se {
flags[flag] = FALSE

/* Return the value of a flag. */
Bool eanType getflag(FlagType flag) {

if (flag >= LASTFLAG {
faul t (1 LLEGALFLAG) ; return(FALSE);

el se {
return(flags[flag]);

}
}
synbol . h
/* synbol . h: Synbol Table header */

t ypedef unsigned int Synbol Entry;
enum { PROCEDURE = 10, HEADER, END, RECORD };

extern struct {
char *nane;
I nt eger Type upper bound, | owerbound;
I nt eger Type of fset;
Synbol Entry parent, child;
Vari abl eReg varreg;
} *synbol t abl e;

extern Synbol Entry | astsym

symnbol . ¢
/* synbol.c: symbol table |oad */
#i ncl ude "sybnol . h"

t ypedef unsigned int Symnbol Entry;

struct ST {
char *nane;
I nt eger Type upper bound, | owerbound;
I nt eger Type of fset;
int type;
Synbol Entry parent, child;

146

Fi gure 28 (continued)

Vari abl eReg varreg
} *symbol tabl e;

Synbol Entry | astsym

/* Load variable sizes froma file. */
void | oadsynboltable(int fileid) {

I nt eger Type si ze;
Vari abl eReg i ;

if (sizeof(size) !'=read(fileid, &size, sizeof(size))) {
/* ERROR bad file format. */
faul t (BADFI LE)

el se {
synbol tabl e = cal l oc(size, sizeof (ST));
if (synboltable == NULL) {
/* Not enough system nenory left. */
faul t (QUTVEM ;

el se {
D=0
thle ((getfault() == NOFAULT) && (i < size)) {
if (read(fileid, & synboltable[i]), sizeof(ST)) !=
| si zeof (ST)) fault(BADFILB

| astsym = size - 1;

