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x1

Abstract

This thesis is part of the third phase in the development of an interactive
computer science laboratory environment called DYNALAB (an acronym for
DYNAmic LABoratory). DYNALAB is an interactive software system that
demonstrates programming and computer science concepts at an introductory
level. The first DYNALAB development phase was the design of a virtual
computer—the E-machine (Education Machine). The E-machine was designed
by Samuel D. Patton and is presented in his Master’s thesis, The K-machine:
Supporting the Teaching of Program Erecution Dynamics. In order to facil-
itate the support of program animation activities, the E-machine has many
unique features, notably the ability to execute in reverse. The second phase
in the development of DYNALAB was the design and implementation of an
E-machine emulator, which is presented in Michael L. Birch’s Master’s thesis,
An Emulator for the E-machine. The third, ongoing phase of the DYNALARB
project is the development of compilers generating E-machine code. Frances
Goosey designed the first compiler for the E-machine, described in her Mas-
ter’s thesis, A miniPascal Compiler for the E-machine. David Poole designed
the second compiler for the E-machine, described in his Master’s thesis, An
Ada/CS Compiler for the -machine. This thesis presents the design and im-
plementation of the third compiler for the E-machine. The compiler’s source
language is ANSI C. The fourth, ongoing phase of the DYNALAB project
is the development of animators, used to animate the E-machine code files
produced by the compilers. Craig Pratt designed the first animator for the
DYNALAB project, described in his Master’s thesis, An OSF/Motif Program
Animator for the DYNALAB System. Chris Boroni is currently designing an
animator for the Microsoft Windows platform.

The ANSI C compiler was developed using C++ and the Purdue Compiler
Construction Tool Set (PCCTS) parser development tool. It has successfully
generated many object files ready for execution on the E-machine. This thesis
focuses on the compilation aspects that are unique to ANSI C, the E-machine
architecture, and the planned animation environment.



Chapter 1

Introduction

1.1 The DYNALAB System

This thesis is part of the third phase of the ongoing DYNALAB software
development project. DYNALAB is an acronym for DYNAmic LABoratory,
and its purpose is to support formal computer science laboratories at the
introductory undergraduate level. Students will use DYNALAB to experiment
with and explore programs and fundamental concepts of computer science.
The current objectives of DYNALAB include:

e providing students with facilities for studying the dynamics of program-
ming language constructs—such as iteration, selection, recursion, pa-
rameter passing mechanisms, pointers, and so forth—in an animated
and interactive fashion;

e providing students with capabilities to validate or empirically determine
the run time complexities of algorithms interactively in the experimental
setting of a laboratory;

o extending to instructors the capability of incorporating animation into
lectures on programming and algorithm analysis.

In order to meet these immediate objectives, the DYNALAB project was

divided into four phases. The first phase was the design of a virtual computer,

called the Fducation Machine, or E-machine, that would support the anima-

tion activities envisioned for DYNALAB. The two primary technical problems



to overcome in the design of the E-machine were the incorporation of features
for reverse execution and provisions for coordination with a program anima-
tor. Reverse execution was engineered into the E-machine to allow students
and instructors to repetitively animate sections of a program that were un-
clear without requiring that the entire program be restarted. Also, since the
purpose of DYNALAB is to allow user interaction with animated programs,
the E-machine had to be designed to be driven by an animator system that
controls the execution of programs and displays pertinent information dynam-
ically in animated fashion. This first phase was completed by Samuel Patton
in his Master’s thesis, The E-machine: Supporting the Teaching of Program
Fxecution Dynamics [Patton 89].

The second phase of the DYNALAB project was the implementation of an
emulator for the E-machine. This was accomplished by Michael Birch in his
Master’s thesis, An Emulator for the E-machine [Birch 90]. As the emulator
was implemented, Birch also included some modifications and extensions to
the E-machine.

The third phase of the DYNALARB project is the design and implementa-
tion of compilers for the E-machine. The first compiler—miniPascal, a subset
of ISO Pascal—was created by Frances Goosey and described in her Master’s
thesis A miniPascal Compiler for the FE-machine [Goosey 93]. Frances has
since extended her work to a nearly complete ISO standard Pascal compiler.
The second compiler—Ada/CS, a subset of Ada—was created by David Poole
and described in his Master’s thesis An Ada/CS Compiler for the E-machine
[Poole 94]. During the development of these compilers, the E-machine and
its emulator were again modified as practical considerations uncovered new

design issues.



Continuing DYNALARB’s third phase, an ANSI C subset compiler and this
thesis were written. The ANSI C compiler was developed using C++, and
takes advantage of its object oriented features. As happened during the de-
velopment of the previous two compilers, deficiencies in the E-machine were
uncovered and corrected.

The fourth phase of the DYNALARB project, also currently in progress, is
the design and implementation of program animators that drive the
E-machine and display programs in dynamic, animated fashion under con-
trol of the user. The first animator—OSF /Motif—was created by Craig Pratt
and described in his Master’s thesis An OSF/Motif Program Animator for
the DYNALAB System [Pratt 95]. An animator for the Microsoft Windows
platform is currently being developed by Chris Boroni.

The DYNALAB project will not end at this point. A compiler for C++
is in the initial stages of planning. Also, work will continue on the compilers
and animators already developed to make them more functional. Algorithm
animation (as opposed to program animation—-see for example, [Brown 88-1,
Brown 88-2]) is also a planned extension to DYNALAB. In fact, the DY-
NALAB project will likely never be finished, as new ideas and pedagogical

conveniences are incorporated as they become apparent.

1.2 Preview

This thesis consists of ten chapters and two appendices. Chapter 1 presents an
overview of the thesis and the DYNALAB project in general. Since a thorough
understanding of the target virtual computer’s architecture and instruction
set is required for compiler development, a summary of the E-machine and
its emulator is given in chapter 2. Much of the information in chapter 2 is

taken from the Patton, Birch, Goosey, and Poole theses. During the ANSI C



compiler development process, it became apparent that some new E-machine
features and modifications were necessary or desirable. These changes have
been made and are so noted in chapter 2. For a more detailed explanation of
the E-machine and its emulator, the reader is referred to the above-mentioned
theses.

Chapter 3 provides a brief introduction to the ANSI C compiler. Chap-
ter 4 covers the Purdue Compiler Construction Tool Set (PCCTS), the scan-
ner/parser tool used in the development of the ANSI C compiler. Chapter 5
describes the ANSI C compiler’s symbol table. Chapter 6, chapter 7, and
chapter 8 describe some of the unique problems, and their solutions, faced by
the ANSI C compiler when implementing declarations, expressions, and state-
ments, respectively. Chapter 9 covers E-machine code generation. Finally,
chapter 10 draws some conclusions and gives some ideas for future enhance-
ments.

Since there are many E-code examples used throughout this thesis, ap-
pendices A and B are included for completeness. Appendix A describes the
E-machine instruction set and appendix B describes the E-machine addressing
modes. Both of these appendices are adapted from the Patton, Birch, Goosey,

and Poole theses.



Chapter 2

The E-machine

This chapter is included to provide a description of the E-machine and is
adapted from chapter 5 of Patton’s thesis [Patton 89], chapters 1, 2, and 3 of
Birch’s thesis [Birch 90], chapters 2 and 3 of Goosey’s thesis [Goosey 93], and
chapter 2 of Poole’s thesis [Poole 94]. This chapter is a summary and update
of information from those four theses (much of the material is taken verbatim).

The E-machine is a virtual computer with its own machine language, called
E-code. The E-code instructions are described in appendix A; these instruc-
tions may reference various E-machine addressing modes, which are described
in appendix B. The E-machine’s task is to execute E-code translations of high
level language programs. The miniPascal language was the first language to
be translated into E-code, Ada/CS was the second, and now ANSI C is the
third. The real purpose of the E-machine is to support the DYNALAB pro-
gram animation system, as described more fully in [Birch, et al 95], [Ross 91],
[Ross 93], [Ross 95], and in Patton’s thesis [Patton 89], where it was called a

“dynamic display system.”



2.1 E-machine Design Considerations

The fact that the E-machine’s sole purpose is to support program anima-
tion was central to its design. The E-machine operates as follows. After the
E-machine is loaded with a compiled E-code translation of a high level lan-
guage program, it awaits a call from a driver program (the animator). A call
from the animator causes a group of E-code instructions, called a packet, to
be executed by the E-machine. A packet contains the E-code translation of
a single high level language construct, or animation unit, that is to be high-
lighted by the animator. An animation unit could be a complete high level
language assignment statement, for example
A= X + 2%Y;

which is to be highlighted as a result of a single call from the animator; the
corresponding packet would be the F-code instructions that translate this as-
signment statement. Another animation unit could be just the conditional part
of an if statement; in this case the corresponding packet would be just the
E-code instructions translating the conditional expression. It is the compiler
writer’s responsibility to identify the animation units in the source program
so that corresponding E-code packets can be generated. After the E-machine
executes a packet, control is returned to the animator, which then performs
the necessary animation activities before repeating the process by again call-
ing the E-machine to execute the packet corresponding to the next animation
unit. This process will be described in more detail later in this chapter.

Since the E-machine’s purpose is to enable program execution dynamics of
high level programming languages to be displayed easily by a program anima-

tor, it had to incorporate the following:

o structures for easy implementation of high level programming language
constructs;



e a simple method for implementing functions and parameters;

e the ability to execute either forward or in reverse.

The driving force in the design of the E-machine was the requirement for
reverse execution. The approach taken by the E-machine to accomplish reverse
execution is to save the minimal amount of information necessary to recover
just the previous E-machine state from the current state in a given reversal
step. The E-machine can then be restored to an arbitrary prior state by doing
the reversal one state at a time until the desired prior state is obtained. This
one-step-at-a-time reversal means that it is necessary only to store successive
differences between the previous state and the current state, instead of storing
the entire state of the E-machine for each step of execution.

One other aspect of program animation substantially influenced the design
of the reversing mechanism of the E-machine. Since the animator is meant
to animate high level language programs, the E-machine actually has to be
able to effect reversal only through high level language animation units in one
reversal step, not each low level E-machine instruction in the packet that is the
translation of an animation unit. This observation led to further efficiencies in
the design of the E-machine and the incorporation of two classes of E-machine
code instructions, critical and non-critical. An E-machine instruction within
a packet is classified as eritical if it destroys information essential to reversing
through the corresponding high level language animation unit; it is classified
as non-critical otherwise. For example, in translating the animation unit cor-
responding to an arithmetic assignment statement, a number of intermediate
values are likely to be generated in the corresponding E-code packet. These
intermediate values are needed in computing the value on the right-hand side
of the assignment statement before this value can be assigned to the variable

on the left-hand side. However, the only value that needs to be restored during



reverse execution as far as the animation unit is concerned is the original value
of the variable on the left-hand side. The intermediate values computed by
various E-code instructions are of no consequence. Hence, E-code instructions
generating intermediate values can be classified as non-critical and their effects
ignored during reverse execution. It is the compiler writer’s responsibility to
produce the correct E-code (involving critical and non-critical instructions)
for reverse execution. However, it should also be noted that the E-machine
has the flexibility to accurately execute E-code in reverse, instruction by in-
struction (rather than a packet at a time), by simply designating each E-code

instruction as critical.

2.2 E-machine Architecture

Figure 2.1 shows the logical structure of the E-machine. A stack-based archi-
tecture was chosen for the E-machine; however, a number of components that
are not found in real stack-based computers were included.

Program memory contains the E-code program currently being executed by
the E-machine. Program memory is loaded with the instruction stream found
in the CODESECTION of an E-machine object code file, which is described
later in this chapter. The program counter contains the address in program
memory of the next E-code instruction to be executed. The previous program
counter, needed for reverse execution, contains the address in program memory
of the most recently executed E-code instruction.

Packet memory contains information about the translated E-code packets
and their corresponding source language animation units. Packet memory,
which is loaded with the information found in the PACKETSECTION of an
E-machine object code file, essentially effects the “packetization” of the E-code

program found in source memory. Packet information includes the starting and
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10

ending line and column numbers of the original source program animation unit
(e.g, an entire assignment statement, or just the conditional expression in an
if statement) whose translation is the packet of E-code instructions about
to be executed. Other packet information includes the starting and ending
program memory addresses for the E-code packet, which are used internally
to determine when execution of the packet is complete. The packet register
contains the packet memory address of the packet information corresponding
to either the next packet to be executed, or the packet that is currently being
executed.

Source memory holds an array of strings, each of which is a copy of a line
of source code for the compiled program. Source memory is loaded from the
E-machine object file’s SOURCESECTION at run time and is referenced only
by the animator for display purposes.

The variable registers are an unbounded number of registers that are as-
signed to source program variables, constants, and parameters during com-
pilation of a source program into E-code. Each identifier name representing
memory in the source program will be assigned its own unique variable regis-
ter in the E-machine. For example, in a C program, a variable named Result
might be declared in the current program scope and another variable—also
named Result—might be declared in another enclosing function scope. The
compiler will assign a unique variable register to each of these two variables.
Once a variable is assigned a variable register, the register remains associated
with the variable for the duration of the program’s compilation and subse-
quent execution, regardless of whether the variable is currently active or not
(this life-long association of a variable with its register is necessary for reverse
execution).

The information held in a variable register consists of the corresponding
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variable’s size (e.g., number of bytes) as well as a pointer to a corresponding
variable stack. FEach variable stack entry, in turn, holds a pointer into data
memory, where the actual variable values are stored. The variable stacks are
necessary because a particular variable may have multiple associated instances
due to its being declared in recursive functions. In such instances, the top of a
particular variable’s register stack points to the value of the current instance
of the associated variable in data memory; the second stack element points
to the value of the previous instantiation of the variable, and so on. Again,
register stacks are needed for reverse execution. The E-machine’s data memory
represents the usual random access memory found on real computers. The
E-machine, however, uses data memory only to hold data values (it does not
hold any of the program instructions).

The string space component of the E-machine’s architecture contains the
values of all string literals and enumerated constant names encountered during
the compilation of a program. The string space is loaded with the information
contained in the STRINGSECTION of an E-machine object file. Currently,
this string space is used only by the animator when displaying string constant
and enumerated constant values. A more detailed discussion of the interaction
of the string space and variable registers is found later in this chapter.

The label registers are another unique component of the E-machine required
for reverse execution. There are an unbounded number of these registers,
and they are used to keep track of labeled E-code instructions. Each E-code
LABEL instruction is assigned a unique label register at compile time. The
information held in a label register consists of the program memory address
of the corresponding E-code LABEL instruction as well as a pointer to a label
stack. A label stack essentially maintains a history of previous instructions

that caused a branch to the label represented by the label register in ques-
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tion. During reverse execution, the top of the label stack allows for correct
determination of the instruction that previously caused the branch to the label
instruction.

The index register is found in real computers and serves the same purpose
in the E-machine. In many circumstances, the data in a variable is accessed
directly through the appropriate variable register. However, in the translation
of a high level language data structure, such as an array or record, the address
of the beginning of the structure is in a variable register; to access an individual
data value in the structure, an offset—stored in the index register—is used.
When necessary, the compiler can therefore utilize the index register so that
the E-machine can access the proper memory location via one of the indexed
addressing modes.

The address register is provided to allow access to memory areas that are
not accessible through variable registers. For example, a pointer in C is a
variable that contains a data address. Data at that address can be accessed
using the address register via the appropriate E-machine addressing mode.
The address register can be used in place of variable registers for any of the
addressing modes.

As in many real computers, the results of all arithmetic and logical op-
erations are maintained on the evaluation stack; the evaluation stack register
keeps track of the top of this stack. For example, in an arithmetic operation,
the operands are pushed onto the evaluation stack and the appropriate opera-
tion is performed on them. The operands are consumed by the operation and
the result is pushed onto the top of the stack. An assignment is performed by
popping the top value of the evaluation stack and placing it into the proper
location in data memory.

The return address stack (or call stack) is the E-machine’s mechanism for
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implementing function calls. When a subroutine call is made, the program
counter plus one is pushed onto the return address stack. Then, when the
E-machine executes a return from subroutine instruction, all it has to do is
load the program counter with the top of the return address stack. A pointer to
the top of the return address stack is kept in the return address stack register.

The save stack contains information necessary for reverse execution. When-
ever some critical information (as determined by the execution of a critical
instruction) is about to be destroyed, the required information is pushed onto
the save stack. This ensures that when backing up, the instruction that most
recently destroyed some critical information can be reversed by retrieving that
critical information from the save stack. The save stack register points to the
top of the save stack.

The dynamic scope stack allows the animator to determine all currently
active scopes for memory display. The animator must be able to display vari-
able values associated with the execution of a packet both from within the
current invocation of a function and from within the calling scope(s). That
is, the animator must have the ability to illustrate a program’s run time stack
during execution. The Static Scope Table, which is loaded into static scope
memory from an E-machine object file’s STATSCOPESECTION, provides the
animator with the information relevant to the static nature of a program (e.g.,
information pertaining to variable names local to a given function). However,
the specific calling sequence resulting in a particular invocation of a function
is obviously not available in the static scope memory.

To keep track of the set of active scopes at any point during program ex-
ecution, the dynamic scope stack provides the dynamic chain as found in the
run time stack of activation records generated by most conventional compil-

ers. (Even though the E-machine’s return address stack could have been used
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to hold this information, a separate dynamic scope stack was included in the
E-machine architecture for clarity.) At any given point during program execu-
tion, the dynamic scope stack entries reflect the currently active scopes. Each
dynamic scope stack entry—corresponding to a program name or a function
name—contains the index of the Static Scope Table entry describing that name
(i.e., a static scope name). Once these indices are available, the animator can
then use the Static Scope Table information to determine the variables whose
values must be displayed following the execution of a packet. The animator
needs access to the entire dynamic scope stack in order to display all pertinent
data memory information following the execution of any given packet. The
dynamic scope stack register points to the top of the dynamic scope stack.

In order to handle reverse execution, a save dynamic scope stack was added
to the E-machine architecture. This stack records the history of routines that
have been called and subsequently returned from. The save dynamic stack
register points to the top of this stack.

Finally, the CPU is what executes E-machine instructions. Tt is the
E-machine emulator originally programmed by Birch and is described in the

next section.

2.3 E-machine Emulator

The E-machine emulator was designed and written by Michael Birch and is
described in his thesis [Birch 90]. The emulator’s design essentially follows
the design of the E-machine presented in the previous sections of this chapter.
The emulator was written in ANSI Standard C for portability and has been
compiled on a variety of hardware platforms ranging from an MS-DOS based
IBM PC with a variety of C/C+4+4 compilers, to Silicon Graphics and DEC
Alpha workstations using GNU C and the system C compilers. Within the
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complete DYNALAB environment, the emulator acts as a slave to the program
animator, executing a packet of E-code instructions upon each call from the

animator.

2.4 E-machine Object File Sections

The E-machine emulator defines the object file format that must be generated
by a compiler. A single E-code object file ready for execution on the E-machine
consists of eight sections, which may occur in any order. Each section is
preceded by an object file record containing the section’s name followed by a
record that contains a count of the number of records in that particular section.
Fach of these eight sections (whose names are shown in capital letters) holds
information which is loaded into a corresponding E-machine component at run

time as follows:
o the HEADERSECTION, which is loaded into animator memory;
o the CODESECTION, which is loaded into program memory;
o the PACKETSECTION, which is loaded into packet memory;

o the VARTABLESECTION, which is loaded into the size information as-

sociated with the variable registers;

o the LABELSECTION, which is loaded into the label program address

information associated with the label registers;
o the SOURCESECTION, which is loaded into source memorys;
o the STATSCOPESECTION, which is loaded into static scope memory;

o the STRINGSECTION, which is loaded into the string space.

The file sections are described below.
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2.4.1 The HEADERSECTION

The HEADERSECTION is a repository for specific information about the
program, such as the E-machine version number and the compiler version
number with which the program was compiled, as well as general information
about the program itself (e.g., a description of the program such as “this
program illustrates a linked list”). The HEADERSECTION is not yet fully
implemented and new things will find their way into this section as time goes

on.

2.4.2 The CODESECTION

The CODESECTION contains the translated program—the E-code instruc-
tion stream. Even though the instruction stream can be thought of as a stream
of pseudo assembly language instructions, the instructions are actually con-
tained in an array of C structures, and are loaded from the CODESECTION
into the E-machine’s program memory at run time. Each E-code instruction

structure contains the following information:
e an operation code (e.g., push or pop);
e the instruction mode (critical or non-critical);

e The data type of the operand (e.g., I indicates INTEGER);

e Either a numeric data value or an addressing mode.

2.4.3 The PACKETSECTION

The PACKETSECTION consists of packet structures describing source pro-
gram animation units and their translated E-code packets. These structures
are loaded into the E-machine’s packet memory at run time. FEach packet

structure contains the following information:
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o the packet’s starting and ending E-code instruction addresses in program
memorys;

o the starting and ending line and column numbers in the original source
file of the program animation unit corresponding to the packet;

e an index into the current scope block of the Static Scope Table (discussed
later in this chapter);

e a variable describing how the animator should display information when
the packet is executed in the forward direction (discussed later in this
chapter);

e a variable describing how the animator should display information when
the packet is executed in the reverse direction (discussed later in this
chapter);

e a variable register number that will hold the result of the execution of a
conditional expression;

e two variables that are used in conjunction with each other to allow the
user to step over language constructs such as functions and loops.

2.4.4 The VARIABLESECTION

The VARIABLESECTION consists of structures describing the variable reg-
isters used by the compiled program. A variable register structure consists of
a single field that contains the size of the data represented by the register. For
example, on a DOS machine where the addressable unit is a byte, a variable
representing a 32-bit integer would have a size of 4. This information is used

to initialize the size information held in the E-machine’s variable registers.

2.4.5 The LABELSECTION

The LABELSECTION consists of label structures describing the label numbers
generated by the compiled program. A label structure consists of a single field

that contains the program address at which the corresponding label is defined.
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This information is used to initialize the label program address information

held in the E-machine’s label registers.

2.4.6 The SOURCESECTION

The SOURCESECTION contains a copy of the source program being exe-
cuted. FEach record in this section corresponds to a line of original source
code, and is loaded into the E-machine’s source memory at run time. Source
memory is referenced only by the animator for display purposes. The animator
references source memory via packet memory information that describes corre-
lations between the currently executing E-code packet and the corresponding
source program animation unit. The animator references the packet struc-
ture fields that hold starting and ending line and column numbers in source

memory to determine the animation unit to highlight.

2.4.7 The STATSCOPESECTION

The STATSCOPESECTION was originally named the SYMBOLSECTION in
Birch’s thesis. It contains a complex structure—the Static Scope Table (called
the symbol table in Birch’s thesis)—which is used by the animator to determine
the variable values that should be displayed upon execution of a packet. The
name was changed to Static Scope Table in order to avoid confusion with the
compiler’s symbol table. The STATSCOPESECTION records are loaded into
the E-machine’s static scope memory at run time.

The Static Scope Table is logically divided into scope blocks, each of which
describes identifiers declared within a single static scope of the source program.
A more complete discussion of this section is found later in this chapter. Each
Static Scope Table entry contains the following information:

e the name of the identifier being described (e.g., a variable name or a
function name);
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upper and lower bounds (for array variables);

the index of the static scope table entry containing the next array index
bounds (for multidimensional arrays);

the offset value (for record fields);

an enumerated value indicating the data type (e.g., INTEGER, RECORD,
or STRING);

the record size (for arrays of records);
a pointer to this entry’s parent Static Scope Entry;

a pointer to the child of this entry (e.g., if this static scope entry describes
a function, this field would hold the index of the first entry in the static
scope block describing the variables declared local to the function);

a variable register number (for variable names);

a number statically assigned to program and functions entries; this num-
ber is used in determining the dynamic scoping level at execution time;

a value denoting whether a variable name is an array, and if so, whether
it is static or dynamic;

a value that is an index into the string space (used by variables that are
enumerated types or strings);

a value describing the index type of an array variable (e.g. integer,
enumerated, or character). In C, enumerated types and characters are
treated as integers. However, languages such as Pascal and Ada have
stronger type checking, and thus this field is needed.

2.4.8 The STRINGSECTION

The STRINGSECTION contains the values of string literals and enumerated

constant names. The contents of the STRINGSECTION are loaded into the

E-machine’s string space at run time. The string space allows the animator

to have dynamic access to the names of an enumerated type as well as the

internal numeric values corresponding to the names. The animator can also

retrieve the values of string constants from the string space.
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2.5 E-machine Compilation Considerations

Many of the compilation concerns confronting E-machine compiler writers are
the same as those faced by writers of compilers for conventional machines.
There are, however, several unique factors that must be addressed when com-

piling for the E-machine’s animation environment, including:

o identification and translation of program animation units into E-code
packets;

e generation of the Static Scope Table;
e providing access to names associated with enumerated type variables;

o identifying critical and non-critical E-code instructions.

2.5.1 Program Animation Units and E-code Packets

As briefly described earlier in this chapter, the animation of a high level
language program is accomplished by dividing its source code into program
“chunks” called animation units. The compiler is responsible for isolating a
source program’s animation units. Fach animation unit, in turn, must be
translated into a group—or packet—of F-code instructions along with corre-
sponding descriptions of the animation unit and its translated E-code packet
via a packet structure.

When a high level language program is animated, the animator begins ex-
ecution by displaying the first several lines of the source code and highlighting
the first animation unit in the program. The animator then awaits a response
from the user. When the user responds, the animator calls the E-machine to
execute the currently highlighted animation unit of the program. Actually,
what the E-machine executes is the packet of instructions corresponding to
the animation unit. When the E-machine has completed execution of the in-

structions contained in the packet, control is returned to the animator. The
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animator then performs various animation tasks (e.g., displaying pertinent
data memory values) and then again awaits a user response before repeating
this process by highlighting the next animation unit and so forth. Thus, two
of the challenging tasks facing the compiler designer are identifying animation
units and properly translating them into E-code packets for successful anima-
tion. The following two sections present an example program to illustrate how

the C compiler accomplishes these two tasks.

2.5.2 Identifying Program Animation Units

The compiler identifies individual animation units as it is parsing the high
level language source code. Consider the C program in figure 2.2 (the num-
bers on the left correspond to line numbers in the source program file). For
this program, the ANSI C compiler identifies the twenty-four animation units
shown in figure 2.3 (the numbers on the left correspond to each animation
unit’s associated packet structure, as discussed in the next section). These an-
imation units will be successively highlighted (in the original source program
of figure 2.2) by the animator as it performs the animation of the program. It
should be noted that the determination of animation units is arbitrary and can
vary from one compiler to another based on subjective esthetics of program
animation. As can be seen from this example, an animation unit can corre-
spond to a “chunk” of source code representing a single keyword, an entire

program statement, the conditional part of an if statement, and so forth.

2.5.3 Translating Program Animation Units into E-code
Packets

Once the compiler has identified an animation unit, it must then translate

this unit into a corresponding packet of E-code instructions along with an
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0 1int a;

1

2 1int funcl (int numl, int num2)
3 A

4 int temp;

5

6 temp = numl;

7 numl = num2;

8 num2 = temp;

9

10 return numl + num2 * 8;
11 %

12

13 void main ()

14 A

15 int b =9, ¢ = 6;

16

17 a = funcl (b, c);

18

19 if (a > c)
20 {
21 int 1i;
22
23 for (1 = 0; 1 <= 4; ++1)
24 a -= b--;
25 }
26 %}

Figure 2.2: Source Code for Program Samp1
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int a;

int funcl (int numl, int num?2)
{

int temp;

temp = numl;

numl = num2;

num2 = temp;
return numl + num2 * 8;

OCONOPWN—-O

void main ()

10 A

11 int b =9, ¢ = 6;
12 a = funcl (b, c);
13 if

14 (a > ¢)

15 A

16 int 1i;

17 for
18 (1
19 1 K<

0;
4,
20 ++1
b-

II ~

22}
23 %

Figure 2.3: Animation Units Identified in Program Samp1
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associated descriptive packet structure. Thus, compilation of the example
given in figure 2.2 would result in the generation of thirty-eight E-code packets
and thirty-eight corresponding packet structures. Fourteen of these packets
have no corresponding source code—a situation explained later—so there are
actually only twenty-four packets with associated source code. Figure 2.4
shows the pseudo assembly language representation of the E-code instructions
generated for the C program shown in figure 2.2. The numbers shown on
the left in figure 2.4 correspond to program memory addresses (instruction
numbers).

Table 2.1 shows the array of packet structures—called the Packet Table—
describing the individual packets resulting from the translation of the program
of figure 2.2. The PacketNumber field (column) is included for clarity—it is
not actually part of the Packet Table. The first two fields in the Packet Ta-
ble (StartAddr and EndAddr) give the starting and ending addresses in pro-
gram memory of the E-code packet. The next four fields (StartLine, StartCol,
EndLine, and EndCol) demark the physical location of the packet’s corre-
sponding program animation unit in the source program array. The
Scopelndex field in the Packet Table is discussed in the next section of this
chapter. The final two fields (DisplayForward and DisplayReverse) provide
additional information necessary for animating an animation unit. Three
additional fields are not shown in table 2.1—TestResultVar, PktType, and
PktScope. These fields were omitted because they are not used by the ANSI
C compiler yet.

As might be guessed by the fact that there are twenty-four source animation
units and thirty-eight packets, not every packet must correspond to a part of
the source code. There are several different ways of displaying packets, which

the animator determines by examining the DisplayPkt field of the current
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0 pushd c, DS19 53 popd [ 106 br c, L9

1 inst c, VO 54 return c 107 1label c, Li1

2 inst c, V1 55 1label c, L5 108 push c, I, V10
3 inst c, V2 56 pushd c, DS16 109 pop c, I, VO
4 inst c, V3 57 nop c 110 push c, I, V4
5 br c, L15 68 inst c, Vi0 111 push c, I, VO
6 label c, LO 59 push c, I, CI9 112 sub c, I

7 br c, L3 60 pop c, I, V10 113 pop c, I, V4
8 1label c, L1 61 inst c, Vit 114 push c, I, V4
9 call c, L5 62 push c, I, CI6 115 push c, I, V10
10 1label c, L2 63 pop c, I, Vi1l 116 push c, I, CI1
11 br c, L16 64 push c, I, V10 117 sub c, I

12 1label c, L3 65 push c, I, Vi1l 118 pop c, I, V10
13 inst c, V4 66 call c, L4 119 pop c, I, VO
14 push c, I, CIO 67 label c, L6 120 br c, L7

15 pop c, I, V4 68 push c, I, V5 121 label c, L12

16 br c, L1 69 pop c, I, V4 122 uninst c, Vi2

17 1label c, L4 70 push c, I, V4 123 popd c

18 pushd c, DS15 71 pop c, I, VO 124 br c, Li14

19 inst c, V6 72 nop c 125 1label c, L13

20 inst c, V7 73 push c, I, V4 126 1label c, L14

21 pop c, I, V7 74 push c, I, Vil 127 push c, I, CIO
22 pop c, I, V6 75 gtr c, I 128 cast c, I, C
23 nop c 76 cast c, B, I 129 pop c, C, V9
24 inst c, V8 77 push c, I, CIO 130 uninst c, V10

25 push c, I, V6 78 eql c, I 131 uninst c, Vi1l

26 pop c, I, V8 79 brt c, L13 132 popd [

27 push c, I, V8 80 pushd c, DS11 133 return c

28 pop c, I, VO 81 inst c, Vi2 134 label c, L15

29 push c, I, V7 82 br c, L8 135 inst c, V9
30 pop c, I, Vé 83 1label c, L7 136 push c, I, CIO
31 push c, I, Vé 84 br c, L10 137 cast c, I, C
32 pop c, I, VO 85 1label c, L8 138 pop c, C, V9
33 push c, I, V8 86 push c, I, CIO 139 inst c, V5
34 pop c, I, V7 87 pop c, I, V12 140 push c, I, CIO
35 push c, I, V7 88 push c, I, Vi2 141 pop c, I, V5
36 pop c, I, VO 89 pop c, I, VO 142 br c, LO
37 push c, I, Vé 90 1label c, L9 143 label c, L16
38 push c, I, V7 91 push c, I, V12 144 uninst c, VO
39 push c, I, CI8 92 push c, I, CI4 145 wuninst c, V1
40 mult c, I 93 leql c, I9 146 uninst c, V2
41 add c, I 94 cast c, B, I 147 uninst c, V3
42 pop c, I, V5 95 push c, I, CIO 148 wuninst c, V9
43 uninst c, V6 96 eql c, I 149 uninst c, Vb
44 uninst c, V7 97 brt c, L12 150 uninst c, V4
45 uninst c, V8 98 br c, Li1 151 popd [
46 popd [ 99 label c, L10
47 return c 100 push c, I, V12
48 push c, I, CIO 101 push c, I, CI1
49 pop c, I, V5 102 addd c, I

50 uninst c, V6 103 pop c, I, V12

51 uninst c, V7 104 push c, I, V12

52 uninst c, V8 105 pop c, I, VO

Figure 2.4: E-code Instructions Resulting from Compilation of Program Samp1



Packet | Start | End | Start | Start | End | End | Scope | Display | Display
Number | Addr | Addr | Line | Col | Line | Col | Index | Forward | Reverse
0 0 5 -1 -1 -1 -1 0 00 00
1 6 7 -1 -1 -1 -1 0 00 00
2 8 9 -1 -1 -1 -1 0 00 00
3 10 11 -1 -1 -1 -1 0 00 00
4 12 16 0 0 0 5 1 07 07
5 17 22 2 0 2 29 2 07 07
6 23 23 3 0 3 0 2 07 07
7 24 24 4 3 4 11 3 07 07
8 25 28 6 3 6 14 3 07 07
9 29 32 7 3 7 14 3 07 07
10 33 36 8 3 8 14 3 07 07
11 37 46 10 3 10 25 3 07 06
12 47 47 -1 -1 -1 -1 2 00 01
13 48 54 11 0 11 0 2 07 07
14 55 56 13 0 13 11 0 07 07
15 57 57 14 0 14 0 0 07 07
16 58 63 15 3 15 19 2 07 07
17 64 71 17 3 17 19 2 07 07
18 72 72 19 3 19 4 2 07 07
19 73 79 19 6 19 12 2 07 07
20 80 80 20 6 20 6 0 07 07
21 81 81 21 9 21 14 1 07 07
22 82 82 23 9 23 11 1 07 07
23 83 83 -1 -1 -1 -1 1 01 00
24 84 84 23 9 23 11 1 07 07
25 85 89 23 13 23 19 1 07 07
26 90 98 23 21 23 27 1 07 07
27 99 106 23 29 23 32 1 07 07
28 107 107 -1 -1 -1 -1 1 00 00
29 108 119 24 12 24 20 1 07 07
30 120 120 -1 -1 -1 -1 1 00 00
31 121 121 -1 -1 -1 -1 1 01 00
32 122 123 25 6 25 6 2 07 07
33 124 124 -1 -1 -1 -1 2 00 00
34 125 126 -1 -1 -1 -1 2 00 00
35 127 133 26 0 26 0 3 07 07
36 134 142 -1 -1 -1 -1 3 00 00
37 143 151 -1 -1 -1 -1 0 01 00

Table 2.1: Packet Table Resulting from Compilation of Program Samp1
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packet. The DisplayPkt of the packet structure is an 8-bit field made up by

combining the following several flags together:

e Update variable display after execution when going forward;

e Pause before execution of this packet when going forward;

Highlight the source code for this packet when going forward;

Update variable display after execution when going backward;

Pause before execution of this packet when going backward;

Highlight the source code for this packet when going backward.

The standard display packet would have all these flags set. Packets without
Highlight-Forward, Pause-Forward, Highlight-Backward, and Pause-Backward
are effectively “invisible” and are executed automatically by the animator.
These “invisible” packets are very useful for situations in which there is no
source code animation unit for the corresponding E-code being executed. For
example, in the packets in figure 2.4 for the source code in figure 2.2, packets
12 and 23, among others, are invisible. Neither of these two packets has a
corresponding animation unit in the source code.

TestResultVar is a field that was added to further facilitate program ani-
mation. This field is the number of a variable register that holds the result of
a conditional expression for the animator to display. For example, execution
of the expression

if (j<5 && 'k>=5 || flag)
would be difficult for a user to follow. The compiler would generate code to
store the result of the conditional expression evaluation in a variable register
and set the TestResultVar to that register number. The animator may use
this variable register to display the result (0 or 1), making understanding the

program simpler.
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PktType and PktScope are two fields that were again added to facilitate
program animation. These fields allow the user to step over programming
language constructs such as functions and loops. For example, consider the

following code:

for (i=0; i<10000; i++)
{

}
It would be very time consuming if the user had to step through all of the

code associated with this for loop. The PktType and PktScope fields provide
the animator with the information necessary to allow the user to step over

constructs (such as the loop above) if desired.

2.5.4 Generation of the Static Scope Table

The compiler writer must also provide information describing all of the data
memory variables that the animator must display. This information is provided
in the Static Scope Table, a linear array which is, in turn, logically divided
into numerous scope blocks. Each scope block describes the identifiers (e.g.,
variable names and function names) declared in a single static scope in a
program. Even though this information is obtained from the compiler’s symbol
table, the generation of the Static Scope Table is not a straightforward task
due to scope nesting characteristics of many high level languages.

Table 2.2 shows the Static Scope Table that is generated as a result of com-
piling the C program given in figure 2.2. The Entry (entry number) column,
or field, is included for clarity—it is not part of the Static Scope Table. Six
fields—upper bound, lower bound, next index, offset, record size, and string
index—were omitted because they were all unused. This Static Scope Table

consists of five scope blocks—a block describing the identifiers declared within
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the scope of function funci (entries 0-4), a block describing the identifiers
declared within the scope of the unnamed block that is the then part of the
if statement (entries 5-T7), a block describing the identifiers declared within
the scope of function main (entries 8-12), a block describing the identifiers de-
clared within the scope of the program (entries 13-17), and a bootstrap block

describing the program entry (entries 18-20).

| Entry | Id Name | Type | Parent | Child | Var Reg | Proc Num
Scope block describing function funcl
0 HEADER 13 - - -
1 numl INTEGER - - 6 -
2 num?2 INTEGER - - 7 -
3 temp INTEGER - - 8 -
4 END - - - -
Scope block describing unnamed block for then part of if statement
5 HEADER 8 - - -
6 1 INTEGER - - 12 -
7 END - - - -
Scope block describing function main
8 HEADER 13 - - -
9 b INTEGER - - 10 -
10 c INTEGER - - 11 -
11 *Unnamed*Block* | PROCEDURE - 5 - 1
12 END - - - -
Program scope block
13 HEADER 18 - - -
14 a INTEGER - - 4 -
15 funcl FUNCTION - 0 2
16 main FUNCTION - 8 - 3
17 END - - - -
Bootstrap scope block
18 HEADER - - - -
19 *C*Program* PROGRAM - 13 - 0
20 END - - - -

Table 2.2: Static Scope Table Resulting from Compilation of Program Samp1

The bootstrap block contains three entries: the HEADER and END entries
that delimit the scope block and a PROGRAM entry containing information
about the program itself. There are two fields of interest in the PROGRAM

entry; these are the child pointer field (Child) and the procedure number
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field (ProcNum). The Child field contains the index of the first entry of the
scope block describing the identifiers declared in the program. The ProcNum
field contains a compiler-generated number that is used in conjunction with
dynamic scoping.

The entries in the scope block describing the identifiers declared in the
program scope consist of the HEADER and END delimiter entries as well
as entries describing each of the scope’s identifiers. The Parent field of the
HEADER entry in this scope block contains the index of the first entry of the
bootstrap scope block. This scope block’s two FUNCTION entries—describing
functions funcl and main—use the Child field, which contains the index of
the first entry of the scope block describing the identifiers declared in those
functions. The ProcNum field is also used in the FUNCTION entries; it
contains a compiler-generated number to be used in conjunction with dynamic
scoping.

The entries in the scope block describing the identifiers declared in func-
tion main consist of the HEADER and END delimiter entries as well as entries
describing each identifier declared in the scope, in this case the function’s lo-
cal variables and an unnamed block. The Parent field of the HEADER entry
of this scope block contains the index of the first entry of the scope block
containing the function’s declaration. The Child field of the unnamed block
entry contains the index of the first entry of the scope block containing the
identifiers declared within. Again, the ProcNum field is used by this entry
and is a compiler-generated number to be used in conjunction with dynamic
scoping.

The entries in the scope block describing the unnamed block associated
with the then part of the if statement consist of the HEADER and END

delimiter entries as well as entries describing each identifier declared in the
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scope, in this case the unnamed block’s local variables. The Parent field of the
Header entry of this scope block contains the index of the first entry of the
scope block containing the unnamed block’s declaration.

The entries in the scope block describing the identifiers declared in func-
tion funci consist of the HEADER and END delimiter entries as well as entries
describing each identifier declared in the scope, in this case the function’s pa-
rameters and a local variable. The Parent field of the HEADER entry of this
scope block contains the index of the first entry of the scope block containing
the function’s declaration.

Simple variables such as integers, floats, and characters, may be simply
described in the static scope table by a name, type, and variable register.
Aggregate types, such as arrays and records, need more description. Consider,

for example, the array declaration

int a[10];
In order for the animator to correctly display the elements of this array, it
would have to know about the element type of the array and its ranges. The
same may be said for records—the animator needs to know the names and
types of the record’s elements. Separate scope blocks are made to describe
records and arrays greater than one dimension.
A static scope block for the above array could be as shown in table 2.3.

Unused fields are omitted from the table.

En Id Array | Upr | Lwr Type Var | Proc Index
try Name Type | Bnd | Bnd Reg | Num Type
0 | ProcName - - - HEADER - 1 -
1 a STATIC 9 0 INTEGER 3 - INTEGER
2 - - - - END - - -

Table 2.3: Static Scope Block for One Dimensional Array

The array variable a at position 1 defines the type of the array (STATIC), the
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element type of the array (INTEGER), the constant upper and lower bounds
of the array, and the index type of the array (INTEGER).

A two-dimensional array is more complex. Because there is only one set
of fields for each dimension, further dimensions must be placed in their own
scope blocks. Suppose we had the following array declaration, whose static

scope table is shown in table 2.4 (again, unused fields are omitted).

int a[10][2];
The first dimension is described by the variable a in position 4 and the second
dimension’s static scope position is the NextIndex field of the structure, which

is 0. The second dimension is described in the static scope block from 0 to 2.

En Id Array | Upr | Lwr | Nxt Type Var | Proc Index
try Name Type | Bnd | Bnd | Idx Reg | Num Type
0 - - - - - HEADER - - -
1 - STATIC 1 0 - - - - INTEGER
2 - - - - - END - - -
3 | ProcName - - - - HEADER - 1 -
4 a STATIC 9 0 0 INTEGER 3 - INTEGER
5 - - - - - END - - -

Table 2.4: Static Scope Block for Two Dimensional Array

Record static scope blocks and their variables are handled a bit differently.
Static scope entries for record variables have their child field set to the static
scope table position of their types. By following these child indices, the ani-
mator can find all necessary record type information. For example, suppose

we have the record

struct Complex
{
float real_part;
float imag_part;
+;

struct Complex cl, c2;
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The static scope table for the record and its variables is shown in table 2.5
(again, unused fields are not shown). The record variables in entries 5 and
6 contain the record size and a child index set to the static scope block that
describes their record type. Entry 0 is the start of the block describing record
Complex. Each record member has its offset set to the byte offset from the

start of the record.

En Id Off Type Rec | Ch | Var | Proc
try Name set Siz | ild | Reg | Num

0 Complex - HEADER - - - -

1 real _part 0 REAL - - - -

2 | imag_part 4 REAL - - - -

3 - - END - - - -

4 | ProcName - HEADER - - - 1

5 cl - RECORD 8 0 7 -

6 c2 - RECORD 8 0 8 -

7 - - END - - - -

Table 2.5: Scope Block of Record Complex

2.5.5 The ProcNum Field

As each program, function, and unnamed block is encountered during com-
pilation, it is assigned a unique procedure number. The identifier names are
referred to as static scope names in the following discussion. The procedure
number is produced by a counter variable in the compiler’s semantic analysis
module. Thus, the procedure number assigned to a C program entry is always
0. The next static scope name declaration encountered in the program would
be assigned the procedure number 1, and so on. A static scope name’s proce-
dure number is stored as one of its symbol table attributes. This number is
then placed in the ProcNum field of the Static Scope Table entry describing
the static scope name.

The animator uses the ProcNum field in conjunction with the dynamic

scope stack when determining the dynamics of program execution. The use of
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this field is best explained by an example. The program shown in figure 2.5
contains a recursively called function (Fact). That Fact is recursive implies
that for any given call to function Fact, the animator must be able to de-
termine the depth of the pertinent data memory values associated with the
variables declared in function Fact, as well as the depths of any variables in
the calling (program) scope. These values are retrieved by querying the ap-
propriate variable stacks, as discussed earlier in this chapter. Thus, upon the
final recursive call to function Fact, the animator should be able to display
data memory values as shown in figure 2.6. The arrow (==>) pointing to the

statement if (n == 0) indicates where animation proceeds.

int Fact (int n)

{
if (n == 0)
return 1;
, else return n * Fact(n-1);

void main ()

int n = 3, nfact;

nfact Fact(n);

Figure 2.5: Source Code for Program Ftrl

After the E-machine has been loaded with the E-code translation of a
source program, the animator queries the E-machine to determine the total
number of static “procedure” scopes that are described in the Static Scope
Table. The Static Scope Table for the example in figure 2.5 is shown in ta-
ble 2.6. The animator then dynamically allocates a procedure count array that
contains an entry corresponding to each of these scopes. Thus, for the program

shown in figure 2.5, this array has three entries. Entry 0 corresponds to the
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int Fact (int n) -=-=- *C*Program* -=-=-
{ -=-=- pain -=-=-
==> if (n == 0) n=3
return 1; nfact is undefined
else return n * Fact(n-1); -=-=- Fact -=-=-
} n=3
-=-=- Fact -=-=-
void main () n=2
-=-=- Fact -=-=-
int n = 3, nfact; n=1
-=-=- Fact -=-=-
nfact = Fact(n); n=20
}

Figure 2.6: Animation Display After Final Recursive Call of Function Fact

program scope, entry 1 corresponds to function Fact, and entry 2 corresponds
to function main. During program animation, the animator sets the values of
the procedure count array entries to reflect the current number of active calls
to the corresponding function. (This means that the animator reinitializes
the values in the procedure count array every time control is passed to the
animator.) At the same time, the E-machine’s dynamic scope stack contains
a history of active scopes, with the Static Scope Table entry number of the
most current scope being the value at the top of this stack.

Now, consider the animation of the current example. Suppose the program
has executed to the point that it is in the final recursive call to function
Fact. When the animator begins displaying data memory variables after the
execution of the packet translating the animation unit

if (n == 0)
the procedure count array and the dynamic scope stack are in the state shown
in figure 2.7. The values in the procedure count array indicate that the pro-
gram Ftrl has one active “call”, the function main has one active “call”, and

that function Fact has four active “calls”. In this example, the animator
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| Entry | Id Name | Type | Parent | Child | Var Reg | Proc Num |
Scope block describing function Fact
0 HEADER 7 - - -
1 n INTEGER - - 5 -
2 END - - - -
Scope block describing function main
3 HEADER 7 - - -
4 n INTEGER - - 7 -
5 nfact INTEGER - - 8 -
6 END - - - -
Program scope block
7 HEADER 11 - - -
8 Fact FUNCTION - 0 - 2
9 main FUNCTION - 3 - 1
10 END - - - -
Bootstrap scope block
11 HEADER - - - -
12 *C*Program* | PROGRAM - 7 - 0
13 END - - - -

Table 2.6: Static Scope Table Resulting from Compilation of Program Ftrl

begins its retrieval of data memory values by examining the value at the bot-
tom of the dynamic scope stack. The bottom stack value is 12, which means
that the animator now examines the twelfth entry in the Static Scope Table.
This entry is a PROGRAM entry describing Ftrl. The ProcNum field in the
PROGRAM entry has the value 0. Next, the animator will examine entry 0
in the procedure count array to determine the depth of the variables to be
displayed for this invocation of the program scope. Since the program scope
cannot be called recursively, this value will always be 1. Thus, when the an-
imator retrieves the values of the variables described in the program’s child
scope block, it will instruct the E-machine to retrieve the data memory values
associated with the top of the appropriate variable stacks. After these val-
ues have been displayed, the animator decrements the value in entry 0 of the
procedure count array.

Next, the animator examines the value in entry 1 in the dynamic scope

stack. This value is 9, corresponding to the ninth entry in the Static Scope
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Procedure Dynamic
Count Scope
Array Stack

(Program Ftrl) 0 1
(Function main) 1 1
(Function Fact) 2 4

12 (bottom)

U W N — O
SO0 |0 |00 |©

Figure 2.7: Procedure Count Array and Dynamic Scope Stack

Table. This entry, whose ProcNum field has the value 1, describes function
main. The animator then examines entry 1 in the procedure count array. The
current value in this entry is 1, indicating that the animator should instruct
the E-machine to retrieve data memory values associated with the first level
of the appropriate variable stacks when displaying variable values described in
the function’s child scope block. These values reflect the function’s variable
values resulting from its initial call from the program scope. The animator
then decrements the value in entry 1 of the procedure count array.

Finally, the animator examines the value in entry 2 in the dynamic scope
stack. This value is 8, corresponding to the eighth entry in the Static Scope
Table. This entry, whose ProcNum field has the value 2, describes function
Fact. The animator then examines entry 2 in the procedure count array. The
current value in this entry is 4, indicating that the animator should instruct
the E-machine to retrieve data memory values associated with the fourth level

of the appropriate variable stacks when displaying variable values described in
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the function’s child scope block. These values reflect the function’s variable
values resulting from its initial call from the program scope. The animator
then decrements the value in entry 1 of the procedure count array. The an-
imator continues this process three more times—until the procedure count
array associated with the function Fact is 0, resulting in the display shown in

figure 2.6.

2.5.6 The Scopelndex

There must also be some way to relate a high level language program’s dynamic
nature to the static information found in the Static Scope Table. That is, the
animator must be able to determine all of the active scopes at any given
point during execution of the program. The animator can then display the
data memory values pertinent to the most current scope as well as the data
memory values associated with the scopes in the calling sequence leading to
the most current scope.

The animator retrieves dynamic scoping information from the F-machine’s
dynamic scope stack. For instance, suppose that the animator has just high-

lighted the animation unit

numl = num?2;
in function funci of figure 2.8. After receiving a response from the user, the
animator then calls the E-machine to execute the E-code packet corresponding
to this animation unit. When the E-machine returns control to the animator,
the animator must then determine the relevant data memory values to be
displayed following any changes that resulted from execution of the packet.
This task is accomplished by querying the E-machine’s dynamic scope stack,
which contains a history of the active scopes. In this example, the dynamic

scope stack currently consists of three entries, each containing an index into
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the Static Scope Table shown in table 2.2. The top entry contains the value
15, the second entry contains the value 16, and the bottom entry contains the
value 19. These values indicate to the animator that function funci (Static
Scope Table entry number 15) is the most current active scope, function main
(entry number 16) is the calling scope of funci, and that program Sampl
(entry number 19) is the calling scope of main. By using the child pointers
associated with these three Static Scope Table entries, the animator can now
determine the appropriate data memory values to be displayed. Figure 2.8
shows a possible animation resulting from the execution of this animation
unit. The arrow (==>) pointing to the statement num1 = num2; indicates

where animation proceeds.

The Scopelndex field of the packet structure can now be explained. Sup-
pose that the E-machine has completed execution of the packet corresponding

to the animation unit

{

found on line 3 of figure 2.2 and has returned control to the animator. The
animator, via a query of the dynamic scope stack, now determines that the
values of the variables contained in the outer program scope, the function main
scope, and the function funci scope should be displayed. The variables listed
in the block describing funcl’s scope variables are numl, num2, and temp.
However, at this point in the program’s execution, variable temp has not yet
been declared, and thus should not be displayed. The Scopelndex field of the
packet structure associated with the above animation unit contains the value 2.
This value indicates to the animator that it should only display data memory
values for entries numbered 0, 1, and 2, in the window associated with the

most current active scope block which in this case starts at scope table index
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int a; -=-=- *xC*Program* -=-=-
a =20
int funcl (int numl, int num?2) -=-=- main -=-=-
{ b=29
int temp; c =6
-=-=- funcl -=-=-
temp = numi; numl = 9
==> numl = num?2; num2 = 6
num2 = temp; temp = 9
return numl + num2 * 8;
¥

void main ()
int b =9, ¢ = 6;
a = funcl (b, c);
if (a > ¢)
int 1i;

for (1 = 0; 1 <= 4; ++1)
a -= b--;

Figure 2.8: Animation Display After Execution of temp = numi;
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0. Hence, the animator will display the values of the variables num1 and num?2

(0 stands for the HEADER entry), but not the value of the variable temp.

2.5.7 Translating Enumerated Type Variables

Ordinarily, only the internal numeric value of an enumerated type variable
is required in translated object code. It is desirable, however, for program
animation purposes to have the animator display the enumerated constant
name rather than just the internal numeric value of a variable of an enumerated
type. Thus, when translating an enumerated type variable, the compiler must
provide a way for the animator to relate the variable’s internal numeric value
to its corresponding constant name. This task is facilitated by the string space
component of the E-machine. The string space holds the enumerated constant
names (as well as string literals) defined in a C program.

The String Section consists of a statically allocated character array con-
taining all of the enumerated constant names defined in a C program, as well
as the values of any string literals declared in the source program (which may
also need to be displayed by the animator). When the compiler encounters
the definition of a string literal or an enumerated constant name, it stores that
name in the string section.

When a program is animated, the String Section portion of the E-code file
is loaded into the E-machine’s string space. The string space is then accessed
by the animator for displaying string constants and enumerated variable val-
ues. For example, upon completion of execution of the program in figure 2.9,
the animator can display the enumerated type variable values as shown in
figure 2.10. The arrow (==>) pointing to the statement } indicates where

animation proceeds.
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main ()

{

typedef enum

MON, TUES, WED, THUR, FRI

} Days;

typedef enum
{

WEEK, MONTH
} Frequency;

Days 0ffDay, PayDay;
Frequency PayFreq;

0ffDay
PayDay

WED;
FRI;

PayFreq = WEEK;

Figure 2.9: Source Code for Program Payroll

main ()
typedef enum

MON, TUES, WED, THUR, FRI
} Days;
typedef enum

WEEK, MONTH
} Frequency;

Days 0ffDay, PayDay;
Frequency PayFreq;

0ffDay = WED;
PayDay = FRI;
PayFreq = WEEK;

-=-=- *xC*Program* -=-=-
-=-=- main -=-=-

0ffDay = WED

PayDay = FRI

PayFreq = WEEK

Figure 2.10: Animation Display After Execution of Program Payroll
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2.5.8 Identifying Critical and Non-critical E-code In-
structions

The final major E-machine compilation concern is that of identifying the
E-code instructions that would destroy information that is needed (i.e., crit-
ical) for successful reverse execution. Since the immediate concern for the
ANSI C compiler was to produce a usable compiler, the current version of the
compiler treats all E-code instructions as critical. For example, the animation
unit
a -= b--;

in figure 2.2 corresponds to the packet of E-code instructions numbered 108
through 119 in figure 2.4. All of these instructions are marked critical via the
“c” operand. Only instructions 109, 113, 118, and 119 are actually critical,
however, as only they result in critical information being destroyed. That
is, the old value of those variable registers is being destroyed by popping a
new value into them. For reverse execution, the old values of these variable
registers must be saved before a new value is popped into them. Thus, the
packet of E-code instructions corresponding to this animation unit could be

generated as shown in figure 2.11, where the operand “n” indicates a non-

critical instruction.
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Figure 2.11: E-code Instructions Translating a -
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Chapter 3

Introduction to the ANSI C
Compiler

The ANSI C programming language was established as a standard by the
American National Standards Institute in 1983. It was originally developed
and distributed freely with the UNIX operating system. It has fast become
one of the most popular programming languages because of its simplicity and
power. Nowadays, with C compilers available for almost every platform, and
with the extension of C to C++4, the popularity of the language will no doubt
continue to rise.

The grammar I used for implementing the ANSI C compiler was taken from
[Kernighan 88]. This book was co-authored by Brian Kernighan and Dennis
Ritchie, two of the orignal “inventors” of the C programming language. It is

an excellent reference and has served me well.

3.1 Unimplemented Features of ANSI C

Because of the complexity involved in designing a compiler, especially one
for the E-machine, only part of the ANSI C language was implemented in this
thesis. The following are the ANSI C features that have not been implemented

yet:

45
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e Enumerated Types
e Structures
e Unions
e Bit-fields
e Pointers
e Function Prototypes
e Arrays
e Strings
o Typedefs
e Gotos
e Preprocessor Directives
e Standard C Library Functions
e The following storage class specifiers, type specifiers, and type qualifiers:
— register
— extern
— short
— long
— unsigned
— signed

— const

volatile

Of course, when one of these features is implemented, it will have to be
integrated into the current compiler so that it works with all other features
that are currently present. For example, when structures are implemented,
they will have to be made to work with features such as sizeof operator,
explicit casts, and function return types, all of which are part of the current

compiler.
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3.2 Overview of the ANSI C Compiler

The ANSI C compiler was developed using C+4++. There are currently
twenty-three classes that make up the ANSI C compiler. The following is
a breakdown of where these classes fit into the overall picture. Each of the
classes are discussed in depth in subsequent chapters.

There is one class that is used for describing the ANSI C parser, which is

covered in chapter 4. The class is:

e ANSICParser

There are seven classes that are used for symbol table management, which
is covered in chapter 5. The classes are:

e Symbol

e SymbolTable

e CrossLinks

e HashTable

e Specifier

e Declarator

e BaseSpecOrDecl

There are two classes that are used for handling declarations, which are

covered in chapter 6. The classes are:

e GlobalVarBranch

e StaticVariable

There are two classes that are used for handling statements, which are

covered in chapter 7. The classes are:

e SwitchStatement
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e JumpStatements

There are three classes that are used for handling expressions, which are
covered in chapter 8. The classes are:

e PostIncDec

o ImplicitFuncCall

e FvaluationStack

There are eight classes that are used for E-machine code generation, which
is covered in chapter 9. The classes are:

e HeaderSection

e StringSection

e SourceSection

o LabelSection

e VariableSection

o CodeSection

o PacketSection

e StatScopeSection



Chapter 4

Parsing ANSI C Using PCCTS

4.1 Overview of PCCTS

The ANSI C compiler discussed in this thesis was developed using a relatively
new compiler construction tool called the Purdue Compiler Construction Tool
Set (PCCTS), which was developed by Terrence Parr and Will Cohen [Parr 93].
PCCTS generates an integrated scanner and parser from an extended BNF
specification describing the ANSI C tokens and grammar. Unlike other con-
temporary bottom up compiler tools, such as yacc [Mason 90], PCCTS gener-
ates an LL(k) recursive descent parser. Also unlike yace, PCCTS isn’t yet a
standard compiler construction tool, but it is freely available with no restric-
tions. It is written in ANSI C and has been used with numerous operating
systems, including Unix, DOS, and OS/2.

Since PCCTS is relatively new and doesn’t yet have the assumed famil-
iarity of yacc, the next few sections will describe, in part, using PCCTS to
scan and parse ANSI C. There are a few things to note. PCCTS doesn’t use
two specification files—one for the scanner and one for the parser—as does
lex/yacc. Both specifications are within one file, although PCCTS does use
two separate programs to generate the scanner and the parser. Because the

parser generated by PCCTS is recursive descent, for a large grammar (such as

49
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for ANSI C), the resulting parser will be large, much larger than an LR parser

generated by yacc, for example.

4.1.1 The PCCTS Scanner

Unlike the case with lex, a popular scanner tool, the PCCTS scanner specifi-
cation is an integrated part of the parser specification. To describe a token, C

preprocessor-like definitions are used, as shown in figure 4.1.

#token WHILE "while"
#token SHIFTLEFT m\<\g"

Figure 4.1: Example PCCTS Token Specifications

Both WHILE and SHIFTLEFT will act as tokens, or terminals, within the parser’s
grammar. More complex tokens are described using regular expressions, as is

the case for ANSI C decimal integers, shown in figure 4.2.

#token DECIMALINT "[1-9] [0-9]*"

Figure 4.2: PCCTS Token Specification for ANSI C Integers

Lexclasses

An interesting feature of the PCCTS scanner is the lexclasses. With separate
lexclasses, under different circumstances the scanner will have entirely different
behavior, as if there were multiple scanners that trade control. For example,

the following four lexclasses are used by the ANSI C scanner in this thesis:

e A lex class for scanning ANSI C comments (e.g. — /* comment */).
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o A lex class for scanning ANSI C strings (e.g. — “string”).
e A lex class for scanning ANSI C characters (e.g. — ‘c’).
e A lex class for scanning everything else in ANSI C (known as the lan-
guage lexclass).
The language lexclass starts out with control. When this lexclass finds the
start of a comment, string, or character, it passes control to the appropriate
lexclass described above. After the comment, string, or character has been

scanned by that lexclass, control is passed back to the language lexclass.

4.1.2 The PCCTS Parser

PCCTS uses extended BNF rules to generate a parser to recognize a language.
A general form of a PCCTS rule is shown in figure 4.3. By convention, termi-
nals (tokens) are capitalized and nonterminals are all lowercase. Tokens can
be directly inserted into the parser specification without having to create a

separate named scanner token (as in figure 4.1).

rule_1 : rule_2 Terminal ;

Figure 4.3: A General PCCTS Grammar Rule

As an example, the rule specifications to recognize parameter 1list and
parameter declaration_1ist are shown in figure 4.4. In figure 4.4, the ... in
double quotes is an unnamed token. Being able to place tokens directly into the
parser specification makes the specification more readable. COMMA is a named
token. Non-terminalsinclude parameter 1ist, parameter declaration list,
and parameter declaration. Fach non-terminal used in a rule must have its

own rule definition somewhere else in the grammar.
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parameter_list : parameter_declaration_list { coMma "..." } ;

parameter_declaration_list : parameter_declaration

(

COMMA parameter_declaration

0¥
Figure 4.4: Example PCCTS Grammar Rules

Grammar Actions

What use would a parser be if there were no way to perform a rule action?
Just as yacc uses {} to delimit actions, PCCTS uses <<>>. Some simple
actions are shown in figure 4.5, which involves generating actions during the

parse of the parameter declaration list rule of figure 4.4.

parameter_declaration_list :
<< printf ("entering parameter_declaration_list."); >>

parameter_declaration
<< printf ("found a parameter_declaration!”); >>

(

COMMA parameter_declaration
<< printf ("found another parameter_declaration!”); >>

) *

<< printf ("leaving parameter_declaration_list."); >>

3

Figure 4.5: PCCTS Grammar Rule with Actions

Actions may appear anywhere within a rule (even before the first rule

element). An action may even appear outside a rule.
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Rule Parameters

Communication between rules is performed in two ways—by way of a tradi-
tional semantic stack and by a new method: rule parameters. Because PCCTS
generates recursive descent compilers, each rule is a C4++ method of the parser
class (described later), and PCCTS allows the user to pass parameters to the
rules (methods), as shown in figure 4.6. Processing of the postfix_expression
rule of figure 4.6 in turn requires processing of the argument_expression list

rule, which has a pass-by-reference parameter—mamely num_parameters.

postfix_expression :
<< int num_parameters = 0; >>
IDENTIFIER LPAREN

{
argument_express ion_list [&num_paramet ers]
t

RPAREN

3

argument_expression_list[int *num_parameters]
assignment_expression
<< num_parameters++; >>

(
COMMA assignment_expression
<< num_parameters++; >>

) *

Figure 4.6: PCCTS Grammar Rule with Parameters

Accessing Token Information

Of course, during the parsing phase, it is often necessary to retrieve information
about tokens. PCCTS offers the following methods to retrieve information

about a particular token:
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o getText()—retrieves the text (lexeme) of the specified token.
e line()—retrieves the line number that the specified token is on.

e begcol()—retrieves the column number that the first character of the
specified token is on.

e endcol()—retrieves the column number that the last character of the
specified token is on.

A token is specified by LT(x), where “x” tells the scanner how many tokens
ahead to look into the token buffer. Thus, LT(1)->1ine() would get the line
number associated with the next look-ahead token in the token buffer, while
LT(3)->getText () would get the text associated with the third look-ahead

token in the token buffer.
Syntactic Predicates

Often, when designing an LL(k) compiler for a large language, it is impossible
to remove all of the conflicts from the grammar. PCCTS offers a tool known as
a syntactic predicate to help deal with just this problem. A syntactic predicate,
in essence, allows an unbounded look-ahead for certain rules. This differs from,
say, a standard LL(2) parser, which allows a look-head of at most two tokens
at any one time. Syntactic predicates are often used on rules where it is
very difficult, if not impossible, to remove an LL conflict from the rule. For
example, in figure 4.7 a syntactic predicate is used to remove an ambiguity
from the rule external declaration. The syntactic predicate (enclosed in the
()7 structure) is evaluated to determine whether the function definition
rule or global declaration rule should be expanded. The synactic predicate
can look ahead an unbounded number of tokens to determine which rule to
expand. Without the syntactic predicate, this rule would be ambiguous in a

standard LL(2) parser because, with just two tokens of look-ahead, the parser
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could not determine which rule it should expand. For example, consider the

token sequence

unsigned long int

With only two tokens of look-ahead to work with, the parser could not de-
termine if this token sequence is the start of a global variable declaration, as
in

unsigned long int a, b, c;

or the start of a function definition, as in

unsigned long int funcil ()

{

by

Thus, the parser would not be able to determine which of the two rules
(function definition or global declaration) to expand.

For efficiency reasons, PCCTS uses the unbounded look-ahead approach
only for rules with syntactic predicates in them. Otherwise, it uses standard
LL(k) parser techniques, where “k” is defined ahead of time by the compiler

writer.

external_declaration :
({ declaration_specifiers } declarator LBRACE)?
function_definition
| global_declaration

Figure 4.7: Example PCCTS Syntactic Predicate
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The Parser Class

Older versions of PCCTS produced straight C code. Recently, newer versions
of PCCTS have been released that produce C++ code. These newer ver-
sions require that a parser class be created to hold the rules of the grammar.
Figure 4.8 shows an example of a parser class. The rule start will become
a public method of the class ExampleParserClass. The variable aftera will
become a private member of the class ExampleParserClass, while the method
inBetween will become a protected member of the same class. Thus, through
the parser class, the compiler writer is able to take advantage of C++ niceties
such as information hiding and encapsulation.

The ANSI C compiler described in this thesis was developed with one of the
newer versions of PCCTS (1.31) that produces C++ code, and thus required
a parser class. The parser class of this compiler is named ANSICParser.

There is one final point to note about PCCTS. A compiler requires a lot
of semantic processing. If all of the code to handle the semantic processing
were put into the file containing the grammar, this grammar file would become
messy very quickly. Thus, much of the semantic processing code of the ANSI
C compiler resides in separate files, with member methods of the parser class
accessing this code, as needed, from within the grammar. For example, in
figure 4.8, the method inBetween would contain some semantic processing
code associated with the rule start. Furthermore, this code (the method

inBetween) would reside in a separate file.

4.2 Changes Made to PCCTS

Since PCCTS is so new, it is not yet entirely stable. In developing the ANSI C
compiler described in this thesis, a few changes had to be made to the PCCTS
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class ExampleParserClass

{
<<

private :
int aftera = 0;
protected :
int inBetween (int);
>>

start : (Ma'")x*
<< aftera = 1; inBetween (aftera); >>
(”b”)*

3

Figure 4.8: Example PCCTS Parser Class

code to get things to work properly. Following is a list of these changes:

o In the file generic.h, the value of the constant ZZLEXBUFSIZE was
changed from 2000 to 10000. This was done because more member func-
tions had to be declared in the parser class than the buffer could hold,

causing a warning message to be generated by PCCTS.

o In the file config.h, the name of the constant WORDSIZE was changed
to AWORDSIZE. This was done because the E-machine has a variable

of the same name, causing the warning message to be generated by the

compiler.

o In the files AToken.h, DLexerBase.C, and DLexerBase.h, code was added

to keep track of column information (beginning and ending) used for

highlighting purposes during program animation. This was done by
adding the methods begCol and endCol to the classes in these files. The
methods begCol and endCol mimic the code that is already present in

PCCTS for keeping track of line information for tokens.



Chapter 5
The ANSI C Symbol Table

The symbol table is the heart of a compiler. Not surprisingly, then, it is
also one of the most complicated parts of a compiler. Most of the ideas for
the ANSI C symbol table were taken from [Holub 90]. One major difference,
though, is that Holub implemented his symbol table in C, whereas the ANSI C
compiler’s symbol table is implemented in C4++. The following seven sections

detail the seven classes used to implement the ANSI C symbol table.

5.1 The Symbol Class

The ANSI C symbol table can be thought of as a collection of symbols (objects)
of type Symbol. Fach symbol describes a single declaration found while parsing
a C program—such as a variable or a function. Because there is a lot of
information associated with each symbol, the Symbol class is quite large. The
following is a detailed description of the Symbol class.

The data members of the Symbol class are as follows:

e name—name of the symbol. For example, if the symbol describes a
function, name would contain the name of the function.

e name space—name space that the symbol belongs to. This is needed
because C has several different name spaces (that do not interfere with
each other) to which an identifier can belong. For a detailed discussion
of C name spaces, see appendix A, section 11.1 of [Kernighan 88].

38
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next_bucket_element—a pointer to the next symbol in the symbol’s bucket.
This data member is closely tied in with the HashTable class (discussed
below).

prev_bucket_element—a pointer to the previous symbol in the symbol’s
bucket. This data member is closely tied in with the HashTable class
(discussed below).

next_cross_link—a pointer to the next symbol in the symbol’s cross link.
This data member is closely tied in with the CrossLinks class (discussed

below).

first_type—a pointer to the first element in a linked list of types that
describes the type of the symbol. This data member is closely tied in
with the Specifier, Declarator, and BaseSpecOrDecl classes (all discussed
below).

return_type—if the symbol is a function symbol, return_type points to
another symbol that describes the return type of the function.

first_parameter—if the symbol is a function symbol, first_parameter points
another symbol (the first one in a linked list of parameters) that describes
the first parameter of the function.

next_parameter—if the symbol is a parameter symbol, next_parameter
points to a symbol that describes the next parameter.

var_reg—if the symbol is a variable symbol, var_reg holds the E-machine
variable register number associated with the variable.

pushd_pos—if the symbol is a function or unnamed block symbol, then
pushd_pos holds the position in the code section where the PUSHD in-
struction associated with the function or unnamed block is located.

label_num-——if the symbol is a function symbol, label num holds the label
number associated with the start of the function in E-code.

The methods of the Symbol class are as follows:

e Copy—makes a copy of all of the data members and puts them into a
new object (symbol).

o SetName—sets the contents of the name data member.

o GetName—gets the contents of the name data member.
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SetNameSpace—sets the contents of the name_space data member.
GetNameSpace—gets the contents of the name_space data member.

SetNextBucketElement—sets the contents of the next_bucket_element
data member.

GetNextBucketElement—gets the contents of the next_bucket_element
data member.

SetPrevBucketElement—sets the contents of the prev_bucket_element
data member.

GetPrevBucketElement—gets the contents of the prev_bucket_element
data member.

SetNextCrossLink—sets the contents of the next_cross_link data mem-

ber.

GetNextCrossLink—gets the contents of the next_cross_link data mem-

ber.

AddTypeToBegOfList—adds a new type to the beginning of the linked
list of types. The new type is an object of type BaseSpecOrDecl. Thus,
either a specifier or a declarator is added to the linked list of types.

AddTypeToEndOfList—adds a new type to the end of the linked list of
types. The new type is an object of type BaseSpecOrDecl. Thus, either
a specifier or declarator is added to the linked list of types.

GetFirst Type—gets the contents of the first_type data member. In other
words, this method gets the first element in the linked list of types.

GetLastType—gets the last element in the linked list of types.
SetReturnType—sets the contents of the return_type data member.
GetReturnType—gets the contents of the return_type data member.

AddParameterToEndOfList-adds a new parameter symbol to the end of
the linked list of parameters.

GetFirstParameter—gets the contents of the first_parameter data mem-
ber. In other words, this method gets the first element in the linked list
of parameters.
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o GetNextParameter—gets the contents of the next_parameter data mem-

ber.

o GetNumOfParameters—gets the number of parameters in the linked list
of parameters.

o AddParametersToSymbolTable—adds each parameter in the linked list of
parameters to the symbol table. It does this by making a copy of the
parameter and then adding that copy to the current scope. This allows
the parameters of a function to be treated as if they were declared as
local variables.

o SetVarReg—sets the contents of the var_reg data member.

o GetVarReg—gets the contents of the var_reg data member.

e SetPushdPos—sets the contents of the pushd_pos data member.

o GetPushdPos—gets the contents of the pushd_pos data member.
o SetLabelNum—sets the contents of the label num data member.
o GetLabelNum—gets the contents of the label num data member.

o GetSize—gets the E-machine size associated with the type of the symbol.
For example, for a symbol being used to describe an integer variable,

GetSize would return EM_INTEGERSIZE.

o GetType—gets the E-machine type associated with the type of the sym-
bol. For example, for a symbol being used to describe an integer variable,

GetType would return EM_INTEGER.

e DumpContents—prints the contents of all of the data members.

Figure 5.2 shows what the symbol for the function declaration on line 2 of
figure 5.1 would look like. For the symbol with the name Anderson, the values
for the fields next_bucket_element, prev_bucket_element, and next_cross_link
are shown in figure 5.3. Any other blank field in figure 5.2 is either unused or

assigned a default value.
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int Todd;

float Anderson (unsigned char BuzzCut, long int *Stewart[50])

{

int Beavis;

if (expression)

{
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int BuzzCut, McVicker;

Figure 5.1: Source Code for Partial C Program Cartoon

Symbol

name- Anderson
name_space-

next_bucket_element-
prev_bucket_element-

next_cross_link-

Declarator

num_elements-
next_type- Nil

type- FUNCTION

first_type

return_type

first_parameter
next_parameter-
var_reg-
pushd_pos- 33
label_num- 6

Symbol

Specifier

name- BuzzCut
name_space-

next_cross _link-

next_bucket_element-
prev_bucket_element-

storage-
type- CHAR

sign- UNSIGNED
length-
constant-

first_type
return_type-
first_parameter-

volatile-
next_type- Nil

next_parameter
var_reg- 4
pushd_pos-
label_num-

Symbol

name-
name_space-

next_bucket_element-
prev_bucket_element-

next_cross_link-
first_type
return_type-
first_parameter-
next_parameter-
var_reg- 3
pushd_pos-
label_num-

Symbol

name- Stewart
name_space-

next_bucket_element-
prev_bucket_element-

next_cross_link-

Specifier
storage-
type- FLOAT
sign-
length-
constant-
volatile-
next_type- Nil

Declarator

type- ARRAY
num_elements- 50

type- POINTER
num_elements-
next_type

first_type
return_type-
first_parameter-
next_parameter- Nil
var_reg- 5
pushd_pos-
label_num-

Specifier
storage-
type- INT
sign-

length- LONG
constant-
volatile-
next_type- Nil

Figure 5.2: Symbol Structure of Function Declaration Anderson
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5.2 The SymbolTable Class

As previously discussed, the ANSI C symbol table is a collection of symbols
of type Symbol. The symbols are organized within the symbol table using
a combination of two different structures—a hash table (implemented by the
HashTable class discussed below) and a set of cross link structures (imple-
mented by the CrossLinks class discussed below). The hash table provides
fast access to symbols in the symbol table. The cross links provide access to
symbols in the symbol table based on their scoping level. The cross links are
needed because the hash table is oblivious to scoping rules. Yet, if the symbol
table were implemented with just cross links, searching for a symbol would be
inefficient, since each cross link structure is a linked list. Thus, the hash table
solves the major problem associated with cross links and visa-versa. Figure 5.3
shows what the ANSI C compiler’s symbol table would look like for the partial
C program found in figure 5.1. All fields except for name, next_bucket_element,
prev_bucket_element, and next_cross_link are omitted from the symbols.

The SymbolTable class provides the interface to the ANSI C symbol table.
Most of the actual work is done by methods in the Symbol, Crosslinks, and
HashTable classes. The following is a list of the methods associated with the
SymbolTable class:

e PushScope—creates a new scope in the symbol table.

o FakePushScope—fakes the creation of a new scope in the symbol table.
This method is needed by the SwitchStatement class so that it can read-
just the dynamic scope of a case or default label. The reason for this
readjusting is discussed in chapter 7, where the SwitchStatement class
is covered in detail.

e PopScope—removes the current scope (including all of the symbols in
that scope) from the symbol table.

o FakePopScope—fakes the removal of the current scope from the symbol
table. This method is needed by the JumpStatements class so that
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Cross Links
Hash ! !
Table e : e
Symbol ;
name- Todd

next_bucket_element- Nil
prev_bucket_element- Nil
next_cross link -

Symbol ;
name- Anderson
next_bucket_element- Nil
prev_bucket_element- Nil
next_cross_link- Nil

Symbol Symbol

name- BuzzCut name- BuzzCut
next_bucket_element next_bucket_element- Nil
prev_bucket_element- Nil prev_bucket_element

next_cross link - next_cross link -

Symbol ? Symbol ; | symbol
name- McVicker

next_bucket_element
prev_bucket_element- Nil
next_cross_link- Nil

name- Beavis name- Stewart
next_bucket_element — next_bucket_element- Nil
prev_bucket_element : prev_bucket_element
next_cross_link- Nil : next_cross _link

Figure 5.3: Symbol Table Structure of Partial C Program Cartoon
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it can readjust the dynamic scope of a break, continue, or return
statement. The reason for this readjusting is discussed in chapter 7,
where the JumpStatements class is covered in detail.

GetScope—gets the number associated with the current scope of the
symbol table.

SetScope—sets the number associated with the current scope of the sym-

bol table.

GetScopelndex—gets the number of symbols in the current scope of the
symbol table.

AddSymbol—adds a symbol to the current scope of the symbol table.

SymbolInCurrScope—checks to see if a duplicate symbol is already present
in the current scope of the symbol table.

FindVariableSymbol—searches for a variable symbol in the symbol table.

FindFunctionSymbol—searches for a function symbol in the symbol ta-

ble.

DumpContents—prints the contents of all symbols in the symbol table.

5.3 The CrossLinks Class

As previously discussed, the ANSI C symbol table is a combination of a hash

table and a set of cross link structures. The CrosslLinks class, as its name

implies, provides the implementation for the cross links part of the ANSI

C symbol table. The following is a list of the methods associated with the

CrosslLinks class:

o PushScope—creates a new cross link structure.

o FakePushScope—fakes the creation of a new cross link structure by laying
down INSTs and PUSHDs. The reason for this method will become clear

when the SwitchStatement class is discussed in chapter 7.

e PopScope—removes the current cross link structure by removing every
symbol in the structure. As each symbol is encountered, the HashTable
class method DeleteSymbol is called so that the symbol is also removed
from the hash table.
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FakePopScope—fakes the removal of the current cross link structure by
laying down UNINSTs and POPDs. The reason for this method will

become clear when the JumpStatements class is discussed in chapter 7.
GetScope—gets the current number of cross link structures.
SetScope—sets the number of cross link structures.

GetScopelndex—gets the number of symbols in the current cross link
structure.

AddSymbol—adds a symbol to the current cross link structure. This
method then calls the HashTable class method InsertSymbol so that the
symbol also gets added to the hash table.

SymbollnCurrScope—checks to see if a symbol is in the current cross
link structure.

FindVariableSymbol—first, this method calls HashTable class method
FindSymbol. This performs a fast check of whether or not the variable
symbol is in the symbol table. If the symbol is in the symbol table,
it searches for the symbol using the cross link structures, starting at
the current cross link structure and working out towards the outer-most
cross link structure.

FindFunctionSymbol—searches through the outer-most cross link struc-
ture for a function symbol.

DumpContents—prints the contents of the every symbol in every cross
link structure.

5.4 The HashTable Class

As previously discussed, the ANSI C symbol table is a combination of a hash

table and a set of cross links. The HashTable class, as its name implies,

provides the implementation for the hash table part of the ANSI C symbol

table. The following is a list of the methods associated with the HashTable

e Hashlt—used to obtain a hash value from a key by applying a hash
function to it.
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o InsertSymbol—inserts a symbol into the hash table.
¢ FindSymbol—finds a symbol in the hash table.

o DeleteSymbol—removes a symbol from the hash table.

The hash table implemented by the HashTable class uses chaining as its
collision resolution strategy. Thus, the method Hashlt is used by the methods
InsertSymbol, FindSymbol, and DeleteSymbol to determine which hash table

bucket a particular symbol belongs to.

5.5 The Specifier Class

A variable declaration in C can be thought of as having two parts: a specifier
part (discussed here) and a declarator part (discussed in the next section).
The specifier part of a C variable declaration is a combination of the various
keywords used in describing the variable. For example, on line 2 of figure 5.1,
long and int are part of the specifier for the parameter Stewart. C keywords
associated with specifiers can be broken down into six classes—storage, type,
sign, size, constant (or not), and volatile (or not). All six classes share one
common trait—the attributes within a single class are mutually exclusive. In
other words, a specifier for a given variable declaration can contain only one
attribute from each of the six classes. It should be noted that specifier part for
a given variable declaration is constrained—there are only a limited number
of legal combinations of keywords that can be used. Thus, the specifier part of
a variable declaration can be represented by a single structure. The Specifier
class is used to control the attributes associated with this structure. Below is
a discussion of the methods that are part of the Specifier class. The methods
are grouped by use.

The following methods are used to set the storage of the specifier:
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SetAuto
SetRegister
SetStatic
SetExern

SetTypedef

The following methods are used to set the type of the specifier:

SetInt
SetFloat
SetDouble
SetChar
SetVoid
SetStruct
SetUnion

SetEnum

SetLabel

The following methods are used to set the sign of the specifier:

SetSigned

SetUnsigned

The following methods are used to set the size of the specifier:

SetShort

SetLong

The following method is used to set the specifier to be constant:

SetConstant

The following method is used to set the specifier to be volatile:
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e SetVolatile

The following methods can be used to retrieve the settings of the six at-
tributes of the specifier:
o GetStorage

o GetType

GetSign
o GetlLength
o GetConstant

GetVolatile

The following are general methods:

e Copy—makes a copy of the specifier.

e DumpContents—prints the settings of the six attributes of the specifier.

5.6 The Declarator Class

The declarator part of a C variable declaration is a combination of a variable
number of stars, brackets, and parentheses used in describing the variable. For
example, on line 2 of figure 5.1, * and [50] are part of the declarator for the
parameter Stewart. C has three types of declarators—pointers (identified by a
star), arrays (identified by brackets), and functions (identified by parentheses).
It should be noted that the declarator part for a given variable declaration is
not constrained—any number of stars, brackets, and parentheses are permitted
in any combination. Thus, the declarator part of a variable declaration can be
represented by a multitude of structures—one for each star, set of brackets,
and set of parentheses. The Declarator class is used to control the attributes
associated with one of these structures. Below is a discussion of the methods

that are part of the Declarator class. The methods are grouped by use.
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The following methods are used to set the type of the declarator:

SetArray
e SetNumFElements (used only if the declarator type is array).

e SetFunction

SetPointer

The following methods are used to retrieve the type of the declarator:
o GetType

e GetNumElements (can be used only if the declarator type is array).

The following are general methods:
o Copy—makes a copy of the declarator.

e DumpContents—prints the type of the declarator.

5.7 The BaseSpecOrDecl Class

Remember, from our discussion above, that the Symbol class has two methods
named AddTypeToBegOfList and AddTypeToEndOfList. These methods are
used to create a linked list structure that describes the type of a variable sym-
bol. Also, remember that the type of variable declaration has two parts—a
specifier part and a declarator part. Thus, the linked list structure describ-
ing the type of a variable must contain one object of type Specifier and can
optionally contain one or more objects of type Declarator.

The BaseSpecOrDecl class serves as a base class for the Specifier and
Declarator classes described in the previous two sections. The reason for its
existence is quite simple—there needed to be a way to enable two completely
different structures (namely, specifiers and declarators) to exist in the same

linked list. For example, in figure 5.2, the linked list of types for the parameter



71

Stewart has two declarator structures and one specifier structure, which are
all part of the same list. [Holub 90] allows specifier and declarator structures
to exist in the same class through the use of C unions. C++ offers a cleaner
solution—inheritance.

The BaseSpecOrDecl class contains code to implement a linked list. The
Specifier class contains code specific to specifiers while the Declarator class
contains code specific to declarators. Yet, since the Specifier and Declarator
classes are both derived from the BaseSpecOrDecl class, they both inherit the
same linked list code (from the BaseSpecOrDecl class). This allows objects of
the Specifier and the Declarator classes to exist in the same linked list.

The BaseSpecOrDecl class contains two methods to implement a linked
list—SetNextType and GetNextType. The BaseSpecOrDecl class also con-
tains one virtual function declaration for every method that is a member of
the Specifier or Declarator classes. These virtual function declarations are

needed because of the way that inheritance works.



Chapter 6

Declarations

The following C declarations were implemented in this compiler:

e variables (global and local) with:
— initializers
— type specifiers (int, float, double, char)

— storage classes (auto, static)
e functions with:

— parameters (int, float, double, char)

— return types (void, int, float, double, char)

e type names

Two declarations, in particular, needed special attention paid to them. One
was global variable declarations. The other was static variable declarations.
The following two sections discuss the two classes, GlobalVarBranch and
StaticVariable, that were developed to help deal with the problems posed by

these two declarations.

6.1 The GlobalVarBranch Class

In C, global variables are variables that are declared outside functions. For

example, in figure 6.1, the variables abc, def, ghi, and jk1 are all global

72
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variables. A global variable is accessible only to functions declared after it.
For example, the variables abc and def are accessible to both functions main
and funci. On the other hand, the variables ghi and jk1 are accessible only

to the function funci, not to main.

0 int abc, def;
1

2 int main ()

3

4 }

5

6 float ghi;

7 float jkI1;

8

9 void funcil ()
10 A{

11 %

Figure 6.1: Source Code for Program Globals

While developing the ANSI C compiler, it was decided that each statement
declaring a global variable(s) should be highlighted, one at a time, before the
main function is called. For example, in figure 6.1, the statement on line 0
should be highlighted first, followed by the statement on line 6, followed by
the statement on line 7, and finally the function main called (thus highlighting
the statement on line 2). The GlobalVarBranch class was developed to help
generate the code necessary to perform these jumps.

The GlobalVarBranch class has eight methods, which can be divided into

the following three groups based on use:
o Methods used to jump between global variable declarations:

— SetNewlLabel
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— SetPrevBranch
— PatchPrevBranch

e Methods used to jump to where main is called:

— SetCallToMainLabel
— PatchCallToMainBranch

e Methods used to jump to the last packet:

— SetLastPacketLabel
— SetLastPacketBranch
— PatchLastPacketBranch

The following three steps summarize how the methods within each of these
groups interact with each other. First, a branch instruction to a garbage label
number is generated. The position of this branch instruction is “remembered”
by calling the method Set...Branch. Second, when the label number that the
branch instruction is supposed to branch to is known, the method Set...Label
is called, thus “remembering” the label number. Finally, the Patch...Branch
method is called to patch up the branch instruction’s garbage label number

with the appropriate label number.

6.1.1 Methods Used to Jump Between Global Variable
Declarations

The following three methods provide the code necessary to jump from one
global variable declaration to the next.

The method SetNewLabel sets the label number associated with the top of
a global variable declaration. In figure 6.2, these labels are found on lines 12,
28, and 34.

The method SetPrevBranch sets the position of the branch instruction
that will branch to the above mentioned label. In figure 6.2, these branches

are found on lines 7, 19, and 33.
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The method PatchPrevBranch patches the above mentioned branch in-

struction so that it branches to the label set in SetNewLabel.

6.1.2 Methods Used to Jump to Where main is Called

The following two methods (along with the SetPrevBranch method described
above) provide the code necessary to jump from the last global variable dec-
laration to where main is called.

The method SetCallToMainlLabel sets the label number associated with
the call to main. In figure 6.2, this label is found on line 8. Notice that the
following line is the call to main.

Here, there is no need for a method to set the branch position as the
method SetPrevBranch discussed in the previous section does. This is because
the branch that branches to the label set in the method SetCallToMainLabel
should immediately follow the last variable declaration. Since the method
PatchCallToMainBranch (discussed below) is not called until after the entire
program has been parsed, this branch position is identical to the position set
by the last call to SetPrevBranch. In figure 6.2, the branch that branches
to the label associated with the call to main is found on line 39. Notice the
code associated with the last global variable declaration is directly above it
(lines 34-38).

The method PatchCallToMainBranch patches the above mentioned branch

instruction so that it branches to the label set in SetCallToMainLabel.

6.1.3 Methods Used to Jump to the Last Packet

The following three methods provide the code necessary to jump from the
position returned to after main has finished executing to the last packet. This

needs to be done because main does not have to be declared at the end of a C



76

source code file.

The method SetLastPacketLabel sets the label number associated with the
last packet. This is the packet that will be executed after the entire main
function has been executed. In figure 6.2, this label is found on line 56.

The method SetLastPacketBranch sets the position of the branch instruc-
tion that will branch to the above mentioned label. In figure 6.2, this branch
is found on line 11. Notice that this instruction immediately follows the code
associated with the call to main (lines 8-10). Thus, this jump does not occur
until after main has finished executing.

The method PatchLastPacketBranch patches the above mentioned branch

instruction so that is branches to the label set in SetLastPacketLabel.

6.2 The StaticVariable Class

In C, a variable with a static storage class has the following two properties:

e Its memory is initialized to zero, unless specified otherwise by an initial-
izer in the variable’s declaration.

e The memory for the variable is created once, when the program begins
execution, and is not destroyed until the program has completed execu-
tion.

There are two ways that a C variable can obtain a static storage class. First,
all global variables are, by default, given a static storage class. Second, a
variable declared anywhere inside a function can obtain a static storage class
by prefixing the variable declaration with the reserved word static. For
example, in figure 6.3, the variables outer_static and inner_static both
have a static storage class, while the variable 1 does not.

Normally, the memory for a variable is created (with the E-machine INST

instruction) when the variable comes into scope and is destroyed (with the
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0 pushd c, DS13 653 cast c, I, C
1 inst c, VO 54 pop c, C, V6
2 inst c, Vi 55 br c, LO
3 inst c, V2 56 1label c, L9
4 inst c, V3 57 uninst c, VO
5 br c, L8 68 wuninst c, Vi
6 1label c, LO 59 uninst c, V2
7 br c, L3 60 uninst c, V3
8 1label c, L1 61 uninst c, V9
9 call c, L4 62 uninst c, V6
10 1label c, L2 63 uninst c, V4
11 br c, L9 64 uninst c, Vb
12 1label c, L3 65 uninst c, V7
13 inst c, V4 66 uninst c, V8
14 push c, I, CIO 67 popd c

15 pop c, I, V4

16 inst c, Vb

17 push c, I, CIO

18 pop c, I, VS

19 br c, L5

20 1label c, L4

21 pushd c, D87

22 nop [

23 push c, I, CIO

24 cast c, I, C

25 pop c, C, V6

26 popd [

27 return c

28 1label c, L5

29 inst c, V7

30 push c, I, CIO

31 cast c, I, R

32 pop c, R, V7

33 br c, L6

34 1label c, L6

35 inst c, V8

36 push c, I, CIO

37 cast c, I, R

38 pop c, R, V8

39 br c, L1

40 1label c, L7

41 pushd c, DS10

42 nop [

43 push c, I, CIO

44 pop c, I, Vo

45 popd [

46 return c

47 label c, L8

48 inst c, V9

49 push c, I, CIO

50 pop c, I, Vo

61 inst c, V6

52 push c, I, CIO

Figure 6.2: E-code Instructions Resulting from Compilation of Program
Globals
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0 int outer_static;

1

2 int functl O

3 A

4 static int inner_static = 10;
5

6 inner_static++;

7 %

8

9 void main ()
10 A{
11 int 1i;
12
13 for (1 = 0; 1 < 5; i++)
14 funcl ();
15 %

Figure 6.3: Source Code for Program Statics

E-machine UNINST instruction) when the variable goes out of scope. This
method works fine, as long as the variable is not a static variable declared
inside of a function. The problem with using this method on static variables
declared inside functions is as follows—the memory for the variable is created
every time the function is entered and is destroyed every time the function is
exited. Obviously, this violates the property of static variables that says the
variable’s memory is set aside once, when the program begins execution, and
is destroyed only after the program has completed execution.

This is where the StaticVariable class comes into play. If a static variable
declared inside a function is found during the parsing of a program, a method
named AddStaticVariable is called. This method adds the static variable to
a linked list. Later, after the entire program has been parsed, two methods

named InstStaticVariables and UninstStaticVariables are called. The method
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InstStaticVariables runs through the linked list, generating an INST instruc-
tion and initializing code for each variable. The method UninstStaticVariables
runs through the linked list, laying down an UNINST instruction for each vari-
able. Of course, branches and labels are added in the appropriate places so
that the INSTs are done before any program code is executed. For example,
in figure 6.4, line 5 branches to where the static variable inner _static, found
on line 4 of figure 6.3, is INSTed and initialized. Line 82 branches back to
line 6, where execution of the program code commences. Finally, after the
program code has finished executing, line 89 (part of the last packet) UNISTs
the static variable inner_static. Notice the INST instruction associated with
inner_static is executed just once (before the rest of the program code is ex-
ecuted) and the UNINST instruction associated with the same variable also is
executed just once (after the program code is executed).

It should be noted that the StaticVariable class deals only with static
variables declared inside functions. Global static variables are automatically
handled correctly because, in part, of the way the GlobalVarBranch class does
things. Thus, global static variables do not need the help of the StaticVariable

class to work correctly.
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0 pushd c, DS12

1 inst c, VO

2 inst c, Vi

3 inst c, V2

4 inst c, V3

5 br c, L13

6 label c, LO

7 br c, L3

8 label c, L1

9 call c, L5

10 label c, L2

11 br c, L14

12 label c, L3

13 inst c, V4

14 push c, I, CIO

15 pop c, I, V4

16 br c, L1

17 1label c, L4

// CODE FOR ¢‘funcil’’ OMITTED!'!'!
30 return [
31 1label c, L5

// CODE FOR ‘‘main’’ OMITTED!'!'!
71 return c

72 label c, L13

// CODE FOR INSTANTIATING THE VARIABLE REGISTER ASSOCIATED WITH THE RETURN
// VALUE OF ¢‘funci’’ OMITTED!'!'!
76 inst c, V6

77 push c, I, CI10

78 pop c, I, Ve

// CODE FOR INSTANTIATING THE VARIABLE REGISTER ASSOCIATED WITH THE RETURN
// VALUE OF ‘‘main’’ OMITTED!'!'!
82 br c, LO

83 label c, L14

84 uninst c, VO

85 uninst c, Vi

86 uninst c, V2

87 wuninst c, V3

88 uninst c, V7

89 uninst c, V6

90 uninst c, Vb

91 uninst c, V4

92 popd [

Figure 6.4: E-code Instructions Resulting from Compilation of Program
Statics



Chapter 7

Statements

The following C statements were implemented in this compiler:

e compound

® expression

e null

e if without else part
e if with else part

e switch (including case and default labels)
e for loop

e while loop

e do-while loop

e break

e continue

e return

Although sometimes long, the code implementing many of these statements
was fairly straightforward. There were, however, a few statements that posed
some unique problems. In particular, the switch statement and the jump

statements (break, continue, and return) were much harder to implement

81
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than the rest of the statements. The following two sections discuss the two
classes, SwitchStatement and JumpStatements, that were developed to help

deal with the problems posed by these statements.

7.1 The SwitchStatement Class

The switch statement was the most difficult statement implemented in the
ANSI C compiler. It posed three major problems. One was ensuring that all
case and default labels are matched with the proper switch statement. An-
other was making sure that the program jumps to the proper case or default
label when a switch statement is executed. Finally, a last problem was read-
justing the dynamic scope (by generating INSTs and PUSHDs) when jumping
to a case or default label. This readjusting needs to be done because jump-
ing to a case or default label can cause a jump out of one scope and into

another, as explained later.

7.1.1 Matching a case or default Label with the Proper
switch Statement

The NewSwitchLevel method is used to tell the SwitchStatement class that a
new level that can possibly contain case and default labels has been encoun-
tered. Thus, this method is called at the beginning of every switch statement
encountered while parsing a program. In figure 7.1, this method would be
called just before parsing line 4.

The AddCasel.abel method sets the label number and constant value as-
sociated with a particular case label. For example, in figure 7.2, the labels on
lines 29, 34, and 80 correspond respectively to the case labels found on lines 6,
7, and 17 of figure 7.1. The level set by the method NewSwitchlLevel helps

this method to associate the case label with the proper switch statement.
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Of course, an error message is displayed if there is no switch statement to
associate the case label with.

The AddDefaultLabel method sets the label number associated with a
particular default label. For example, in figure 7.2, the label on line 85
corresponds to the default label found on line 18 of figure 7.1. The level set by
the method NewSwitchLevel helps this method to associate the default label
with the proper switch statement. Of course, an error message is displayed if

there is no switch statement to associate the default label with.

7.1.2 Jumping to the Proper case or default Label

The SaveSwitchExpr method INSTs a variable register and pops the value
of the expression the switch statement is “switching on” into that variable
register. This variable register is used by the PatchSwitch method, which will
be discussed shortly. For example, lines 24-25 of figure 7.2 save the switch
expression found on line 4 of figure 7.1. Notice the code to evaluate the
expression that the switch statement is “switching on” (lines 19-23) resides
directly above these two lines.

The PatchSwitch method is called after the entire switch statement has
been parsed. In figure 7.1, this method would be called just after parsing
line 20. The PatchSwitch method is used to generate the code necessary to
determine which label (case or default), if any, the switch statement should
jump to. It does this using two separate steps. First, it generates code that

performs the following steps for every case label :

e Push the variable register associated with the expression that the switch
statement is “switching on” (saved by SaveSwitchExpr).

e Push the constant value of the case label (saved by AddCaseLabel).

o Check to see if these two values are equal.
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e If they are, branch to the label associated with the case label (saved by
AddCaselabel).

For example, in figure 7.2, lines 100-103, 104-107, and 108-111 contain this
code, which correspond to the case labels found on lines 6, 7, and 17 of
figure 7.1. Second, after the case labels have been processed, an uncon-
ditional branch to the label associated with the default label (saved by
AddDefaultLabel) is generated. Of course, if the switch statement has no
default label, this step is skipped. Line 112 of figure 7.2 contains this code,
which corresponds to the default label found on line 18 of figure 7.1.

The UnsaveSwitchExpr method has two important jobs. One is to UNINST
the variable register INSTed by the method SaveSwitchExpr. An example of
this can be found on line 114 of figure 7.2. Since UnsaveSwitchExpr is called
at the end of each switch statement, this method’s other job is to tell the
JumpStatements class that the new switch level set by the NewSwitchLevel

method no longer exists.

7.1.3 Readjusting the Dynamic Scope of a case or default
Label

A jump to a case label occurs if the expression that the switch statement is
being “switched on” has the same value as the case label. Otherwise, a jump
to the default label occurs (if the switch statement has one). In either case,
it is possible to jump from one scope (the one containing the expression the
switch statement is “switching on”) to another scope (the one containing the
case or default label). For example, in figure 7.1, when the expression on
line 4 is executed, a jump to line 7 will occur. Yet, the statements on these two

lines are not at the same scoping level (the one on line 7 is one deeper). The

AdjustCaseOrDefaultScope method is used to generate INSTs and PUSHDs



85

so that the dynamic scope is correct when the program jumps to a case or
default label that is not at the same scoping level as the switch expression.
For example, in figure 7.2, line 35 corresponds to the code necessary to readjust
the dynamic scope for the case label found on line 7 of figure 7.1. As you can

see, after this code is executed, the dynamic scope will be correct.

0 main (O

1 A

2 int a = 10;

3

4 switch (10 + ’b’ - 10)
5 {

6 case 0 :

7 case ’'b’

8 {

9 int d=2, e=3;

10 {

11 int ¢ = b;

12

13 a *x=c¢c7d : e;
14 break;

15 }

16 }

17 case (8 || 10) << (4 && '(2>50))
18 default :

19 a h= 6;
20 }
21}

Figure 7.1: Source Code for Program Switch

7.2 The JumpStatements Class

In C, jump statements include the following:
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// CODE BEFORE ‘‘switch’’ STATEMENT OMITTED.

19 push
20 push
21  add
22 push
23 sub
24 inst
25 pop
26 br

27 pushd
28 br

29 label
30 pushd
31 nop
32 label
33 br

34 label
35 pushd
36 nop
37 1label
38 pushd
39 inst
40 push
41 pop
42 inst
43 push
44 pop
45 pushd
46 inst
47 push
48 pop
49 push
50 push
51 eql
52 brt
53 push
54 cast
55 br

56 label
57 push
58 cast
59 label
60 pop
61 push
62 push
63 mult
64 pop
65 push
66 pop
67 uninst
68 popd
69 uninst
70 uninst
71 popd

Figure 7.2:
Switch

c, I, CI10
c, I
c, I
c, I
c, I
c, V6

c, I, V6
c, L14
c, DS13
c, L5

c, L4

c, DS13
c

c, L5

c, L7

c, L6

c, DS13

c, L7
c, DS9
c, V7
c, I, CI2
c, I, V7
c, V8
c, I, CI3
c, I, V8

I, CI5
I, Vo
c, I, V9
I, ¢Io
I

c, I, V7

c, I, Vs
I

, Vo
, V5
, Vo

, V5
, V5
Yo

E-code Instructions Resulting from Compilation of Program

72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

popd
br
uninst
popd
uninst
uninst
popd
br
label
pushd
nop
label
br
label
pushd
nop
label
push
pop
push
push
mod
pop
push
pop
popd
br
label
push
push
eql
brt
push
push
eql
brt
push
push
eql
brt
br
label
uninst

C7

C7
C7

L15
Vo

v7
V8

Li1
L10
DS13

Li1
L13
L12
DS13

L13

, V5
, V5
, Yo

L12
L15
vé

// CODE AFTER ‘‘switch’’ STATEMENT OMITTED.
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e break—used to jump to the statement immediately following the loop
or switch statement that the break statement is located in.

e continue—used to jump to the top of the loop that the continue state-
ment is located in.

e return—used to jump out of a function (optionally returning a value).

e goto—mnot implemented by the ANSI C compiler.

Implementing these statements presented a couple of different problems. One
was ensuring that a break statement is matched with the proper loop/switch
statement and that a continue statement is matched with the proper loop.
Another problem was readjusting the dynamic scope (by generating UNINSTSs
and POPDs) when a break, continue, or return statement is encountered.
This readjusting needs to be done because these three statements can all jump

out of one scope and into another, as explained later.

7.2.1 Matching a break or continue Statement with the
Proper Loop or switch Statement

The NewBreaklLevel method is used to tell the JumpStatements class that a
new level that can possibly contain break statements has been encountered.
Thus, this method is called at the beginning of every loop or switch statement
encountered while parsing a program. In figure 7.3, this method would be
called just before parsing line 4.

The method AddBreaklabel sets the label number associated with the
bottom of a loop or switch statement. For example, in figure 7.4, the label
on line 77 corresponds to the bottom of the for loop found in figure 7.3.

The method AddBreakBranch sets the position of a branch instruction that
will branch to the label set in AddBreakLabel. In figure 7.4, these branches

are on lines 34, and 71. The reason for the branch instruction on line 34 is
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discussed shortly. The branch instruction on line 71 is a consequence of the
break statement found on line 12 of figure 7.3.

The method PatchBreaks patches up all of the branches added by
AddBreakBranch so that they branch to the label set in AddBreakLabel. Also,
since this method is called at the end of each loop and switch statement, it
is used to tell the JumpStatements class that the new break level set by the
NewBreakLevel method no longer exists. In figure 7.3, this method would be
called just after parsing line 14 of figure 7.3.

The methods NewContinuel.evel, AddContinuel.abel, AddContinuel.abel,
and PatchContinues are all very similar to the above mentioned methods. The
major differences are that the method AddContinuel.abel is used to mark the
top (not the bottom) of a loop and that all three methods are used for the
continue statement as opposed to the break statement.

Now, back to the branch instruction on line 34 of figure 7.4. Every loop
contains one invisible break statement. When the test expression to determine
if the loop should be iterated through one more time fails, this invisible break
statement is executed. The branch instruction on line 34 of figure 7.4 is the
invisible break statement for the for loop found on line 4 of figure 7.3. Notice
that the code to test if the for loop should be exited is directly above line 34
(lines 28-33). Similarly, every loop also has one invisible continue statement.
When the bottom of a loop is reached, the invisible continue statement is
executed. This causes a jump to the top of the loop to occur. The branch
instruction on line 76 of figure 7.4 is the invisible continue statement for the

for loop found on line 4 of figure 7.3.
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7.2.2 Readjusting the Dynamic Scope of a break, continue,
or return Statement

When a break statement is executed, the loop or switch statement that the
break statement is located in is exited. In C, this means that a jump from
one scope (the one containing the break statement) to another scope (the one
containing the statement just after the loop or switch statement) is possible.
For example, in figure 7.3, when the break statement on line 12 is executed,
a jump to line 15 will occur. Yet, the statements on these two lines are not at
the same scoping level (the one line 12 is two deeper). The AdjustBreakScope
method is used to generate UNINSTs and POPDs so that the dynamic scope
after the break statement is executed is the same as it was before the loop
or switch statement was entered. For example, in figure 7.4, lines 68-70
correspond to the code necessary to readjust the dynamic scope after the
break statement on line 12 of figure 7.3 is executed. As you can see, after this
code is executed, the dynamic scope will be correct.

The AdjustContinueScope and AdjustReturnScope methods are identical
to the AdjustBreakScope method, except for the fact that they are used for

the continue and return statements, respectively.



©O© 00 N Ul WNN - O

e e
a b W NN = O

90

void main ()

{

int i, temp = 2;

for (1 = 0; 1 < 10; i++)

{

int a 2;

if (i < 5)
temp *= a;
else

{

break;

Figure 7.3: Source Code for Program Jumps
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0 pushd c, DS15 653 cast c, B, I
1 inst c, VO 54 push c, I, CIO
2 inst c, Vi 55 eql c, I

3 inst c, V2 56 brt c, L9

4 inst c, V3 57 push c, I, V7
5 br c, L12 58 pop c, I, VO
6 label c, LO 59 push c, I, Vé
7 br c, L1 60 push c, I, VO
8 label c, L1 61 mult c, I

9 call c, L3 62 pop c, I, Vé
10 label c, L2 63 push c, I, Vé
11 br c, L13 64 pop c, I, VO
12 1label c, L3 65 br c, L10
13 pushd c, DS12 66 label c, L9

14 nop c 67 pushd c, DS4
15 inst c, V5 68 popd c

16 inst c, V6 69 uninst c, V7

17 push c, I, CI2 70 popd c

18 pop c, I, V6 71 br c, Li1
19 br c, L5 72 popd c
20 1label c, L4 73 1label c, L10
21 br c, L7 74 uninst c, V7
22 label c, L5 75 popd c
23 push c, I, CIO 76 br c, L4
24 pop c, I, V5 77 1label c, Li1
25  push c, I, V5 78 push c, I, CIO
26 pop c, I, VO 79 cast c, I, C
27 1label c, L6 80 pop c, C, V4
28 push c, I, V5 81 uninst c, Vb

29 push c, I, CI10 82 uninst c, V6
30 less c, I 83 popd [
31 cast c, B, I 84 return c
32 push c, I, CIO 85 1label c, L12
33 eql c, I 86 inst c, V4
34 brt c, Li1 87 push c, I, CIO
35 br c, L8 88 cast c, I, C
36 label c, L7 89 pop c, C, V4
37 push c, I, V5 90 br c, LO
38 push c, I, V5 91 1label c, L13
39 push c, I, CI1 92 uninst c, VO
40 add c, I 93 uninst c, Vi
41 pop c, I, V5 94 uninst c, V2
42 pop c, I, VO 95 uninst c, V3
43 br c, L6 96 uninst c, V4
44 label c, L8 97 popd c
45 pushd c, DS9
46 inst c, V7
47 push c, I, CI2
48 pop c, I, V7
49 nop [

50 push c, I, V5

51 push c, I, CIb

52 less c, I

Figure 7.4: E-code Instructions Resulting from Compilation of Program Jumps
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Expressions

The following C expressions and operators were implemented in this compiler:

comma operator

assignment operators (=, *=, /=, %=, +=, -=, <K=, >>=, &=, "=,
and |=)

conditional operator (7:)

constant expressions

logical operators (&&, ||, and !)

bitwise operators (1, ~, &, ~, <<, and >>)
relational operators (==, '=, <, >, <=, and >=)

arithmetic operators (unary and binary +, unary and binary -, *,

/, and %)

explicit casts

pre increment and decrement operators
sizeof operator

post increment and decrement operators
function calls

identifiers

integer constants

92
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e floating constants

e character constants

The implementation of many of these expressions was trivial. There were,
however, a few problems that were encountered along the way. Those prob-
lems arose during the implementation of the post increment/decrement op-
erators and implicit function calls. The PostIncDec and ImplicitFuncCall
classes discussed in the two sections below were developed to solve the prob-
lems presented during implementation of these expressions. One other class,
EvaluationStack, is also discussed in a section below. This class is used by all

expressions and is quite complex.

8.1 The PostIncDec Class

In C, the post increment/decrement operators add/subtract one from a vari-
able after the entire expression that the variable appears in has been evaluated.

For example, in figure 8.1, after the execution of the statement

a = b++ * b++;
a would have the value 25 while b would have the value 7. Notice the value of
b was not incremented until after the entire expression was evaluated. Thus,
a was assigned the value equivalent to 5 * 5, and not something like 5 * 6 or
6*7

The post increment and decrement operators posed the following problem—
how to increment or decrement the variable after the entire expression it ap-
pears in has been evaluated. This is where the PostIncDec class comes into
play. Every time a post increment or decrement operator is found, a method

named AddPostIncDec is called. This method adds the variable that is to
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be incremented/decremented to a linked list. Then, after the entire expres-
sion that the variable appears in has been evaluated, a method named Do-
PostIncDecs is called. This method runs through the linked list and actually
generates the code for each increment/decrement operator found in the list.
Thus, the code for the post increment /decrement operator is not executed un-
til after the code for the rest of the expression is executed. For example, the
statement a = b++ * b++; in figure 8.1 translates into the code given in fig-
ure 8.2. Notice that the code for both post increments of b (lines 24-27 and 28-
31) come after the code for evaluating the entire expression a = b++ * b++;

(lines 19-23).

0 void main ()

1 A

2 int a, b = 5;
3

4 a = b++ * b++;
5 %

Figure 8.1: Source Code for Program Posts

8.2 The ImplicitFuncCall Class

In C, an implicit function call is a call that is made to a function that has not
been declared yet. For example, in figure 8.3, line 2 contains an implicit call
to the function £1. The call is implicit because it precedes the definition of
the function (line 5).

When a function call is found while parsing a program, the E-machine code
instruction CALL must be generated. A crucial piece of information that must

be supplied to the CALL instruction is the label number corresponding to the
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// CODE BEFORE STATEMENT ‘‘a = b++ * b++;’’ OMITTED.

19 push c, I, V6

20 push c, I, V6

21 mult c, I

22 pop c, I, VS

23 push c, I, V5

24 push c, I, V6 // START OF CODE FOR FIRST ¢‘b++’’.
25 push c, I, CI1

26 add c, I

27 pop c, I, V6 // END OF CODE FOR FIRST ‘‘b++’7.
28 push c, I, V6 // START OF CODE FOR SECOND ¢ ‘b++’’.
29 push c, I, CI1

30 add c, I

31 pop c, I, V6 // END OF CODE FOR SECOND ¢ ‘b++77.
32 pop c, I, VO

// CODE AFTER STATEMENT ‘‘a = b++ * b++;’’ OMITTED.

Figure 8.2: E-code Instructions Resulting from Compilation of Program Posts

top of the function that is being called. The problem with implicit function
calls is as follows—at the time the CALL instruction is to be generated, this
label number is not known. The reason for this is quite simple—the function
has not been declared yet. For example, in figure 8.3, the compiler must
generate a CALL instruction for the call to function £1 on line 2. Yet, the
label corresponding to the function £1 will not be known until line 5.

The ImplicitFuncCall class was developed to solve exactly this problem.
The way it works is as follows. When an implicit function call is found, a
CALL instruction with a garbage label number is generated. At this time, a
method named AddImplicitCall is also called. This method adds the informa-
tion such as the name of the function being called and the position that the
CALL instruction was generated to a linked list. After the entire program has
been parsed, a method named PatchImplicitCalls is called. This method runs
through the linked list and patches up the CALL instructions by replacing the
garbage label numbers with the label numbers corresponding to the functions

that by now presumably have been declared (since we are at the end of the
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program). Of course, if an implicit call to a function is made and that function
is not later declared, an appropriate error message is displayed.

It should be noted that the unseen function call to main that gets every C
program started can be thought of as an implicit call. Thus, this call is also

added to the implicit call linked list by way of the AddImplicitCall method.

0 void main ()
1 A

2 f1 O;

3 %

4

5 int f1 O

6 {

7 %

Figure 8.3: Source Code for Program Implicit

8.3 The EvaluationStack Class

In one way or another, the EvaluationStack class is used by every expression.
Because of this fact, the EvaluationStack class is one of the most complicated
classes in the ANSI C compiler. The EvaluationStack class has the following
two responsibilities:

e Knowing when and when not to generate E-code.

e Tracking the types of all expressions.

8.3.1 Knowing When and When Not to Generate E-
code

Most expressions require that E-code be generated that can be evaluated at

run time using the E-machine’s evaluation stack. There are, however, a few ex-
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pressions that require that no E-code be generated. Instead, these expressions
are evaluated at compile time using a private evaluation stack. For example,
E-code is not generated for constant expressions or expressions that are operands
to the sizeof operator. The following is the method of the EvaluationStack

class used to deal with code generation:

o GenerateCode—this method is used to determine whether or not E-code
should be generated.

Constant Expressions

In C, constant expressions are expressions that always evaluate to a constant
value. Thus, they cannot contain assignments, increment and decrement oper-
ators, function calls, or the comma operator. The value of a constant expres-
sion must be of integral type. Integral types include integer, character, and
enumerated types. Constant expressions are required in several contexts—
after the case reserved word, as array bounds and bit-field lengths, as the
value of an enumeration constant, and in static variable initializers. For
further discussion on constant expressions, see appendix A, section 7.19 of
[Kernighan 88].

Only two contexts of constant expressions were used in the development
of the ANSI C compiler—after the case reserved word and in static variable
initializers. The following are the methods of the EvaluationStack class used

to deal with constant expressions:

o InsideConstExpr—this method is used to tell the EvaluationStack class
that it should start (or stop) tracking the value of a constant expression.

o GetCaseConstExpr—this method is used to get the value of a constant
expression used in a case label.

o GetlnitializerConstExpr—this method is used to get the value of a con-
stant expression used in a static variable initializer.
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o I[sValidConstExpr—this method is used to tell whether or not the con-
stant expression currently being tracked is valid (does not contain as-
signments, function calls, etc.).

o SetValidConstExpr—this method is used to set whether or not the con-
stant expression currently being tracked is valid.

The Sizeof Operator

The sizeof operator yields the number of bytes required to store an object of
the type of its operand. If the operand is an expression, the expression is not
evaluated. Instead, the number of bytes required to store an object of the type
of that expression is calculated. Thus, the sizeof operator is very similar to
constant expressions in that no actual E-code is generated for evaluating the
expression that is an operand of a sizeof operator. Instead, the type of the
expression is tracked (see section below). Afterwards, knowing the type of the
expression, it is trivial to determine how many bytes it will take to store an
object of that type. The following is the method of the EvaluationStack class

used to deal with the sizeof operator:

e InsideSizeof—this method is used to tell the EvaluationStack class that
the current expression is (or is not) an operand to a sizeof operator.

8.3.2 Tracking the Types of Expressions

There are a couple of different reasons why the types of the values on the
E-machine’s evaluation stack need to be kept track of. One reason is that some
C operators require operands to be of integral type. Thus, the types of the
operands on the E-machine’s evaluation stack must be known so that compile
time error messages can be displayed if this rule is broken. For example, in
figure 8.4, the statement on line 4 is illegal. The problem is that both operands

of the mod operator (%) must be of integral type. The 8.0 violates this rule,
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since it is not an integral type. Thus, this program should emit an error
message when compiled.

The other reason that the type of the values on the E-machine’s evaluation
stack need to be kept track of is that C has automatic type conversions. This
means that before an expression that contains two operands of different types
is evaluated, one of the operands is automatically converted (casted) to the
type of the other operand based on a set of conversion rules. For example, in
figure 8.4, the expression on line 5 would be evaluated as follows:

e Push the integer 5 onto the evaluation stack.

e Push the float 8.0 onto the evaluation stack.

o Cast the integer 5 on the evaluation stack to a float.

e Pop the top two values on the evaluation stack, multiply them, and push
the result back on top of the evaluation stack.

o Cast the float 40.0 on top of the evaluation stack to an integer.

e Pop the top value on the evaluation stack into the variable register as-
sociated with the variable a.

Notice that it is necessary to keep track of the types of the values on the
E-machine’s evaluation stack so that the compiler can determine when the
proper casts are to be performed.

The following is a list of the EvaluationStack methods that were devel-
oped to implement C expressions. If an expression is not supposed to generate
E-code (see discussions on constant expressions and the sizeof operator above),
“the stack” in the discussion below refers to the EvaluationStack class’s pri-
vate stack. In this case, the expression is evaluated at compile time using
this private stack. Yet, if F-code is to be generated for an expression, “the
stack” in the discussion below refers to the E-machine’s evaluation stack. In

other words, E-code is generated that is evaluated at run time using the
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main ()

{
int a;
a=57%8.0;
a=523*8.0;

}

Figure 8.4: Source Code for Program Evaluation

E-machine’s evaluation stack. In either case, the type of the values on both the

EvaluationStack class’s private stack and the E-machine’s evaluation stack are

always kept track of.

PushInt—pushes a constant integer onto the stack.
PushFloat—pushes a constant float onto the stack.

Push—pushes the variable register associated with a symbol onto the
stack.

PushReg—pushes a variable register onto the stack.
Reverse—reverses the top two elements on the stack.

Assign—pops the top value off the stack and places it into a specified
variable register (by calling Pop). Pushes the specified variable register
onto the stack (by calling PushReg).

Pop—performs any necessary casting (by calling PopCast). Pops the top
value off the stack and places it into a specified variable register.

ThrowAwayPop—pops the top value off the stack and places it into a
garbage variable register.

UnaryIntegral—pops the top element off the stack. Makes sure the el-
ement is of integral type (by calling TopElementIntegral). Pushes the
result of the unary integral operator applied to the popped element onto
the stack. The only unary integral operator is bitwise not.
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BinaryIntegral—pops the top two elements off the stack. Makes sure
both elements are of integral type (by calling TopTwoElementsIntegral).
Pushes the result of the binary integral operator applied to the two
popped elements onto the stack. Binary integral operators include: bit-
wise or, bitwise xor, bitwise and, shift-left, shift-right, and mod.

UnaryArithmetic—pops the top element off the stack. Pushes the result
of the unary arithmetic operator applied to the popped element. Unary
arithmetic operators include: unary plus, unary minus, and logical not.

BinaryArithmeticlLogical—pops the top two elements off the stack. Per-
forms any necessary casting (by calling BinaryArithmeticCast). Pushes
the result of the binary logical operator applied to the two popped el-
ements onto the stack. Binary logical operators include: logical or and
logical and.

BinaryArithmeticRelational—pops the top two elements off the stack.
Performs any necessary casting (by calling BinaryArithmeticCast).
Pushes the result of the binary relational operator applied to the two
popped elements onto the stack. Binary relational operators include:
less than, greater than, less than or equal to, greater than or equal to,
not equal, and equal.

BinaryArithmeticMath—pops the top two elements off the stack. Per-
forms any necessary casting (by calling BinaryArithmeticCast). Pushes
the result of the binary math operator applied to the two popped el-
ements onto the stack. Binary math operators include: binary plus,
binary minus, times, and divide.

Cast—casts the top element on the stack from one type to another. This
method is a result of the C explicit cast expression.

PopCast—checks to make sure that the top element on the stack is of
the same type as the variable register it is about to be popped into. If it
isn’t, this method performs the casting necessary so that it is the same

type.

TopElementIntegral—checks to make sure that the top element on the
stack is of integral type. If it isn’t, an error message is displayed.

TopTwoElementsIntegral—checks to make sure that the top two ele-
ments on the stack are of integral type. If they aren’t, an error message
is displayed.
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e BinaryArithmeticCast—checks to make sure that the top two elements
on the stack are of the same type. If they aren’t, this method performs
the casting necessary to make them have the same type.

e PopTop—pops the top value off the EvaluationStack’s private stack.



Chapter 9

E-machine Code Generation

Translation of a source program for the E-machine requires the generation of
the eight components of the E-machine object code file—the header section,
the string section, the source section, the label section, the variable section,
the code section, the packet section, and the static scope section. In the ANSI
C compiler, code generation is handled by eight classes, one for each code
file section. FEach class is responsible for saving the structures it generates
in the proper section of the E-code object file. Beyond that, there are very
few similarities between the classes. Part of the E-machine is a set of support
routines that write the various E-code sections. These routines are used by

the section classes to save their data to the E-code file.

9.1 The HeaderSection Class

The HeaderSection class does nothing but write an empty section to the
E-machine object file. This section is always empty because the DYNALAB

group members have not decided upon all of its contents yet.
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9.2 The StringSection Class

The StringSection class manages the list of strings that are encountered in the
source program by the compiler, mainly enumerated type names and string
literals. This is a very simple class whose only responsibility is to accept and
store string literals. Because the ANSI C compiler did not implement enu-
merated types or strings, the StringSection class always writes out an empty
section. However, when the time comes that it is needed, the StringSection

does have the capabilities to accept and store strings.

9.3 The SourceSection Class

The SourceSection class has no responsibility beyond reading the program
source file and saving it to the source section of the E-machine object file.
Unlike many of the other section classes, the SourceSection instantiation lies
dormant until the end of program compilation when the save methods of all
the section classes are called. At that point, this class reads the source file
into a string array and calls upon the E-machine library to write the source

program into the source section.

9.4 The LabelSection Class

The LabelSection class manages program labels and their addresses. When
the compiler needs to generate a label during compilation, it must request
one from the LabelSection. When a label is requested, the LabelSection class

accepts an address, associates a label with that address, and returns the new

label.
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9.5 The VariableSection Class

The VariableSection class manages the list of variable registers used by the
compiler. ~ Whenever the compiler needs a new register, it tells the
VariableSection the size and type of the variable it needs. The size becomes
part of the E-code file variable section. The type, however, is an extension used
by, among other things, the CodeSection class methods. Many E-machine in-
structions require a type (integer, real, etc.). By making the type a part of each
variable, the CodeSection need only query the type from the VariableSection

when necessary.

9.6 The CodeSection Class

The CodeSection class generates the E-machine instructions and has a method
for each instruction of the E-machine. Many of these methods have a corre-
sponding patch method. This allows the class to generate an instruction before
all of the information for that instruction is known. Later, after the informa-
tion for the instruction is known, the patch routine can be called and the

instruction’s missing information filled in.

9.7 The PacketSection Class

The PacketSection class is responsible for the executable packets defined by the
compiler. To add a packet to the packet section, the following three methods
must be called:

o MarkStart

e MarkEnd

e AddPacket
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MarkStart is used to mark the starting address, line, and column numbers
of a packet. MarkFEnd is used to mark the ending address, line, and column
numbers of a packet. AddPacket is used to actually add the packet to the
packet section. AddPacket uses the information set in the MarkStart and
MarkEnd methods, as well as parameters that describe the rest of the infor-
mation, to determine the contents of the packet that is to be added to the
packet section. This means that the MarkStart and MarkFEnd methods must
be called before the AddPacket method is called.

9.8 The StatScopeSection Class

The StatScopeSection class, which is used to create the static scope section of
the E-code file, is probably the most complex of the code generation classes
because of the parent/child relationships. This class has six methods for adding
entries to the static scope table. They are:

e SaveProgram

o SaveHeader

e Savelind

SaveVariable

SaveFunction

e SaveUnnamedBlock

The methods SaveHeader, SaveEnd, SaveVariable, SaveFunction, and
SaveUnnamedBlock are called from within the PopScope method of the
CrossLinks class. When a scope is popped, the PopScope method first marks
the beginning of a new block in the static scope table by calling the method
SaveHeader. Then each variable, function, and unnamed block in the scope

that is being popped is added to the static scope table (by calling
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SaveVariable, SaveFunction, or SaveUnnamedBlock). Finally, the PopScope
routine marks the end of the new block in the static scope table by calling the
method SaveEnd.

The SaveProgram method is called after the parsing of the program is
complete. This method adds the bootstrap block to the static scope table. At
end of the SaveProgram method, a method called SetParent AndChildFields is
called. This method sets the parent and child fields of all of the appropriate
entries in the static scope table.

Another responsibility of the StatScopeSection class concerns the PUSHD
instruction. When the compiler encounters a function or unnamed block, it
adds a PUSHD instruction to the CodeSection class. This instruction pushes
the position in the static scope table of the function or unnamed block. How-
ever, this position is not known until the function or unnamed block is ac-
tually added to the static scope table. Thus, it is the responsibility of the
StatScopeSection class to patch the PUSHD instruction associated with each
function or unnamed block as they are added to the static scope table. In other
words, for each function or unnamed block, the CodeSection class generates a

PUSHD instruction that is later patched up by the StatScopeSection class.



Chapter 10

Conclusions and Future
Enhancements

10.1 Conclusions

An ANSI C compiler for the E-machine has been designed and partially imple-
mented. The ANSI C compiler is a one-pass compiler written in C++ and was
developed using the parser development tool PCCTS 1.31 (Purdue Compiler
Construction Tool Set) [Parr 93]. PCCTS generates an integrated recursive
descent LL(k) parser and DFSA based scanner. Development was done on an
IBM-PC clone running the FreeBSD Unix Operating System. A number of
ANSI C programs have been successfully compiled and animated using both

the OSF/Motif and Microsoft Windows animators.

10.2 Future Enhancements

Many future enhancements to the current ANSI C compiler come to mind.

Here are just a few of them:

o There are many ANSI C features that have not been implemented yet
(see chapter 3). Implementation of these features is necessary to make
this compiler meet the needs of the DYNALAB project.
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o A few parts of the current complier use static allocation of memory.
Although it is unlikely that this static allocation of memory could be a
problem, it would be nice if the entire compiler used dynamic memory
allocation.

e The PCCTS parser has very good error reporting and recovery. However,
the ANSI C compiler does not fully take advantage of these features. A
future improvement would be better error recovery so that a user receives
more than one error message before the compiler terminates. Also, some
error messages could be a little more descriptive.

e New versions of PCCTS are constantly being released. Whenever pos-
sible, the ANSI C compiler should use these new versions of PCCTS so

that it can take advantage of bug fixes and new features present in them.
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Appendix A

The E-machine Instruction Set

This appendix, which is adapted from chapter 2 of Birch’s thesis [Birch 90],
appendix A of Goosey’s thesis [Goosey 93], and appendix A of Poole’s thesis
[Poole 94], lists all of the instructions in the instruction set of the E-machine.
A pseudo assembly language format is used to describe the instructions and
closely resembles the format used in the CODESECTION of the E-machine
object file. The object file is described in detail in chapter 2 of this thesis.

Fach instruction is composed of four fields (or arguments):

e an opcode mnemonic (e.g., push, pop, add);

e a flag marking the instruction as critical or noncritical (CFLAG);

e afield denoting the data type of the operand(s) of the instruction (TYPE);
e a field containing either a number (#) or an addressing mode (ADDR);

Addressing modes and their formats are described in appendix B.

The mnemonic field is separated from the other fields by one or more
spaces, and the remaining fields are separated by commas. The CFLAG field
must be either ¢ or n to designate whether the instruction is to be treated as
critical (¢) or noncritical (n). The TYPE field holds a single capital letter,

I, R, B, C, or A, referring to the data types integer, real, boolean, character,
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or address, respectively. The # refers to a constant specifying the number of
an E-code label, a constant numeric value, or an E-machine variable register
number. If the ADDR argument is used for the fourth field, it refers to any of
the addressing modes described in appendix B.

In the following description of the instruction set, the effects of execut-
ing an instruction both forward and in reverse are given. The actions taken in
each case will be different, depending on whether the instruction has been des-
ignated critical or noncritical. Some instructions have no critical /noncritical
flag, because their execution (either forward or in reverse) would be the same
in either case. Reversing through a noncritical instruction sometimes requires
that something be pushed onto the evaluation stack to keep the stack of the

proper size; in such cases an arbitrary value, called DUMMY is used.

add CFLAG, TYPE

Adds the top two values on the evaluation stack and places the result onto the
evaluation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes them onto
the save stack, and then pushes their sum onto the evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack and pushes
their sum onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards the value.
Pops the top two elements of the save stack and pushes them onto the evaluation
stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

alloc CFLAG, ADDR

Allocates a block of memory of positive integer size.

Forward: Attempts to allocate the amount of computer words of storage referenced
by ADDR. If successful, the address of the first word of data memory that was
allocated is pushed onto the evaluation stack. Otherwise, a NULL address is
pushed onto the evaluation stack.

Reverse: Pops the top value off the evaluation stack, which should be a data address,
and frees ADDR words of data memory starting at that address.
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and CFLAG, TYPE

Bitwise and’s the top two values of the evaluation stack and places the result onto
the evaluation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two
values onto the save stack, and then pushes the bottom value bitwise and’ed
with the top value onto the evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack and pushes
the bottom value bitwise and’ed with the top value onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops
the top two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

br CFLAG, #
Unconditionally branches to label #.

Forward: Loads the program counter with the address of the label # instruction.

Reverse: No operation.

brt, brf CFLAG, #

Conditionally branches depending on whether the top of the evaluation stack is TRUE
or FALSE.

Forward-Critical: Pops the top value off the evaluation stack and pushes it onto the
save stack. Tf the value satisfies the conditional on the branch (TRUE for brt,
FALSE for brf), the program counter is loaded with the address of the label #
instruction.

Forward-Noncritical: Pops the top value off the evaluation stack. If the value
agrees with the conditional branch (TRUE for brt, FALSE for brf), the program
counter is loaded with the address of the label # instruction.

Reverse-Critical: Pops the top value of the save stack and pushes it onto the eval-
uation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

call CFLAG, #

Branches to label # saving the program address which follows the call instruction so
that execution will continue there upon execution of a return instruction.

Forward: Pushes the current program counter onto the return address stack, then
loads the address of the label # instruction into the program counter.

Reverse: Pops the top value from the return address stack.

cast CFLAG, TYPE, TYPE
Changes the top value of the evaluation stack from the first TYPE to the second.
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Forward-Critical: Pops the top value of the evaluation stack and pushes it onto the
save stack, then transforms the value from the first TYPE to the second. The
result is pushed onto the evaluation stack.

Forward-Noncritical: Pops the top value of the evaluation stack, then transforms
the value from the first TYPE to the second. The result is pushed onto the
evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack. The pops the top value
of the save stack and pushes it onto the evaluation stack.

Reverse-Noncritical: Nothing happens.

div CFLAG, TYPE

Divides the second value from the top of the evaluation stack by the first and places
the result onto the evaluation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two
values onto the save stack, and pushes the bottom value divided by the top
value onto the evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack and pushes
the bottom value divided by the top value onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops
the top two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

eql, neql, less, leql, gtr, geql CFLAG, TYPE
If the second value from the top of the evaluation stack compares true, according

to the instruction, with the first, then TRUE 1s pushed onto the evaluation stack.
Otherwise FALSE is pushed onto the evaluation stack.

Forward-Critical: Pops the top two values off the evaluation stack, pushes the
two values onto the save stack, compares the bottom value with the top. If
the result of the comparison matches the comparison operation performed, a
boolean TRUE is pushed onto the evaluation stack, otherwise, a boolean FALSE
is pushed onto the evaluation stack.

Forward-Noncritical: Pops the top two values off the evaluation stack and compares
the bottom value with the top value. If the result matches the comparison
operation performed, a boolean TRUE is pushed onto the evaluation stack,
otherwise, a boolean FALSE is pushed onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it, then
pops the top two values off the save stack and pushes them onto the evaluation
stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

inst CFLAG, #

Creates an instance of the variable register 7.
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Forward-Critical: Allocates enough data memory for the variable represented by
the variable register #. The address of the allocated memory is then pushed
onto the variable register’s stack.

Forward-Noneritical: Allocates enough data memory for the variable represented
by the variable register #. The size of the variable is stored in the variable
register. The address of the allocated memory is then pushed onto the variable
register’s stack.

Reverse-Critical: The data memory occupied by the variable register is freed and
the top value is popped off the variable register’s stack.

Reverse-Noncritical: Frees the space taken up by the variable in data memory and
pops the top value off the variable register’s stack.

label CFLAG, #

Marks the location to which a branch may be made.
Forward: Pushes the previous program counter onto the stack pointed to by label
register #.

Reverse: Pops the top value of the stack pointed to by label register # and places
it in the program counter.

link CFLAG, #

Associates one variable register with the value of another.
Forward: Pops the top value of the evaluation stack and pushes it onto the variable
stack pointed to by variable register #.

Reverse: Pops the top value of the variable stack pointed to by variable register #
and pushes it onto the evaluation stack.

loadar CFLAG, ADDR
Places the address ADDR in the address register.

Forward-Critical: The contents of the address register are pushed onto the save
stack. Then the address computed for the addressing mode is placed in the
address register. Important note: it is the address that is computed by the
addressing mode that is used, not the contents of that address.

Forward-Noneritical: The address computed for the addressing mode is placed in
the address register. Same note as Forward-Critical applies here.

Reverse-Critical: The address on top of the save stack i1s popped off and placed in
the address register.

Reverse-Noncritical: Nothing happens.

loadir CFLAG, #

Places # into the index register.
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Forward-Critical: The contents of the index register are pushed onto the save stack.
Then # is placed in the address register.

Forward-Noneritical: # is placed in the index register.

Reverse-Critical: The value on top of the save stack is popped off and placed in the
index register.

Reverse-Noncritical: Nothing happens.

mod CFLAG, TYPE

Finds the remainder of the division of the second value from the top of the evaluation
stack by the first and places the result onto the evaluation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two
values onto the save stack, and then pushes the bottom value modulo the top
value onto the evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack and pushes
the bottom value modulo the top value onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops
the top two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

mult CFLAG, TYPE

Multiplies the top two values on the evaluation stack and places the result onto the
evaluation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two
values onto the save stack, and then pushes their product onto the evaluation
stack.

Forward-Noncritical: Pops the top two values of the evaluation stack and pushes
their product onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops
the top two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

neg CFLAG, TYPE

Negates the top value on the evaluation stack.
Forward: Pops the top of the evaluation stack and pushes the negation of that value
onto the evaluation stack.

Reverse: Pops the top of the evaluation stack and pushes the negation of that value
onto the evaluation stack.
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nop CFLAG

This instruction is the standard no-operation instruction. It can be used to create
packets for high level program text for which no E-machine instructions are generated
but which nonetheless need to be highlighted for animation purposes. An example
of this is the begin keyword in Pascal. In illustrating the flow of control during
program animation, a begin keyword may need to be highlighted (and thus have its
own underlying E-machine packet of instructions). The nop instruction can be used
in these cases.

not CFLAG, TYPE

Bitwise complements the top value of the evaluation stack.
Forward: Pops the top of the evaluation stack and pushes the bitwise not of that
value onto the evaluation stack.

Reverse: Pops the top of the evaluation stack and pushes the bitwise not of that
value onto the evaluation stack.

or CFLAG, TYPE

Bitwise or’s the top two values of the evaluation stack and places the result onto the
evaluation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two
values onto the save stack, and then pushes the bottom value bitwise or’ed with
the top value onto the evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack and pushes
the bottom value bitwise or’ed with the top value onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops
the top two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

pop CFLAG, TYPE, ADDR
Pops the top value of the evaluation stack and places it in ADDR.

Forward-Critical: Pushes the value in ADDR onto the save stack and then pops the
top value of the evaluation stack and stores it in ADDR.

Forward-Noncritical: Pops the top value of the evaluation stack and stores it in

ADDR.

Reverse-Critical: Pushes the value in ADDR onto the evaluation stack and then
pops the top value of the save stack and places it in ADDR.

Reverse-Noncritical: Pushes the value in ADDR onto the evaluation stack.

popar CFLAG

Pops the address on top of the evaluation stack and places it in the address register.
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Forward-Critical: The contents of the address register are pushed onto the save
stack. The address on top of the evaluation stack is popped and placed in the
address register.

Forward-Noncritical: The address on top of the evaluation stack is popped off and
placed in the address register.

Reverse-Critical: The contents of the address register are pushed onto the evaluation
stack. Then the address on top of the save stack is popped off and placed in
the address register.

Reverse-Noneritical: The contents of the address register are pushed onto the eval-
uation stack.

popd CFLAG

Pops the top value from the dynamic scope stack.
Forward: Pops the top value from the dynamic scope stack and pushes it onto the
save dynamic scope stack.

Reverse: Pops the top value from the save dynamic scope stack and pushes it onto
the dynamic scope stack.

popir CFLAG
Pops the integer on top of the evaluation stack and places it in the index register.
Forward-Critical: The contents of the index register are pushed onto the save stack.

Then the integer on top of the evaluation stack is popped off and placed in the
index register.

Forward-Noneritical: The integer on top of the evaluation stack is popped off and
placed in the index register.

Reverse-Critical: The contents of the index register are pushed onto the evaluation
stack. Then the integer on top of the save stack is popped off and placed in
the index register.

Reverse-Noneritical: The contents of the index register are pushed onto the evalu-
ation stack.

push CFLAG, TYPE, ADDR
Pushes the value in ADDR onto the evaluation stack.

Forward: Pushes the value in ADDR onto the evaluation stack.

Reverse: Pops the top value of the evaluation stack and stores it in ADDR.

pusha CFLAG, ADDR

Pushes the calculated address of ADDR onto the evaluation stack. This instruction
is intended to be used for pushing the addresses of parameters passed by reference.

Forward: Pushes the calculated address of ADDR onto the evaluation stack.
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Reverse: Pops and discards the address on top of the evaluation stack.

pushd CFLAG, #

Pushes # onto the dynamic scope stack (where # is the index of a program, proce-
dure, or function entry in the Static Scope Table)

Forward: Pushes # onto the dynamic scope stack.

Reverse: Pops the top value from the dynamic scope stack.

pushstr CFLAG

Pushes a string onto the evaluation stack. Immediately prior to generating this
instruction, the compiler must have first pushed the index into the string space of
the string onto the evaluation stack, and then pushed the length of the string onto
the evaluation stack.

Forward: Pops the top two values of the evaluation stack. Retrieves the specified
number of characters (indicated by the value that was on the top of the evalu-
ation stack) from the string space, starting at the string space index (indicated
by the second value from the top of the evaluation stack) plus the specified num-
ber characters (i.e., the desired string length). That is, the string is retrieved
in reverse order. As the characters are being retrieved, they are placed onto
the evaluation stack, resulting in the string in normal order on the evaluation
stack. The string length is then pushed onto the save stack.

Reverse: Pops the string length from the save stack and then pops and discards the
corresponding number of characters from the evaluation stack. Tt then pushes
two DUMMY values onto the evaluation stack.

read CFLAG, TYPE, ADDR

Reads a value from the user. The first TYPE is the type of the data to read. The
ADDR field is the integer file handle to read from.

Forward: A user interface function is called to get input from the user. The input is
converted from a string to the appropriate type and pushed onto the evaluation
stack.

Reverse: The top value is popped off the evaluation stack.

return CFLAG

Returns to the appropriate program address following a call instruction.

Forward: Pops the top value of the return address stack and loads it into the
program counter.

Reverse: Pushes the previous program counter onto the return address stack.
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shl CFLAG, TYPE, #

Shifts the value on top of the evaluation stack # bits to the left filling on the right
with 0’s.

Forward-Critical: Pops the top value of the evaluation stack, pushes it onto the
save stack, then shifts it # bits to the left and pushes the result back onto the
evaluation stack.

Forward-Noncritical: Pops the top value of the evaluation stack, shifts it left # bits,
then pushes the result back onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack. Then pops the top
value of the save stack and pushes it onto the evaluation stack.

Reverse-Noncritical: Nothing happens.

shr CFLAG, TYPE, #

Shifts the value on top of the evaluation stack # bits to the right filling on the left
with 0’s.

Forward-Critical: Pops the top value of the evaluation stack, pushes it onto the
save stack, then shifts it # bits to the right and pushes the result back onto
the evaluation stack.

Forward-Noneritical: Pops the top value of the evaluation stack, shifts it right #
bits, then pushes the result back onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack. Then pops the top
value of the save stack and pushes it onto the evaluation stack.

Reverse-Noncritical: Nothing happens.

sub CFLAG, TYPE

Subtracts the value on the top of the evaluation stack from the second value from
the top and places the result onto the evaluation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two
values onto the save stack, and then pushes the bottom value minus the top
value onto the evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack, and pushes
the bottom value minus the top value onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops
the top two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

unalloc CFLAG, #

Deallocates a block of memory of # size beginning at the data address atop the
evaluation stack.
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Forward-Critical: Pops the top value off the evaluation stack, which should be a
data address, copies # words of data memory starting at that address to the
save stack, then frees the data memory.

Forward-Noncritical: Pops the top value off the evaluation stack, which should be
a data address, and frees # words of data memory starting at that address.

Reverse-Critical: Pops the top value off the save stack, which should be a data
address, pushes it onto the evaluation stack and allocates # words of data
memory starting at that location. # words are then moved from the save stack
to this data memory.

Reverse-Noncritical: Allocates # words of data memory and pushes the address of
the first word of allocated memory onto the evaluation stack.

uninst CFLAG, #

Dispose of an instance of variable register #.

Forward-Critical: Frees the memory occupied by the variable then pops the top
data memory address off the variable register’s stack and pushes it onto the
save stack.

Forward-Noncritical: Frees the memory occupied by the variable then pops the top
address off the variable register’s stack.

Reverse-Critical: Pops the address off the save stack and pushes it onto the variable
register’s stack then reallocates enough data memory for the variable # starting
at that address.

Reverse-Noncritical: Reallocates enough data memory for the variable # and pushes
the address of the data memory allocated onto the variable register’s stack.

unlink CFLAG, #

Disassociates a variable register from another.

Forward: Pops the top value of the variable stack pointed to by variable register #
and pushes it onto the save stack.

Reverse: Pops the top value of the save stack and pushes it onto the variable stack
pointed to by variable register #.

write CFLAG, TYPE, ADDR

Displays a value for the user. The first TYPE is the type of data to write. The
ADDR field is an integer file handle to write to.

Forward-Critical: The top of the evaluation stack is popped and the value pushed
onto the save stack. This value is then converted into a string and passed to a
user interface function which takes appropriate action to display the value.

Forward-Noncritical: The top of the evaluation stack is popped and is converted
into a string and passed to a user interface function to be displayed.
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Reverse-Critical: The value on top of the save stack is popped and pushed onto the
evaluation stack. Then a user interface function is called to handle undisplaying
of the last value displayed.

Reverse-Noncritical: DUMMY 1s pushed onto the evaluation stack and then a user
interface function is called to handle undisplaying of the last value displayed.

xor CFLAG, TYPE

Bitwise exclusive-or’s the top two values of the evaluation stack and places the result
onto the evaluation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two
values onto the save stack, and then pushes the bottom value bitwise exclusive
or’ed with the top value onto the evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack and pushes
the bottom value bitwise exclusive or’ed with the top value onto the evaluation
stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops
the top two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.



Appendix B

The E-machine Addressing
Modes

This appendix, which is adapted from chapter 2 of Birch’s thesis [Birch 90],
appendix B of Goosey’s thesis [Goosey 93], and appendix B of Poole’s thesis
[Poole 94] describes the various addressing modes allowed in E-machine in-
structions. Quite a few modes are defined in order to accommodate standard
high level language data structures more conveniently. Note that each address-
ing mode refers to either the data at the computed address or the computed
address itself, depending on the instruction. That is, for those instructions
that need a data value, such as push, the data value at the address computed
from the addressing mode is used. For instructions that need an address, such
as pop, the address that was computed from the addressing mode is used.
For each addressing mode listed below, an example of its intended use is
given. Fach example is given in pseudo assembly language form for clarity; it is
important to remember that no assembler (and hence no assembly language)
has yet been developed for the E-machine. However, the pseudo assembly

language examples should be easily understood.
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constant mode - C#

This mode is often called the immediate mode in other architectures; # is itself
the integer, real, boolean, character, or address constant operand required in the
instruction.

Erample:
A = 1.5;

could be translated into the following, where V1 is the variable register associated

with A:

push R,Cl.5 ; push 1.5
pop c¢,R,V1 ; assign to A

variable mode - V#:
variable reqister # — top of variable stack — data memory

This mode accesses the data memory location given in the top element of the variable
stack that is pointed to by variable register #. This mode is intended to address
source program variables that are of one of the basic E-machine types.

Erample:

B =1

bl

could be translated into:

push [,C1 ; push 1
pop c,I,V3 ; assign to B

variable indirect - (V#):
variable reqister #£ — top of variable stack — data memory — data memory

This mode accesses the data in data memory whose location is stored at another data
memory location, which is pointed to by the top of the variable stack pointed to by
variable register #. This mode is intended for accessing the contents of high level
language pointer variables. It would be particularly useful for handling parameters
in C which are passed as pointers for the intention of passing by reference.

Erample:

int foo( C)
int *C

{
}

*C =1,



126

could be translated into:

label ¢,5 ; procedure entry

inst c,V3 ; create new instance of C
pop c,A V3 ; assign argument passed to *c
push [,C1 ; push 1

pop c,1,(V3) ; assign to *c

uninst ¢, V3 ; destroy instance of C
return ; return from call

variable offset mode - V#{offset}:
variable reqister #£ — top of variable stack + IR — data memory

This mode accesses the data pointed to by the top of the variable register # stack
plus a byte offset which was previously loaded into the index register. This mode
is useful for accessing fields in a structured data type such as a Pascal record or C

struct.

FErample:
A = D.Field2

could be translated into:
push 12 ; D is at offset of 2 in structure
popir ¢ ; put offset into index register
push R V4{IR} ; push D.Field2
pop c¢,R,V1 ; assign to A

address indirect - (A):

address register — data memory

This mode provides access to data located at the data address in the address register.
The address register must be loaded with a data memory address which points to
data memory. This mode is useful for multiple indirection.

FErample:

could be translated into:

loadar ¢, V7 ; load addr reg with addr of g
loadar c,(A) ; load addr reg with addr of *g
push T/(A) ; push *(*g)

pop c,I,V3 ; assign to ¢
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address offset mode - A{offset}:
address register + IR — data memory

This mode provides access to structured data through the address register. The
index register is added to the address register to provide an address to the data to be
accessed. This mode 1s useful for indirection with structured data, such as pointers
to records in Pascal.

Erample:
I := Ht.Data

could be translated into:

push A VS ; push HT (address value of H)
popar c ; load ar with HT

push 1,C2 ; Data has offset of 2 in record
popir ¢ ; load ir with offset

push T A{IR} ; push Ht.Data

pop c,I,V9 ; assign to |

variable indexed mode - V#[index]:

variable register # — top of variable stack + IR * data size — data memory

This address mode uses the top of the variable register # stack as a base address and
adds the index register, which must be previously loaded, multiplied by the number of
bytes occupied by the data type, which is a basic E-machine data type. The resulting
address points to the data item. This mode is useful for accessing an array whose
elements are of a basic E-machine data type.

Erample:
B := L[3];

could be translated into:

push nJI3 ; put index of 3 into
popir ¢ ; the index register
push T VI2[IR] ; push L[3]

pop c,I,V2 ; assign to B

address indexed mode - Alindex]:

address register + IR * data size — data memory

This mode provides the same function as variable indexed mode, except instead of a
variable register providing the base address, the address register is loaded with the
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base address. This mode could be used for accessing elements of an array which is
pointed to by a variable.

Erample:

B := St[4];

could be translated into:

push A V19 ; put address of array into
popar c ; address register

push 14 ; put index of 4 into
popir ¢ ; the index register

push T A[IR] ; push S1[4]

pop c,I,V2 ; assign to B



