A miniPASCAL COMPILER FOR THE
E-MACHINE

by

Frances Wren Goosey

A thesis submitted in partial fulfillment
of the requirements for the degree

of
Master of Science
in

Computer Science

Montana State University
Bozeman, Montana

April 1993

junk

11

APPROVAL
of a thesis submitted by

Frances Wren Goosey

This thesis has been read by each member of the thesis committee and has
been found to be satisfactory regarding content, English usage, format, citations,
bibliographic style, and consistency, and is ready for submission to the College of
Graduate Studies.

Date Chairperson, Graduate Committee

Approved for the Major Department

Date Head, Major Department

Approved for the College of Graduate Studies

Date Graduate Dean

111

STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a master’s
degree at Montana State University, I agree that the Library shall make it available
to borrowers under rules of the Library.

If T have indicated my intention to copyright this thesis by including a copyright
notice page, copying is allowable only for scholarly purposes, consistent with “fair
use” as prescribed in the U.S. Copyright Law. Requests for permission for extended
quotation from or reproduction of this thesis in whole or in parts may be granted

only by the copyright holder.

Signature

Date

v

ACKNOWLEDGMENTS

This thesis is part of a larger software development project, called
DYNALAB. The DYNALAB project evolved from an earlier pilot project called
DYNAMOD [Ross 91], a program animation system that has been used exten-
sively at Montana State University in introductory Pascal programming classes.
DYNAMOD was originally developed by Cheng Ng [Ng 82-1, Ng 82-2] and later
extended and ported to various computing environments by a number of students,
including Lih-nah Meng, Jim McInerny, Larry Morris, and Dean Gehnert. Experi-
ence with DYNAMOD proved the worth of program animation as a tool for teaching
and learning programming and computer science concepts. It also provided exten-
sive insight into the facilities needed in a fully functional program animation system
and the inspiration for the subsequent DYNALAB project and this thesis.

Many people have contributed to the DYNALAB project. Samuel Patton and
Michael Birch laid the groundwork for this thesis by designing and implementing the
underlying virtual machine for DYNALAB in their Masters’ theses. As this thesis is
being completed, Craig Pratt is developing the animator portion of DYNALAB, and
Robin Winslett and David Poole are implementing new compilers for the project.

I would like to take this opportunity to thank my graduate committee members,
Dr. Rockford Ross, Dr. Gary Harkin, and Dr. Year Back Yoo, and the rest of
the faculty members from the Department of Computer Science for their help and
guidance during my graduate program. I would also like to thank my thesis advisor,
Dr. Ross, and DYNALAB team members, David Poole, Craig Pratt, Robin Winslett,
and Michael Woodring, for their help and suggestions for my thesis.

The original DYNAMOD project was supported by the National Science Foun-
dation, grant number SPE-8320677. Work on this thesis was also supported in part

by a grant from the National Science Foundation, grant number USE-9150298.

Contents
Page
LIST OF TABLES s s s s s s, viii
LIST OF FIGURES s s s s s s, ix
ABSTRACT s, b'e
1. INTRODUCGCTION s s s s s s s 1
The DYNALAB System 1
Preview L s, 3
2. THE E-MACHINE s s s, 5
E-machine Design Considerations 5
E-machine Architecture 8
E-machine Emulator 14
E-machine Object File Sections 14
The CODESECTION et s s 15
The PACKETSECTION s s s, 16
The VARIABLESECTION o 16
The LABELSECTION et s s 17
The SOURCESECTION s s s, 17
The STATSCOPESECTION 17
The STRINGSECTION s s s, 18
3. EEMACHINE COMPILATION CONSIDERATIONS 20
Program Animation Units and E-code Packets 20
Identifying Program Animation Units 21
Translating Program Animation Units into E-code Packets 23
Generation of the Static Scope Table 25
Translating Enumerated Type Variables 29
Identifying Critical and Noncritical E-code Instructions 30
4. THE DESIGN OF THE miniPASCAL COMPILER 32
The miniPascal Language 32
Overview of the miniPascal Compiler 34

Error Detection and Recovery L. 36

vi

Contents—Continued

Page

Optimization 36
The Compiler Modules L. 37
The Main Module oL 37
The Parser Module 38
Calls to the Scanner 39
Interface to the Symbol Table 39
Initiating Semantic Actions L L. 39
Providing for Dynamic Scoping 40
Translating Animation Units into Packets 41

The Lookahead Problem in Animation Unit Translation 42

The Semicolon Problem in Animation Unit Translation 43
Adjusting an Animation Unit’s Ending Delimiter 44
Adjusting an Animation Unit’s Beginning Delimiter 45
Adjusting the Starting Memory Address of a Packet. 46
Adjusting the Ending Memory Address of a Packet 47
Fragmented Animation Units 48

To Highlight or Not 53

The Scanner Module L 54
The Code Driver Module 56
The Semantic Analysis Module 56
The PACKET Module 57
The SOURCE Module 57
The LABEL Module 57
The VARIABLE Module 58
The STRING Module 58
The Error Module 62
The Memory Allocation Module 64
The Assembly Code Module 64
The CODE Module 64
The Symbol Table Module 65
The STATSCOPE Module 74
Generating a Static Scope Block 74

The ProcNum Field 75
Writing the STATSCOPESECTION 80

Example of STATSCOPESECTION Generation 81

Vil

Contents—Continued

Page

5. CONCLUSIONS AND FUTURE ENHANCEMENTS 86
Conclusions s 86
Future Enhancements 87
REFERENCES s, 89
APPENDICES s, 92
APPENDIX A—THE E-MACHINE INSTRUCTIONSET 93
APPENDIX B—THE E-MACHINE ADDRESSING MODES 104

APPENDIX C—A miniPASCAL COMPILATION EXAMPLE 109

Vviil

List of Tables

Table

®© N OO N

G S g T (o)
CU L = o

Page
Packet Table Resulting from Compilation of Program Sampl 25
Static Scope Table Resulting from Compilation of Program Sampl . . 26
Packet Table Resulting from Compilation of Program Incrementl . . 51
Static Scope Table Resulting from Compilation of Program Ftrl . . . 78
Scope Owner Table for Program Samp2 83
Scope Block for Function B in Procedure A in Program Samp2 83
Scope Block for Procedure A in Program Samp2 83
Scope Block for Procedure B in Program Samp2 84
Scope Block for Program Scope in Program Samp2 84
Scope Block for “Bootstrap” Scope in Program Samp2 84
Final Static Scope Table for Program Samp2 85
The E-code LABELSECTION for Program Samp3 116
The E-code VARIABLESECTION for Program Samp3 117
The E-code PACKETSECTION for Program Samp3 119

The E-code STATSCOPESECTION for Program Samp3 120

X

List of Figures

Figure

®© N OO N

TR I R N N N N I T R U T g g e
MHOO©®XNROUE WN = OO E WD = o

Page
The E-machine 9
Source Code for Program Sampl 22
Animation Units Identified in Program Sampl 22
E-code Instructions Resulting from Compilation of Program Sampl . 24
Animation Display After Execution of X :=1; 29
E-code Instructions Translating N := K + I*J 31
Schematic Diagram of the miniPascal Compiler 35
Code Fragment Illustrating the Semicolon Problem 44
Source Code for Program Incrementl 49
E-code Translation of Program Incrementl 49
Source Code for Program Increment2 52
E-code Translation of Program Increment2 52
Source Code for a CASE Statement 55
Source Code for Program Payrolll 60
Animation Display After Execution of Program Payrolll 60
String Space’s Relationship with Variable Registers and Data Memory 61
Source Code for Program Payroll2 63
Animation Display After Execution of Program Payroll2 63
The Symbol Table Hash Implementation 67
The Symbol Table Structures 69
The miniPascal Identifier Types 70
The miniPascal Identifier Classes 70
Source Code for Program Ftrl L. 7
Animation Display After Final Recursive Call of Function Fact 77
Procedure Count Array and Dynamic Scope Stack 79
Source Code for Program Samp2 82
The E-code SOURCESECTION for Program Samp3 115
The E-code STRINGSECTION for Program Samp3 118
The E-code CODESECTION for Program Samp3 121
Animation Display After Constant Declarations in Program Samp3 . 129

Animation Display Before Calling Procedure InitD in Program Samp3130
Animation Display at End of Procedure InitD in Program Samp3 . . 131

ABSTRACT

This thesis is the third phase in the development of a program animation
system called DYNALAB (DYNAmic LABoratory). DYNALAB is an interactive
software system that demonstrates programming and computer science concepts at
an introductory level. The first DYNALAB development phase was the design of
a virtual computer—the E-machine (Education Machine). The E-machine was de-
signed by Samuel D. Patton and is presented in his Master’s thesis, The E-machine:
Supporting the Teaching of Program Ezecution Dynamics. In order to facilitate the
support of program animation activities, the E-machine has many unique features,
notably the ability to execute in reverse. The second phase in the development of
DYNALAB was the design and implementation of an E-machine emulator, which
is presented in Michael L. Birch’s Master’s thesis, An Emulator for the F-machine.
This thesis presents the design and implementation of a compiler for the E-machine.
The compiler’s source language is miniPascal, which is a subset of ISO Standard
Pascal.

The miniPascal compiler was developed using the Unix lex and yacc compiler
development tools. It has successfully generated object files ready for execution on
the E-machine. This thesis focuses on the compilation aspects that are unique to
the E-machine architecture and the planned animation environment.

CHAPTER 1

INTRODUCTION

The DYNALAB System

This thesis represents the third phase of the ongoing DYNALAB software de-
velopment project. DYNALAB is an acronym for DYNAmic LABoratory, and its
purpose is to support formal computer science laboratories at the introductory un-
dergraduate level. Students will use DYNALAB to experiment with and explore

programs and fundamental concepts of computer science. The current objectives of

DYNALAB include:

e providing students with facilities for studying the dynamics of programming
language constructs—such as iteration, selection, recursion, parameter passing
mechanisms, and so forth—in an animated and interactive fashion;

e providing students with capabilities to validate or empirically determine the
run time complexities of algorithms interactively in the experimental setting
of a laboratory;

o extending to instructors the capability of incorporating animation into lectures
on programming and algorithm analysis.

In order to meet these immediate objectives, the DYNALAB project was di-
vided into four phases. The first phase was the design of a virtual computer, called

the Fducation Machine, or E-machine, that would support the animation activities

envisioned for DYNALAB. The two primary technical problems to overcome in the
design of the E-machine were the incorporation of features for reverse execution and
provisions for coordination with a program animator. Reverse execution was engi-
neered into the E-machine to allow students and instructors to animate repetitively
sections of a program that were unclear without requiring that the entire program
be restarted. Also, since the purpose of DYNALAB is to allow user interaction with
animated programs, the E-machine had to be designed to be driven by an animator
system that controls the execution of programs and displays pertinent information
dynamically in animated fashion on a video screen. This first phase was completed
by Samuel Patton in his Master’s thesis, The E-machine: Supporting the Teaching
of Program FEzecution Dynamics [Patton 89].

The second phase of the DYNALAB project was the implementation of an em-
ulator for the E-machine. This was accomplished by Michael Birch in his Master’s
thesis, An Emulator for the E-Machine, [Birch 90]. As the emulator was imple-
mented, Birch also included some modifications and extensions to the E-machine.

The third phase of the DYNALAB project, and the subject of this thesis, is
the design and implementation of a Pascal compiler for the E-machine. The source
language for the compiler is a subset of ISO Standard Pascal, called minzPascal, and
the object language is E-code, the machine language of the E-machine. During com-
piler development, the E-machine and its emulator were again modified somewhat
as practical considerations uncovered new design issues.

The fourth phase of the DYNALAB project, currently in progress, is the design
and implementation of a program animator that will drive the E-machine and display
miniPascal programs in dynamic, animated fashion under control of the user. Once
the animator is complete, the first functional version of DYNALAB will be ready
for use in introductory computer science laboratory and lecture courses by students

and instructors alike.

The DYNALAB project will not end at this point. Compilers for other pro-
gramming languages, such as C, Ada, and Juno—a pseudolanguage used purely for
teaching [Winslett 93]—are in the initial stages of development. Algorithm anima-
tion (as opposed to program animation—see for example, [Brown 88-1, Brown 88-2])
is also a planned extension to DYNALAB. In fact, the DYNALAB project will likely
never be finished, as new ideas and pedagogical conveniences are incorporated as

they become apparent.

Preview

The thesis consists of five chapters and three appendices. Chapter 1 presents
an overview of the thesis. Since a thorough understanding of the target computer’s
architecture and instruction set is required for compiler development, a summary
of the E-machine and its emulator is given in chapter 2. Much of the information
in chapter 2 is taken from the Patton and Birch theses. During the compiler de-
velopment process, it became apparent that several additional E-machine features
and modifications were necessary or desirable. These changes have been made and
are so noted in chapter 2. For a more detailed explanation of the E-machine and its
emulator, the reader is referred to the above-mentioned theses.

Chapter 3 describes the special considerations that E-machine compilers must
address in order to function within the DYNALAB animation environment.
Chapter 4 contains a description of the miniPascal compiler. The Pascal subset
comprising the miniPascal language is presented, followed by an overview of the
compiler design. It is the intent of chapter 4 to focus on the solutions to the compi-
lation considerations unique to the DYNALAB animation environment. The current
status of the miniPascal compiler is given in chapter 5. Chapter 5 also includes sug-

gestions for future enhancements.

Since there are many E-code examples used throughout the thesis, appendices
A and B are included for completeness. Appendix A describes the E-machine in-
struction set and appendix B describes the E-machine addressing modes. Both of
these appendices are adapted from chapter 2 of Birch’s thesis. Appendix C presents

a complete miniPascal compilation example.

CHAPTER 2

THE E-MACHINE

This chapter is included to provide a description of the E-machine and is adapted
from chapter 5 of Patton’s thesis [Patton 89] and chapters 1, 2, and 3 of Birch’s thesis
[Birch 90]. This chapter is a summary and update of information from those two
theses (much of the material is taken verbatim). New E-machine features that have
been added as a result of this thesis are noted by a leading asterisk (*).

The E-machine is a virtual computer with its own machine language, called
E-code. The E-code instructions are described in appendix A; these instructions may
reference various E-machine addressing modes, which are described in appendix B.
The E-machine’s task is to execute E-code translations of high level language pro-
grams. The miniPascal language is the first language to be translated into E-code.
The real purpose of the E-machine is to support the DYNALAB program animation
system, as described more fully in [Ross 91], [Birch 90], [Ross 93] and in Patton’s

thesis [Patton 89], where it was called a “dynamic display system?”.

E-machine Design Considerations

The fact that the E-machine’s sole purpose is to support program animation

was central to its design. The E-machine operates as follows. After the E-machine

is loaded with a compiled E-code translation of a high level language program, it
awaits a call from a driver program (the animator). A call from the animator causes
a group of E-code instructions, called a packet, to be executed by the E-machine. A
packet contains the E-code translation of a single high level language construct, or
animation unit, that is to be highlighted by the animator. An animation unit could
be a complete high level language assignment statement, for example
A =X + 2xY;

which is to be highlighted as a result of a single call from the animator; the cor-
responding packet would be the E-code instructions that translate this assignment
statement. Another animation unit could be just the conditional part of an if state-
ment; in this case the corresponding packet would be just the E-code instructions
translating the conditional expression. It is the compiler writer’s responsibility to
identify the animation units in the source program so that corresponding E-code
packets can be generated. After the E-machine executes a packet, control is re-
turned to the animator, which then performs the necessary animation activities
before repeating the process by again calling the E-machine to execute the packet
corresponding to the next animation unit. Chapter 3 describes this process in more
detail.

Since the E-machine’s purpose is to enable program execution dynamics of high
level programming languages to be displayed easily by a program animator, it had

to incorporate the following:

e structures for easy implementation of high level programming language
constructs;

e a simple method for implementing functions, procedures, and parameters;

e the ability to execute either forward or in reverse.

The driving force in the design of the E-machine was the requirement for reverse

execution. The approach taken by the E-machine to accomplish reverse execution

is to save the minimal amount of information necessary to recover just the previous
E-machine state from the current state in a given reversal step. The E-machine can
then be restored to an arbitrary prior state by doing the reversal one state at a time
until the desired prior state is obtained. This one-step-at-a-time reversal means that
it is necessary only to store successive differences between the previous state and
the current state, instead of storing the entire state of the E-machine for each step
of execution.

One other aspect of program animation substantially influenced the design of
the reversing mechanism of the E-machine. Since the animator is meant to animate
high level language programs, the E-machine actually has to be able to effect rever-
sal only through high level language animation units in one reversal step, not each
low level E-machine instruction in the packet that is the translation of an animation
unit. This observation led to further efficiencies in the design of the E-machine and
the incorporation of two classes of E-machine code instructions, critical and noncrit-
ical. An E-machine instruction within a packet is classified as critical if it destroys
information essential to reversing through the corresponding high level language an-
imation unit; it is classified as noncritical otherwise. For example, in translating the
animation unit corresponding to an arithmetic assignment statement, a number of
intermediate values are likely to be generated in the corresponding E-code packet.
These intermediate values are needed in computing the value on the right-hand side
of the assignment statement before this value can be assigned to the variable on
the left-hand side. However, the only value that needs to be restored during re-
verse execution as far as the animation unit is concerned is the original value of
the variable on the left-hand side. The intermediate values computed by various
E-code instructions are of no consequence. Hence, E-code instructions generating
intermediate values can be classified as noncritical and their effects ignored during

reverse execution. It is the compiler writer’s responsibility to produce the correct

E-code (involving critical and noncritical instructions) for reverse execution. How-
ever, it should also be noted that the E-machine has the flexibility to accurately
execute E-code in reverse, instruction by instruction (rather than a packet at a

time), by simply designating each E-code instruction as critical.

E-machine Architecture

Figure 1 shows the logical structure of the E-machine. A stack-based architecture
was chosen for the E-machine; however, a number of components that are not found
in real stack-based computers were included.

Program memory contains the E-code program currently being executed by the
E-machine. Program memory is loaded with the instruction stream found in the
CODESECTION of the E-machine object code file, which is described later in this
chapter. The program counter contains the address in program memory of the next
E-code instruction to be executed. The previous program counter, needed for reverse
execution, contains the address in program memory of the most recently executed
E-code instruction.

Packet memory contains information about the translated E-code packets and
their corresponding source language animation units. Packet memory, which is
loaded with the information found in the PACKETSECTION of the E-machine ob-
ject code file, essentially effects the “packetization” of the E-code program found
in program memory. Packet information includes the starting and ending line and
column numbers of the original source program animation unit (e.g, an entire as-
signment statement, or just the conditional expression in an if statement) whose
translation is the packet of E-code instructions about to be executed. Other packet
information includes the starting and ending program memory addresses for the

E-code packet, which are used internally to determine when execution of the packet

Label
Registers

Label
Stacks

1L

Evaluation
Stack Evaluation
Register Stack
Return
Address Return
Stack Address
Register Stack
Save Stack Save
Registers Stack

—

Variable Variable
Registers Stacks
Index
Register D *
[] A >
| T T
A J R
L I
Address M N
Register E G
[] py
| O S
R P
Y A
CPU C
E
*Dynamic
Scope *Dynamic
Stack Scope
Register Stack
I: STATIC
SCOPE
MEMORY
*Save
Dynamic *Save
Scope Dynamic
Stack Scope P
Register Stack Previous R
I:l Program 0
Counter G
4 T
A
M
SOURCE
MEMORY Program M
Packet Counter E
Register M
:IT 0
[PACKET i R
MEMORY Y

Figure 1: The E-machine

10

is complete. The packet register contains the packet memory address of the packet
information corresponding to either the next packet to be executed, or the packet
that is currently being executed.

The variable registers are an unbounded number of registers that are assigned
to source program variables, constants, and parameters during compilation of a
source program into E-code. Each identifier name representing memory in the source
program will be assigned its own unique variable register in the E-machine. For
example, in a miniPascal program, a variable named Result might be declared in
the current program scope and another variable—also named Result—might be
declared in another enclosing procedure scope. The compiler will assign a unique
variable register to each of these two variables. Once a variable is assigned a variable
register, the register remains associated with the variable for the duration of the
program’s compilation and subsequent execution, regardless of whether the variable
is currently active or not.

The information held in a variable register consists of the corresponding vari-
able’s size (e.g., number of bytes) as well as a pointer to a corresponding variable
stack. Each variable stack entry, in turn, holds a pointer into data memory, where
the actual variable values are stored. The variable stacks are necessary because a
particular variable may have multiple associated instances due to being declared in
recursive procedures or functions. In such instances, the top of a particular variable’s
register stack points to the value of the current instance of the associated variable
in data memory; the second stack element points to the value of the previous in-
stantiation of the variable, and so on. The E-machine’s data memory represents the
usual random access memory found on real computers. The E-machine, however,
uses data memory only to hold data values (it does not hold any of the program

instructions).

11

*The string space component of the E-machine’s architecture was added as a
result of the miniPascal compiler development. The string space contains the values
of all string literals and enumerated constant names encountered during the com-
pilation of a miniPascal program. The string space is loaded with the information
contained in the STRINGSECTION of the E-machine object file. Currently, this
string space is used only by the animator when displaying string constant and enu-
merated constant values. A more detailed discussion of the interaction of the string
space and variable registers is found in chapter 4

The label registers are another unique component of the E-machine required for
reverse execution. There are an unbounded number of these registers, and they are
used to keep track of labeled E-code instructions. Each E-code label instruction
is assigned a unique label register at compile time. The information held in a label
register consists of the program memory address of the corresponding E-code label
instruction as well as a pointer to a label stack. A label stack essentially maintains
a history of previous instructions that caused a branch to the label represented by
the label register in question. During reverse execution, the top of the label stack
allows for correct determination of the instruction that previously caused the branch
to the label instruction.

The index register is found in real computers and serves the same purpose in
the E-machine. In many circumstances, the data in a variable is accessed directly
through the appropriate variable register. However, in the translation of a high level
language data structure, such as an array or record, the address of the beginning
of the structure is in a variable register; to access an individual data value in the
structure, an offset—stored in the index register—is used. When necessary, the
compiler can therefore utilize the index register so that the E-machine can access

the proper memory location via one of the indexed addressing modes.

12

The address register is provided to allow access to memory areas that are not
accessible through variable registers. For example, a pointer in Pascal is a variable
that contains a data address. Data at that address can be accessed using the address
register via the appropriate E-machine addressing mode. The address register can
be used in place of variable registers for any of the addressing modes.

As in many real computers, the results of all arithmetic and logical operations
are maintained on the evaluation stack; the evaluation stack register keeps track of
the top of this stack. For example, in an arithmetic operation, the operands are
pushed onto the evaluation stack and the appropriate operation is performed on
them. The operands are consumed by the operation and the result is pushed onto
the top of the stack. An assignment is performed by popping the top value of the
evaluation stack and placing it into the proper location in data memory.

The return address stack (or call stack) is the E-machine’s mechanism for imple-
menting procedure and function calls. When a subroutine call is made, the program
counter plus one is pushed onto the return address stack. Then, when the E-machine
executes a return from subroutine instruction, all it has to do is load the program
counter with the top of the return address stack. A pointer to the top of the return
address stack is kept in the return address stack register.

The save stack contains information necessary for reverse execution. Whenever
some critical information (as determined by the execution of a critical instruction) is
about to be destroyed, the required information is pushed onto the save stack. This
ensures that when backing up, the instruction that most recently destroyed some
critical information can be reversed by retrieving that critical information from the
save stack. The save stack registers point to the top and bottom of the save stack.

*The dynamic scope stack was added to the original E-machine architecture
as a result of the miniPascal compiler development. The original E-machine

did not provide a way for the animator to determine (for display) the currently

13

active program scopes. The animator must be able to display variable val-
ues associated with the execution of a packet both from within the cur-
rent invocation of a procedure (or function) and from within the call-
ing scope(s). That is, the animator must have the ability to illustrate
a program’s run time stack during execution. The Static Scope Table,
which is loaded into static scope memory from the E-machine object file’s
STATSCOPESECTION, provides the animator with the information relevant to
the static nature of a program (e.g., information pertaining to variable names local
to a given procedure). However, the specific calling sequence resulting in a particular
invocation of a procedure (or function) was not available.

The dynamic scope stack provides the dynamic chain as found in the run time
stack activation records generated by most conventional compilers. Even though
the E-machine’s return address stack could be used to hold this information, a
separate dynamic scope stack was added to the E-machine architecture in order
to minimize the impact on the existing E-machine and its emulator. At any given
point during program execution, the dynamic scope stack entries reflect the currently
active scopes. Each dynamic scope stack entry—corresponding to a program name,
a procedure name, or a function name—contains the index of the Static Scope
Table entry describing that name (i.e., a static scope name). Once these indices are
available, the animator can then use the Static Scope Table information to determine
the variables whose values must be displayed following the execution of a packet.
The animator needs access to the entire dynamic scope stack in order to display all
pertinent data memory information following the execution of any given packet. A
more detailed discussion of this process is found in chapter 4. The dynamic scope
stack reqister points to the top of the dynamic scope stack.

*In order to handle reverse execution, a save dynamic scope stack was added

to the E-machine architecture. This stack records the history of procedures and/or

14

functions that have been called and subsequently returned from. The save dynamaic
stack register points to the top of this stack.

Finally, source memory holds an array of records, each of which is a copy of a
line of source code for the compiled program. Source memory is loaded from the

E-machine object file’s SOURCESECTION at run time and is referenced only by

the animator for display purposes.

E-machine Emulator

The E-machine emulator was designed and written by Michael Birch and is de-
scribed in his thesis [Birch 90]. The emulator’s design essentially follows the design
of the E-machine presented the previous sections of this chapter. The emulator
was written in ANSI Standard C for portability and has been compiled in both
Turbo C 2.0 and Borland C++ 3.1 by the current author. Within the complete
DYNALAB environment, the emulator will act as a slave to the program animator,
executing a packet of E-code instructions upon each call. The current author has
written a simple DOS animator to drive the emulator in order to test compiled
miniPascal programs. This animator/emulator has successfully run compiled mini-
Pascal programs on several IBM PC compatible computers including 286, 386, and

486 architectures.

E-machine Object File Sections

The E-machine emulator defines the object file format that must be generated
by a compiler. As a result of the miniPascal compiler development, several changes

were made to the original E-machine object file definition and are denoted with a

15

leading asterisk (*) in the following discussion. A single E-code object file ready
for execution on the E-machine consists of seven sections, which may occur in any
order. FEach section is preceded by an object file record containing the section’s name
followed by a record that contains a count of the number of records in that particular
section. Each of these seven sections (whose names are shown in capital letters) holds
information which is loaded into a corresponding E-machine component at run time
as follows:

e the CODESECTION, which is loaded into program memory;

e the PACKETSECTION, which is loaded into packet memory;

e the VARTABLESECTION, which is loaded into the size information associated

with the variable registers;

e the LABELSECTION, which is loaded into the label program address infor-

mation associated with the label registers;
e the SOURCESECTION, which is loaded into source memory;
e the STATSCOPESECTION, which is loaded into static scope memory;
o the STRINGSECTION, which is loaded into the string space.

The file sections are described below.

The CODESECTION

The CODESECTION contains the translated program—the E-code instruction
stream. Even though the instruction stream can be thought of as stream of pseudo
assembly language instructions, the instructions are actually contained in an array
of C structures, and are loaded from the CODESECTION into the E-machine’s pro-
gram memory at run time. Each E-code instruction structure contains the following
information:

e an operation code (e.g., push or pop);

e the instruction mode (critical or noncritical);

16

o The data type of the operand (e.g., I indicates INTEGER);

e Either a numeric data value or an addressing mode.

*The PACKETSECTION

The PACKETSECTION consists of packet structures describing source program
animation units and their translated E-code packets. These structures are loaded
into the E-machine’s packet memory at run time. Each packet structure contains

the following information:

o the packet’s starting and ending E-code instruction addresses in program mem-
ory;

o the starting and ending line and column numbers in the original source file of
the program animation unit corresponding to the packet;

*an index into the current scope block of the Static Scope Table (discussed in

chapter 3);

e *the program memory address at which the packet may be “fragmented” (dis-
cussed in chapter 4);

e *a flag indicating whether or not the animator should display information
when the packet is executed (discussed in chapter 4).

The VARIABLESECTION

The VARIABLESECTION consists of structures describing the variable registers
used by the compiled program. A variable register structure consists of a single field
that contains the size of the data represented by the register. For example, on a
DOS machine where the addressable unit is a byte, a variable representing a 32-bit
integer would have a size of 4. This information is used to initialize size information

held in the E-machine’s variable registers.

17

The LABELSECTION

The LABELSECTION consists of label structures describing the label numbers
generated by the compiled program. A label structure consists of a single field that
contains the program address at which the corresponding label is defined. This
information is used to initialize the label program address information held in the

E-machine’s label registers.

The SOURCESECTION

The SOURCESECTION contains a copy of the source program being executed.
Each record in this section corresponds to a line of original source code, and is loaded
into the E-machine’s source memory at run time. Source memory is referenced only
by the animator for display purposes. The animator references source memory
via packet memory information that describes correlations between the currently
executing E-code packet and the corresponding source program animation unit.
The animator references the packet structure fields that hold starting and ending

line and column numbers in source memory to determine the animation unit to

highlight.

*The STATSCOPESECTION

The STATSCOPESECTION was originally named the SYMBOLSECTION in
Birch’s thesis. It contains a complex structure—the Static Scope Table (called the
symbol table in Birch’s thesis)—which is used by the animator to determine the
variable values that should be displayed upon execution of a packet. The name
was changed to Static Scope Table in order to avoid confusion with the compiler’s
symbol table. The STATSCOPESECTION records are loaded into the E-machine’s

static scope memory at run time.

18

A number of additions and changes were made to the Static Scope Table’s struc-

ture during miniPascal compiler development. These changes deal primarily with

making information available so that the animator can display both the dynamic

and static information that are appropriate at various stages of program execution.

The Static Scope Table is logically divided into “scope blocks,” each of which de-

scribes identifiers declared within a single static scope of the source program. A

more complete discussion of this section is found in chapters 3 and 4. Each Static

Scope Table entry contains the following information:

the name of the identifier being described (e.g., a variable name or a procedure
name);

upper and lower bounds (for array variables);

*the index of the Static Scope Table entry containing the next array index
bounds (for multidimensional arrays);

the offset value (for record fields);

an enumerated value indicating the data type (e.g., INTEGER, RECORD, or
STRING);

*the record size (for arrays of records);
a pointer to this entry’s parent Static Scope Entry;

a pointer to the child of this entry (e.g., if this static scope entry describes a
procedure, this field would hold the index of the first entry in the static scope
block describing the variables declared local to the procedure);

a variable register number (for variable names);

*a number statically assigned to procedure and functions entries; this number

is used in determining the dynamic scoping level at execution time.

*The STRINGSECTION

The STRINGSECTION, which contains the values of string literals and enumer-

ated constant names, was added as a result of miniPascal compiler development. The

19

contents of the STRINGSECTION are loaded into the E-machine’s string space at
run time. The string space allows the animator to have dynamic access to the names
of an enumerated type as well as the internal numeric values corresponding to the
names. The animator can also retrieve the values of string constants from the string

space.

20

CHAPTER 3

E-MACHINE COMPILATION
CONSIDERATIONS

Many of the compilation concerns confronting E-machine compiler writers are
the same as those faced by writers of compilers for conventional machines. There
are, however, several unique factors that must be addressed when compiling for the
E-machine’s animation environment, including:

¢ identification and translation of program animation units into E-code packets;

e generation of the Static Scope Table;

e providing access to names associated with enumerated type variables;

¢ identifying critical and noncritical E-code instructions.

Program Animation Units and E-code Packets

As briefly described in chapter 2, the animation of a high level language program
is accomplished by dividing its source code into program “chunks” called anima-
tion units. The compiler is responsible for isolating a source program’s animation
units. Each animation unit, in turn, must be translated into a group—or packet—of
E-code instructions along with corresponding descriptions of the animation unit and

its translated E-code packet via a packet structure.

21

When a high level language program is animated, the animator begins execution
by displaying the first several lines of the source code and highlighting the first
animation unit in the program. The animator then awaits a response from the
user. When the user responds, the animator calls the E-machine to execute the
currently highlighted animation unit of the program. Actually, what the E-machine
executes is the packet of instructions corresponding to the animation unit. When
the E-machine has completed execution of the instructions contained in the packet,
control is returned to the animator. The animator then performs various animation
tasks (e.g., displaying pertinent data memory values) and then again awaits a user
response before repeating this process by highlighting the next animation unit and so
forth. Thus, two of the challenging tasks facing the compiler designer are identifying
animation units and properly translating them into E-code packets for successful
animation. The following two sections present an example program to illustrate
how the miniPascal compiler accomplishes these two tasks. Although this example
program posed no particular problems for the compiler, a number of subtle problems
relative to identifying and translating program animation units were encountered
during the compiler’s development. These problems and their solutions are discussed

in detail in chapter 4.

Identifying Program Animation Units

The compiler identifies individual animation units as it is parsing the high
level language source code. Consider the miniPascal program in figure 2 (the num-
bers on the left correspond to line numbers in the source program file). For this
program, the miniPascal compiler identifies the nineteen animation units shown
in figure 3 (the numbers on the left correspond to each animation unit’s associ-
ated packet structure, as discussed in the next section). These animation units

will be successively highlighted (in the original source program of figure 2) by the

22

0 Program Sampil;

1

2 VAR

3 I,J,K:INTEGER;
4 N:INTEGER;

5

6 Procedure Init (VAR X,Y:INTEGER);
7 BEGIN

8 X :=1;

9 Y := 2;

10 END;

11

12 BEGIN

13 Init(I,J);

14 IF I < 10

156 THEN K := 100
16 ELSE K := 0;
17 N := K + I*x]J

18 END.

Figure 2: Source Code for Program Sampl

Program Samp1i;

VAR

I,J,K:INTEGER;
N:INTEGER;
Procedure Init
(VAR X,Y:INTEGER);
BEGIN

X :
Y :
END;

10 BEGIN

11 Init(I,J);
12 IF I < 10
13 THEN

14 K := 100
15 ELSE

16 K :
17 N :
18 END.

1;
2;

OCO~NOOITBRWNERLO

Figure 3: Animation Units Identified in Program Sampl

23

animator as it performs the animation of the program. It should be noted that
the determination of animation units is arbitrary and can vary from one compiler
to another based on subjective aesthetics of program animation. As can be seen
from this example, an animation unit can correspond to “chunks” of source code
representing a single keyword, an entire program statement, the conditional part of

an if statement, and so forth.

Translating Program Animation Units into E-code Packets

Once the compiler has identified an animation unit, it must then translate this
unit into a corresponding packet of E-code instructions along with an associated
descriptive packet structure. Thus, compilation of the example given in figure 2,
would result in the generation of nineteen E-code packets and nineteen correspond-
ing packet structures. Figure 4 shows the pseudo assembly language representation
of the E-code instructions generated for the miniPascal program shown in figure 2.
The numbers shown on the left in figure 4 correspond to program memory addresses
(instruction numbers). The individual packets, corresponding to the animation units
of figure 3, are shown separated by blank lines in figure 4.

Table 1 shows the array of packet structures—called the Packet Table—
describing the individual packets resulting from the translation of the program of
figure 2. The PacketNumber field (column) is included for clarity—it is not part of
the Packet Table. The first two fields in the Packet Table (StartAddr and EndAddr)
give the starting and ending addresses in program memory of the E-code packet.
The next four fields (StartLine, StartCol, EndLine, and EndCol) demark the phys-
ical location of the packet’s corresponding program animation unit in the source
program array. The Scopelndex field in the Packet Table is discussed in the next
section of this chapter. The final two fields (FragAddr and DisplayPacket) provide

24

0 pushd C12 36 nop
1 nop
37 push I,C100
2 nop 38 pop ¢,I,V0
39 brb
3 inst ¢,VO
4 inst c,V1 40 label 4
5 inst c,V2 41 nop
6 inst ¢,V3 42 push I,CO
7 br O 43 pop c¢,I,V0
8 1label L1 44 label L5
9 pushd C9 45 inst c,V7
46 push I,V2
10 1link V5 47 push I,V1
11 link V4 48 mult c,I
49 pop c,I,V7
12 nop 50 inst c,V8
51 push I,VO
13 push I,C1 52 push I, V7
14 pop c,1,Vb b3 add c,I
54 pop ¢,I,V8
15 push TI,C2 56 push I,V8
16 pop c,I,V4 566 pop ¢,I,V3
17 nop 57 nop
18 unlink V4 58 uninst ¢,V8
19 unlink V5 59 uninst c,V7
20 popd 60 uninst c,V6
21 return 61 uninst ¢,V3
62 uninst ¢,VO
22 label O 63 uninst c,V1
23 nop 64 uninst c,V2
65 popd

24 pusha Vi
25 pusha V2
26 call i

27 label 2

28 label 3

29 inst c¢,V6
30 push I,V2
31 push I,C10
32 less c,I
33 pop ¢,B,V6
34 push B,V6
35 brf c,4

Figure 4: E-code Instructions Resulting from Compilation of Program Sampl

25

Packet | Start | End | Start | Start | End | End | Scope | Frag | Display
Number | Addr | Addr | Line | Col | Line | Col | Index | Addr | Packet
0 0 1 0 0 0 14 0 -1 TRUE
1 2 2 2 2 2 4 0 -1 TRUE
2 3 5 3 4 3 17 3 -1 TRUE
3 6 7 4 4 4 13 4 -1 TRUE
4 8 9 6 2 6 15 0 -1 TRUE
5 10 11 6 17 6 33 2 -1 TRUE
6 12 12 7 4 7 8 2 -1 TRUE
7 13 14 8 6 8 12 2 -1 TRUE
8 15 16 9 6 9 12 2 -1 TRUE
9 17 21 10 6 10 9 5 -1 TRUE
10 22 23 12 2 12 6 5 -1 TRUE
11 24 26 13 4 13 13 5 -1 TRUE
12 27 35 14 4 14 12 5 -1 TRUE
13 36 36 15 6 15 9 5 -1 TRUE
14 37 39 15 11 15 18 5 -1 TRUE
15 40 41 16 6 16 9 5 -1 TRUE
16 42 43 16 11 16 17 5 -1 TRUE
17 44 56 17 4 17 15 5 -1 TRUE
18 57 65 18 4 18 7 5 -1 TRUE

Table 1: Packet Table Resulting from Compilation of Program Sampl

additional information necessary for animating an animation unit and are discussed

in chapter 4.

Generation of the Static Scope Table

The compiler writer must also provide information describing all of the data
memory variables that the animator must display. This information is provided in
the Static Scope Table, a linear array which is, in turn, logically divided into numer-
ous scope blocks. Each scope block describes the identifiers (e.g., variable names
and procedure names) declared in a single static scope in a program. Even though

this information is obtained from the compiler’s symbol table, the generation of the

26

Static Scope Table is not a straightforward task due to scope nesting characteristics

of many high level languages, such as miniPascal.

Table 2 shows the Static Scope Table that is generated as a result of compiling the

miniPascal program given in figure 2. The Entry (entry number) column, or field,

is included for clarity—it is not part of the Static Scope Table. This Static Scope

Table consists of three scope blocks—a block describing the identifiers declared

within the scope of procedure Init (entries 0-3), a block describing the identifiers

declared within the scope of program Sampl (entries 4-10), and a “bootstrap” block

describing the main program entry (entries 11-13).

En Id Upr | Lwr | Nxt | Off Type Rec | Par | Ch | Var | Proc
try | Name | Bnd | Bnd | Idx | set Siz | ent | ild | Reg | Num
Scope block describing procedure Init

0 - - - - HEADER - 4 - - -

1 X - - - - INTEGER - - - 5 -

2 Y - - - - INTEGER - - - 4 -

3 - - - - END - - - - -
Scope block describing program Samp1

4 - - - - HEADER - 11 - - -

5 1 - - - - INTEGER - - - 2 -

6 J - - - - INTEGER - - - 1 -

7 K - - - - INTEGER - - - 0 -

8 N - - - - INTEGER - - - 3 -

9 Init - - - - PROCEDURE - - 0 - 1
10 - - - - END - - - - -
Bootstrap scope block

11 - - - - HEADER - - - - -
12 | Sampl - - - - PROGRAM - - 4 - 0
13 - - - - END - - - - -

Table 2: Static Scope Table Resulting from Compilation of Program Sampl

The bootstrap block contains three entries: the HEADER and END entries that

delimit the scope block and a PROGRAM entry containing information about the

program itself. There are two fields of interest in the PROGRAM entry; these are the

27

child pointer field (Child) and the procedure number field (ProcNum). The Child
field contains the index of the first entry of the scope block describing the identifiers
declared in the program. The ProcNum field contains a compiler-generated number
that is used in conjunction with dynamic scoping; this field is discussed in chapter 4.

The entries in the scope block describing the identifiers declared in the pro-
gram scope consist of the HEADER and END delimiter entries as well as entries
describing each of the scope’s identifiers. The Parent field of the HEADER en-
try in this scope block contains the index of the first entry of the bootstrap scope
block. This scope block’s PROCEDURE entry—describing procedure Init—uses the
Child field, which contains the index of the first entry of the scope block describing
the identifiers declared in procedure Init. The ProcNum field is also used in the
PROCEDURE entry; it contains a compiler-generated number to be used in con-
junction with dynamic scoping.

The entries in the scope block describing the identifiers declared in procedure Init
consist of the HEADER and END delimiter entries as well as entries describing each
identifier declared in the scope, in this case the procedure’s parameters. The Parent
field of the HEADER entry of this scope block contains the index of the first entry
of the scope block containing the procedure’s declaration.

There must also be some way to relate a high level language program’s dynamic
nature to the static information found in the Static Scope Table. That is, the
animator must be able to determine all of the active scopes at any given point during
execution of the program. The animator can then display the data memory values
pertinent to the most current scope as well as the data memory values associated
with the scopes in the calling sequence leading to the most current scope.

The animator retrieves dynamic scoping information from the E-machine’s dy-

namic scope stack. For instance, suppose that the animator has just highlighted

28

the animation unit
X :=1;

in procedure Init. After receiving a response from the user, the animator then
calls the E-machine to execute the E-code packet corresponding to this animation
unit. When the E-machine returns control to the animator, the animator must then
determine the relevant data memory values to be displayed following any changes
that resulted from execution of the packet. This task is accomplished by querying
the E-machine’s dynamic scope stack, which contains a history of the active scopes.
In this example, the dynamic scope stack currently consists of two entries, each
containing an index into the Static Scope Table. The top entry contains the value 9
and the bottom entry contains the value 12. These values indicate to the animator
that procedure Init (Static Scope Table entry number 9) is the most current active
scope and that program Sampl (entry number 12) is the calling scope. By using the
child pointers associated with these two Static Scope Table entries, the animator can
now determine the appropriate data memory values to be displayed. Figure 5 shows
a possible animation resulting from the execution of this animation unit. The arrow
(==>) pointing to the instruction Y := 2; indicates where animation proceeds.

The Scopelndex field of the packet structure can now be explained. Suppose
that the E-machine has completed execution of the packet corresponding to the
animation unit

I,J,K:INTEGER;

and has returned control to the animator. The animator, via a query of the dynamic
scope stack, now determines that only the values of the variables contained in the
outer program scope should be displayed. The variables listed in the block describing
this scope’s variables are I, J, K, and N. However, at this point in the program’s
execution, variable N has not yet been declared, and thus should not be displayed.

The Scopelndex field of the packet structure associated with the above animation

29

Program Samp1i; Program Sampi
I =
VAR J is undefined
I,J,K:INTEGER; K is undefined
N:INTEGER; N is undefined
Procedure Init(VAR X,Y:INTEGER); Procedure Init
BEGIN X=1
X :=1; Y is undefined
=>Y := 2;
END;
BEGIN
Init(I,J);
IF I < 10
THEN K := 10
ELSE K := 0;
N := K + I*J
END.

Figure 5: Animation Display After Execution of X := 1;

unit contains the value 3. This value indicates to the animator that it should only
display data memory values for entries numbered 0, 1, 2, and 3 in the window
associated with the most current active scope block. Hence, the animator will
display the values of the variables I, J, and K (0 stands for the HEADER entry). In
this case, all of these variables would have the value “undefined,” as they have only

just been declared and have not yet had values assigned to them.

Translating Enumerated Type Variables

Ordinarily, only the internal numeric value of an enumerated type variable is
required in translated object code. It is desirable, however, for program animation
purposes to have the animator display the enumerated constant name rather than
just the internal numeric value of a variable of an enumerated type. Thus, when

translating an enumerated type variable, the compiler must provide a way for the

30

animator to relate the variable’s internal numeric value to its corresponding constant
name. This task was accomplished by the addition of the string space to the E-
machine’s architecture. The string space holds the enumerated constant names
(as well as string literals) defined in a miniPascal program. The method that the
miniPascal compiler uses to relate an enumerated type variable’s internal numeric

value to the appropriate name in the string space is discussed in chapter 4.

Identifying Critical and Noncritical E-code Instructions

The final major E-machine compilation concern is that of identifying the E-code
instructions that would destroy information that is needed (i.e., critical) for success-
ful reverse execution. Since the immediate concern for the miniPascal compiler was
to produce a usable compiler, the current version of the compiler treats all E-code
instructions as critical. For example, the animation unit

N := K + I*J;
in figure 2 corresponds to the packet of E-code instructions numbered 44 through
56 in figure 4. All of these instructions are marked critical via the “c” operand.
Only instruction number 56 is actually critical, however, as only it results in critical
information being destroyed. That is, the old value of N is being destroyed by
popping a new value into it in instruction 56; for reverse execution, this old value
of N must be saved. Thus, the packet of E-code instructions corresponding to this
animation unit could be generated as shown in figure 6, where the operand “n”

indicates a noncritical instruction.

44
45
46
47
48
49
50
51
52
53
54
55
56

Figure 6: E-code Instructions Translating N

31

label L5
inst n,V7
push I,V2
push I,V1
mult n,I
pop n,I,V7
inst n,V8
push I,VO
push I,V7
add n,I
pop n,I,V8
push I,V8
pop ¢,1,V3

:= K + I*J

32

CHAPTER 4

THE DESIGN OF THE miniPASCAL
COMPILER

The miniPascal compiler is a one-pass compiler written in ANSI Standard C and
developed with Borland C++ 3.1 on an IBM PC compatible computer. E-machine
object files (E-code files) generated by the miniPascal compiler have been tested
using a simple DOS animator driving the E-machine emulator. Even though the
capabilities of this animator are quite limited, a significant number of miniPascal

programs have been compiled, executed, and animated successfully.

The miniPascal Language

The miniPascal language is a subset (with a few noted extensions) of ISO Stan-
dard Pascal as defined in the book Pascal User Manual and Report by Jensen and

Wirth [Jensen 91]. The following Pascal features are supported by miniPascal:
e constant, type, and variable declarations;
e procedure and function declarations;

e simple types including integer, real, character, boolean, enumerated types, and
subrange types;

33

e structured types:

— single and multidimensional arrays,
— strings, including arrays of strings,

— fixed-part records including records whose fields are arrays, records, strings,
or enumerated types (arrays of records are also supported);

e boolean expressions, unary expressions, and infix expressions;
e assignment statements;
e procedure and function calls;

e control statements:

the if-then and if-then-else statements,
— the while loop,

— the repeat loop,

— the for loop,

— the case statement (with the extension of an others clause).

The following Pascal features are not currently supported in miniPascal:

e records with variant parts;

e the with statement;

e pointers;

e sets;

e labels;

e the goto statement;

e external files;

e the forward directive;

e predeclared functions and procedures;

e procedure or function names as parameters;

e conformant-array parameters.

34

Overview of the miniPascal Compiler

The miniPascal compiler was developed using the lex and yacc compiler devel-
opment tools [Mason 90]. Lex is a scanner generator written by M.E. Lesk and E.
Schmidt of Bell Laboratories [Lesk 75] and yacc is a parser generator written by
S.C. Johnson, also of Bell Laboratories [Johnson 75]. Lex reads a specification file
of regular expressions identifying the tokens in a language and generates a C mod-
ule containing a scanner for those tokens. Yacc reads a specification file containing
a context-free grammar (and associated semantic actions) for a language and pro-
duces a C module containing an LALR(1) parser for the language. The basic lex
and yacc specifications for ISO Standard Pascal were obtained from the ftp network
site primost.cs.wisc.edu. The semantic stack definition and semantic actions were
then added to these specifications.

Both lex and yacc are standard utilities available on Unix machines. Even though
there are versions of these utilities available for DOS machines, the lex and yacc
specifications for miniPascal have been run exclusively on a Unix machine, with the
resulting C modules being downloaded to a DOS machine. These C modules were
then compiled and linked with numerous other C modules containing the semantic
analysis and code generation routines.

The compiler consists of a total of sixteen modules. Figure 7 is a schematic
diagram showing the interactions among the various modules—the directions of the
arrows indicate calls to a module. Three of the sixteen modules are omitted from
the figure for the sake of clarity. These are the Error Message module, the Memory
Allocation module, and the module that produces a text file containing the pseudo
assembly language instructions translating the source program (used for compiler

debugging purposes). A brief description of the compiler operation is given below.

35

Main
Module
SOURCE
Module
PACKET Parser Scanner |
Module Module Module
| LABEL
Module
STRING Semant}c Symbol STATSCOPE
Modul «— Analysis Table Modul
|| VARIABLE]_| CRe]l | Module Module oche
Module
| CODE
Module Code Driver
Module

Figure 7: Schematic Diagram of the miniPascal Compiler

After the Main module opens appropriate files, it calls the Parser module, which
drives the compilation process by requesting tokens from the Scanner module and by
calling various semantic analysis and code generation routines, notably the Semantic
Analysis module and the Code Driver module. As can be seen in figure 7, the Symbol
Table module plays a central role during semantic analysis and code generation.

Seven of the modules are dedicated to producing the E-code object file. These

modules are:

e the PACKET module, which produces the PACKETSECTION;

e the LABEL module, which produces the LABELSECTION;

e the VARIABLE module, which produces the VARTABLESECTION;

36

the CODE module, which produces the CODESECTION;

the STRING module, which produces the STRINGSECTION;

the SOURCE module, which produces the SOURCESECTION;

the STATSCOPE module, which produces the STATSCOPESECTION.

When compilation is complete, control is returned to the Main module, which
then calls routines in each of these seven E-code production modules in order to
generate the final E-code file (these calls are not indicated in figure 7). If the
compiler encounters an error during compilation, a call is made to the Error module
(omitted from figure 7), which prints an error message and then calls a routine in

the Main module for immediate termination of compilation.

Error Detection and Recovery

When the compiler detects an error in a miniPascal source file, an appropriate
message is printed and the compilation is halted. The initial users of this com-
piler will be instructors preparing laboratory exercises—not students developing
programs. Thus, minimal error reporting with no recovery was considered to be

sufficient.

Optimization

There are no provisions for optimization in the compiler. There is no real need
for optimization in the animation environment, and many optimizations would alter

the E-code/source language relationship too severely for animation to be successful.

37

The Compiler Modules

The remainder of this chapter describes the individual compiler modules in
more detail. The discussion is focused on the role each module plays in the
generation of the seven sections of the E-code file, giving particular attention to
those sections that presented problems unique to this compiler. The E-code’s
CODESECTION is essentially the equivalent of the intermediate code files gen-
erated by many compilers; the problems encountered in generating this section were
the same as would be found in the development of any compiler. The four sections,
VARIABLESECTION, LABELSECTION, SOURCESECTION, and
STRINGSECTION, are unique to the E-machine; they, however, posed no
particular problems and are generated in a straightforward manner. The
PACKETSECTION, also unique to the E-machine, did present some problems,
which are discussed below in the Parser Module description. The problems pre-
sented by the STATSCOPESECTION are discussed in the STATSCOPE Mod-
ule description. Another E-code generation problem occurred due to the desire
to have the animator display an enumerated type variable’s constant name as
well as its internal numeric value. The solution to this problem was to add the
STRINGSECTION to the E-machine object file as discussed in the STRING Mod-

ule description.

The Main Module

When the miniPascal compiler is invoked, control passes to the main routine
in the Main module. The Main module consists of the main routine, routines that
handle the opening and closing of files, and a routine to handle abnormal end of

compilation. The Main module opens the miniPascal source file, whose name is

38

obtained from a command line argument when the compiler is invoked. The Main
module then creates three files to hold the output from the compilation: the E-
code (object) file, a file to hold the pseudo assembly language instruction stream
(for compiler debugging), and a temporary file to hold output from the module
producing the CODESECTION of the E-code file. Next, the Main module calls
the yacc-generated yyparse routine in the Parser module to begin the compilation.
When yyparse returns successfully to the Main module, the compilation is complete,
and the Main module then calls routines in the code producing modules to write
the various E-code sections to the E-code file. Finally, the files are closed and the
compiler exits normally. If a return marking an unsuccessful compilation is made to
the main Module, the miniPascal source file is closed, the output files are deleted,

and an abnormal exit is indicated.

The Parser Module

As indicated above, the yacc-generated Parser module is responsible for driving
the compilation process. Yacc produces an LALR(1) parser by processing a speci-
fication file containing a context free grammar that generates the source language.
Calls to semantic routines, written in C, are interspersed among the grammar pro-
duction rules given in the miniPascal yacc specification. The yacc-generated parser
maintains a parser-controlled semantic stack, whose records hold information corre-
sponding to each token and non-terminal found in the grammar productions. The
parser has access to the information in the semantic stack records via pseudo vari-
ables used in the semantic actions. The yacc specification provides a union structure
to define the different types of semantic stack records necessary to describe the var-
ious semantic information required for each symbol in the grammar. In the case
of the miniPascal specification, this union structure consists primarily of pointers

to dynamically allocated structures containing information needed to produce the

39

E-code for the animation of a miniPascal program. The yacc-generated Parser mod-
ule consists of one very large routine, yyparse. Two small user-supplied supporting

routines are also included in this module.

Calls to the Scanner. As in conventional compilers, the Parser module re-

quests the next token from the Scanner module by calling the lex-generated yylex
routine. The Parser module has access to the value of a token through the external
variable yytext, whose value is produced in the Scanner module. Since the mini-
Pascal language is not case-sensitive, the Scanner converts all letters in an identifier
name token to lower case before returning the token (and its value) to the Parser
module. The numeric values of integer and real literal tokens are available to the

Parser module via the external variable yylval, also produced in the Scanner module.

Interface to the Symbol Table. The Parser module interfaces directly with

the Symbol Table module to enter and retrieve identifier names. The Parser module
enters and retrieves an identifier’s symbol table attributes by calling routines in the

Semantic Analysis module.

Initiating Semantic Actions. Many of the semantic actions initiated by the

Parser module are accomplished by calls to routines in the Code Driver module.
These routines perform further semantic analysis (via calls to routines in the Se-
mantic Analysis module) and then generate code (via calls to the code production
routines). For example, when the Parser module recognizes an assignment produc-
tion, it calls the GenAssign routine in the Code Driver module. The parameters
passed to GenAssign are pointers to the semantic stack structures corresponding to
the symbols involved in the assignment production rule of the grammar. GenAssign
can then determine whether the assignment is valid, determine what value (if any) to

load into the index register, and generate appropriate E-code by calling routines in

40

the code production modules. There are also situations in which the Parser module

itself can cause E-code generation directly by calling code production routines.

Providing for Dynamic Scoping. The Parser module provides dynamic

scoping information to the E-machine by generating code to manipulate the E-
machine’s dynamic scope stack. (Static scoping information is contained in the
Static Scope Table and is discussed in detail in the STATSCOPE module descrip-
tion.) When the Parser module encounters the beginning of a program, function,
or procedure scope, it calls the Genlnstr routine in the CODE module to generate
the pushd instruction. At run time, the pushd instruction causes an entry to be
pushed onto the E-machine’s dynamic scope stack. This entry contains the index of
the scope’s declaration (e.g., procedure name description) in the Static Scope Table;
this index must be passed as an operand in the pushd instruction. (Recall from the
discussion of the dynamic scope stack in chapter 2 that this is necessary in order that
identifiers in calling scopes be accessible at run time.) At this point in the parse,
however, this index value is not known because the scope’s declaration is “owned”
by the containing scope, whose Static Scope Table entries will not be generated
until that entire scope has been parsed. This means that the Parser must asso-
ciate a dummy index value with the pushd instruction, and the instruction must be
“patched” when the actual value becomes available. When the Parser module en-
counters the end of a scope, it generates the popd instruction and then calls the
GenStatScopeBlock routine in the STATSCOPE module to generate the Static
Scope Table entries for the scope. When the Parser module finally encounters the
end of a containing scope, the STATSCOPE module can calculate the index of
any nested procedure or function scope declarations and patch their corresponding

pushd instructions via a call to the CODE module.

41

Translating Animation Units into Packets. The Parser module controls

the identification and subsequent translation of a miniPascal program’s animation
units. This translation involves the generation of a packet of E-code instructions
(via calls to the CODE and Code Driver modules) as well as the construction of
an associated packet structure describing the animation unit. The Parser calls the
following routines in the PACKET module to construct a packet structure:

e StartPacket;

e EndPacket;

AdjustStartPacket;

AdjustEndPacket;
o AddPktFraglnstr;

A packet structure’s delimiter values—pertaining to the source file line and col-
umn number boundaries of the animation unit that the packet translates, as well as
the starting and ending program memory addresses of the E-code packet itself—are
determined by the Parser module, which then passes these values to the appropriate
PACKET module routine. The Parser module has access to the source file line and
column number values via external variables that are initialized when the Scanner
module recognizes a token; the Parser has access to the current program memory
address (instruction number) via an external variable maintained by the CODE
module as E-code instructions are generated. When the Parser module recognizes a
token that marks the beginning of an animation unit, it calls the StartPacket rou-
tine, passing as parameters the source file line and column numbers corresponding to
the first character of this token as well as (in the general case) the number of the next
E-code instruction to be generated. The PACKET module maintains an internal
variable, PktNum, containing the number of the packet structure currently under

construction. This variable, which serves as the index into the PACKET module’s

42

array of packet structures, is incremented in the StartPacket routine. Subsequent
calls to any of the other PACKET module routines listed above refer to the pre-
viously “started” packet structure. Thus, for a given animation unit, StartPacket
is called only once, while the remaining routines (including EndPacket) may be
called any number of times while the animation unit’s packet structure is being
constructed.

In the simplest case, upon recognizing a token that marks the beginning of an
animation unit, the Parser module first calls the StartPacket routine and then gener-
ates any corresponding E-code instructions. As other tokens within the animation
unit are recognized, the Parser continues to generate E-code instructions. When
the Parser recognizes the token marking the end of the animation unit, it calls the
EndPacket routine, passing as parameters the source file line and column numbers
corresponding to the last character of this token as well as the number of the current
E-code instruction. For example, the BEGIN keyword is considered to be a complete
packet. Thus, upon recognizing the BEGIN token, the Parser first calls the Start-
Packet routine, passing the source file line and column numbers associated with the
letter B as well as the number of the next E-code instruction to be generated. Next,
the Parser generates the E-code nop instruction (via a call to the CODE module).
Finally, the Parser calls the EndPacket routine, passing the source file line and col-
umn numbers associated with the letter N as well as the current E-code instruction
number (corresponding to the nop instruction). There are many cases in which
an animation unit’s delimiters can be determined in such a straightforward man-
ner; there were, however, a number of subtle animation unit translation problems

encountered during compiler development.

The Lookahead Problem in Animation Unit Translation. One of these

problems occurs when the Parser module is assigning source file line and column

43

numbers to an animation unit. For those tokens that delimit an animation unit,
the parser calls either StartPacket or EndPacket, passing the token’s line and col-
umn numbers and the appropriate instruction number. The values in the external
variables containing the line and column numbers, however, are incorrect when the
Parser module must examine the lookahead token in order to determine which pro-
duction to reduce. (Recall that yacc produces an LALR(1) parser that sometimes
requires a one-symbol lookahead for proper parsing actions.) In these cases, the
current line and column numbers reflect the location of the lookahead token instead
of the token delineating the animation unit. This problem was solved by identi-
fying the tokens that were involved in these situations and replacing them with
non-terminals on the right-hand sides of productions. Each new non-terminal be-
comes the left-hand side of a unit production whose right-hand side is just the token
the non-terminal replaced. During reduction of one of these new unit productions,
the token’s line and column numbers can be captured and placed in the semantic
record belonging to the token because no lookahead is required to reduce these unit
productions. Yacc places this record on the semantic stack, which allows access by
routines processing the stack. Thus, when a production that has one of the new
non-terminals on its right-hand side is reduced, the correct values can be retrieved

from the semantic stack and passed to the PACKET module routines.

The Semicolon Problem in Animation Unit Translation. Another prob-

lem was easily solved by calling the EndPacket routine more than once for the same
animation unit. This situation can be illustrated by Pascal’s use of semicolons to
separate, rather than terminate, statements (recall that the semicolon is not part of
a Pascal statement [Jensen 91]). For example, in the Pascal code fragment shown
in figure 8, the semicolon at the end of J := 2; is unnecessary. It really separates

J := 2 from a null statement, and the null statement precedes the END statement.

44

However, the statement (including the semicolon)
J = 2;

is considered to be an animation unit. The yacc production associated with assign-
ment statements however, does not immediately associate the semicolon with the
statement (e.g., J := 2). Rather, an enclosing production eventually accomplishes
this association. Thus, in this case, the Parser first issues a call to EndPacket,
passing the source file line and column numbers associated with the token “2”7, as
well as the number of the final instruction within the E-code translation of the an-
imation unit. Then, when the Parser reduces the enclosing production recognizing

the semicolon, the Parser again calls the EndPacket routine, passing the source file

W, »

;7, as well as the current in-

line and column numbers associated with the token
struction number (this number will not have changed since no code is generated for
the semicolon). Hence, the animation unit is “ended” correctly. As noted for this
case, since the statement precedes an END statement, the semicolon is optional. If

the semicolon is omitted, the Parser performs correctly by calling the EndPacket

routine only once because the enclosing production in this case has no semicolon.

BEGIN

s]
N =

Figure 8: Code Fragment Illustrating the Semicolon Problem

Adjusting an Animation Unit’s Ending Delimiter. There are instances

when an animation unit’s ending delimiters must be adjusted after the Parser has

45

already ended construction of its associated packet structure. For example, if there
are procedure declarations following a scope’s variable declarations, the Parser must
generate an instruction to branch around the code translating the nested procedures
in order to achieve the correct program flow. During program execution, the an-
imator will need to highlight the animation units corresponding to the variable
declarations in this routine, then skip the procedure declarations and continue by
highlighting the body of this routine, demonstrating execution flow. In such cases,
the Parser has already (correctly) ended the construction of the current packet
structure—describing the animation unit consisting of the last variable declaration
in the scope—prior to reaching the first procedure declaration. The branch in-
struction number, however, must now be included in the current packet structure
as the ending program memory address of the corresponding E-code instruction
packet to ensure proper animation around the procedure declarations. In this sit-
uation, the packet structure cannot simply be “ended” again, because the current
source line and column numbers now reflect the location of the beginning of the
animation unit corresponding to the subsequent procedure declaration. Hence, the
AdjustEndPacket routine was designed to alter the ending program memory ad-
dress associated with the current packet structure. For the example given above,
the Parser calls the AdjustEndPacket routine, passing as a parameter the E-code
instruction number associated with the branch instruction. The Parser then contin-
ues by calling the StartPacket routine to begin construction of the packet structure

describing the procedure declaration animation unit.

Adjusting an Animation Unit’s Beginning Delimiter. The routine,

AdjustStartpacket, was provided to support the situation in which an animation
unit is nested within another animation unit. This situation occurs when there is

a function call within another miniPascal statement. For example, consider the

46

following statement:
Result := Min(x,y) + 2;

Upon recognizing the assignment production, the Parser issues a call to the
StartPacket routine to begin construction of the packet structure describing the
animation unit consisting of the entire statement. For animation purposes, how-
ever, it is desirable to highlight the function call, Min(x,y), separately in order to
illustrate the fact that the function Min must be called before the assignment state-
ment can be completed (i.e., Min(x,y) should be treated as a separate animation
unit). Thus, when the Parser recognizes the function call, it issues a call to the
AdjustStartPacket routine, passing the source line and column numbers associated
with the beginning of the function call. The AdjustStartPacket routine returns
(via parameters) the previous source line and column numbers associated with the
original StartPacket call for the current packet structure. The Parser then contin-
ues to control the construction of the current packet structure, which now describes
only the Min(x,y) portion of the statement, generating an E-code instruction packet
translating Min(x,y). When the Parser completes the processing of the function call
production, it calls the EndPacket routine to end the current packet structure and
then calls the StartPacket routine to start construction of the next packet structure.
The line and column numbers passed to this call to StartPacket are the previous
source line and column numbers returned by the AdjustStartPacket routine; the
instruction number of the nezt E-code instruction is also passed to StartPacket.
Thus, the source code associated with the now current packet structure is the entire
assignment statement; the E-code packet translating this assignment statement does

not include the instructions translating the function call.

Adjusting the Starting Memory Address of a Packet. There is a case

when it is necessary to retain the value of the current E-code instruction number so

47

that it can be used as the starting program memory address of the packet translating
the next animation unit. Normally, a packet’s starting program memory address is
the next instruction number to be generated. However, when an E-code label in-
struction is the current instruction, there are situations when this instruction must
become the first instruction in the next E-code packet. Unfortunately, since it is
not an enclosing production that needs the memory address of the label instruc-
tion, the semantic stack cannot be used to store this value. This problem is solved
by storing the current instruction number (i.e., the number of the E-code label
instruction) in a global variable, SaveStartInstrNum, which is accessible in the ap-
propriate production. Thus, whenever the Parser recognizes a token that marks
the beginning of an animation unit, it first queries SaveStartInstrNum for a valid
instruction number. If the instruction number is valid (i.e., its value is not -1), the
Parser passes this instruction number value to the StartPacket routine and then sets
SaveStartInstrNum’s value to -1. If the value of SaveStartInstrNum is -1, the Parser
passes the number of the next E-code instruction to be generated to StartPacket.
It should be noted that use of global variables in the yacc parser must be done very

carefully to ensure that the parser does not alter a variable’s value before it is used.

Adjusting the Ending Memory Address of a Packet. Similarly, there is

also a case when it is necessary to retain the value of the current E-code instruction
number so that it can be used as the ending program memory address of the packet
currently under construction. This situation arises when the Parser generates an
E-code br (branch) or call instruction immediately preceding the generation of a
label instruction. Due to the nature of the parse, however, the Parser has not yet
determined that it is time to end construction of the animation unit corresponding
to the current packet. This decision is made when the next production is processed.

This next production is not an enclosing production, and thus cannot retrieve the

48

necessary information from the semantic stack. Here again, a global variable is used.
The Parser queries this variable, SaveEndInstrNum, before calling the EndPacket
routine. (This is the same situation in which the succeeding label instruction must

become the starting program address for the next animation unit.)

Fragmented Animation Units. Another problem in translating animation

units occurs when an animation unit becomes “fragmented”. Fragments result when
parsing either a single conditional statement or a single procedure/function call
that occurs within another conditional statement alone, not within a compound
(BEGIN/END) statement. This situation is best explained by an example. Con-
sider the miniPascal program in figure 9 (the numbers on the left correspond to
line numbers in the source file). This example illustrates a single procedure call
statement that occurs within a while loop (line number 11). Figure 10 shows the
pseudo assembly language representation of the E-code instructions translating pro-
gram Incrementl. The numbers shown on the left correspond to program memory
addresses (instruction numbers). The individual packets are separated by a blank
line in the figure.

First, assume that the animator has two options pertaining to when an animation
unit should be highlighted. One of these options is to highlight an animation unit,
await a response from the user before executing the corresponding E-code packet
(so that the user can contemplate what will happen when the animation unit is
executed), and then rehighlight the same animation unit upon completion of its
execution (so that the user can ponder where execution will proceed next). This
is the scenario that has been used in previous examples. However, as the user
progresses in his understanding of program flow, it would also be desirable to give the
animator a second option. This option would allow the animator, upon completion

of the execution of an animation unit, to immediately highlight the nezt animation

49

PROGRAM Incrementi;

0

1 VAR

2 i:INTEGER;

3

4 PROCEDURE IncrI;
5 BEGIN

6 i:=i+1

7 END;

8

9 BEGIN

10 i:=1;

11 WHILE i < 5 DO IncrI;
12 END.

Figure 9: Source Code for Program Incrementl

0 pushd C7 19 label O

1 nop 20 nop

2 nop 21 push I,C1
22 pop ¢,I,V0

3 inst ¢,VO

4 broO 23 label 2
24 inst c,V2

5 label 1 25 push I,VO

6 pushd C4 26 push I,CH
27 less c,I

7 nop 28 pop c¢,B,V2
29 push B,V2

8 inst c,V1 30 brf ¢,3

9 push I,VO

10 push I,C1 31 nop

11 add c,I

12 pop c,I,V1 32 call 1

13 push I,V1 33 label b

14 pop ¢,I,VO 34 br 2

15 nop 35 label 3

16 uninst c,V1 36 nop

17 popd 37 uninst c,V2

18 return 38 uninst ¢,VO
39 popd

Figure 10: E-code Translation of Program Incrementl

50

unit to be executed. The following discussion assumes that the animator is running
under this second option.

Suppose that the animator has just highlighted the animation unit END; of pro-
cedure Incrl. Upon receiving a response from the user, the animator calls the E-
machine to execute the corresponding E-code packet (consisting of the instructions
numbered 15 through 18). The E-machine returns to the animator when it com-
pletes execution of the packet. The animator now queries the E-machine’s packet
register in order to determine the nezt animation unit to be highlighted. Although
it is not evident from figure 10, the RETURN instruction (number 18) causes control
to pass to the LABEL instruction (number 33) following the CALL instruction that
caused control to pass to procedure Incrl. (This is accomplished via the E-machine’s
query of its return address stack, as discussed in chapter 2.) Instruction number 33
is within the E-code packet translating the animation unit consisting of the call to
procedure Incrl (instruction numbers 32 through 34). Thus, the E-machine’s packet
register contains the address of the packet structure describing the animation unit
consisting of the call to procedure Incrl. This animation unit, however, was high-
lighted prior to the call to the procedure and should not be rehighlighted. The
animation unit that should be highlighted is WHILE i < 5.

This fragmentation problem was solved by adding a new field to the packet
structure definition. Table 3 shows the Packet Table containing the packet struc-
tures resulting from the compilation of program Incrementl. This new field,
named FragAddr in table 3, holds the first program memory address at which this
fragmentation can occur. (More than one such LABEL instruction within the E-code
packet can cause this problem to occur multiple times due to multiple nesting pos-
sibilities.) When the Parser module determines that this situation is possible, it
calls the AddPktFraglnstr routine to initialize the FragAddr field. The animator

must now query the E-machine’s program counter as well as its packet register when

51

determining the next animation unit to be displayed. If the program counter value
is greater than or equal to the FragAddr value in the packet structure corresponding
to the packet register, the animator does not change its current display (i.e., it con-
tinues to highlight the animation unit it is on, not the animation unit described by
the packet structure to which the return was made). Of course, the animator must
still call the E-machine to complete execution of the fragmented E-code packet even
though there is no change in what the animator highlights. Once execution of the
fragmented packet is completed, the next animation unit is highlighted, in this case

WHILE i < 5.

Packet | Start | End | Start | Start | End | End | Scope | Frag | Display
Number | Addr | Addr | Line | Col | Line | Col | Index | Addr | Packet
0 0 1 0 0 0 18 0 -1 TRUE

1 2 2 1 2 1 4 0 -1 TRUE

2 3 4 2 4 2 13 1 -1 TRUE

3 5 6 4 2 4 22 0 -1 TRUE

4 7 7 5 4 5 8 0 -1 TRUE

5 8 14 6 5 6 10 0 -1 TRUE

6 15 18 7 5 7 8 2 -1 TRUE

7 19 20 9 2 9 6 2 -1 TRUE

8 21 22 10 3 10 7 2 -1 TRUE

9 23 30 11 3 11 13 2 -1 TRUE

10 31 31 11 15 11 16 2 -1 TRUE
11 32 34 11 18 11 28 2 33 TRUE
12 35 39 12 3 12 6 2 -1 TRUE

Table 3: Packet Table Resulting from Compilation of Program Incrementl

It should be noted that the miniPascal code
WHILE i < O DO BEGIN IncrI(i) END;

does not produce a fragmentation problem, because the call to Incrl is contained
in a compound statement (BEGIN/END) pair. Figure 11 contains the source

code illustrating this situation. Figure 12 shows the pseudo assembly language

52

0 PROGRAM Increment2
1 VAR

2 i:INTEGER;

3

4 PROCEDURE IncrI;
5 BEGIN

6 i:=i+1

7 END;

8

9 BEGIN

10 i:=1;

11 WHILE i < 5 DO BEGIN IncrI END;
12 END.

Figure 11: Source Code for Program Increment2

0 pushd C7 21 push I,C1
1 nop 22 pop ¢,I,V0
2 nop 23 label 2
24 inst c,V2
3 inst c¢,VO 25 push I,VO
4 br O 26 push I,CH
27 less c,I
5 label 1 28 pop ¢,B,V2
6 pushd C4 29 push B,V2
30 brf ¢,3
7 nop
31 nop
8 inst c,V1
9 push I,VO 32 nop
10 push I,C1
11 add c,I 33 call 1
12 pop c¢,I,V1
13 push I,V1 34 label b
14 pop ¢,I,VO 35 nop
36 br 2
15 nop
16 uninst c,V1 37 label 3
17 popd 38 nop
18 return 39 uninst c,V2
40 uninst ¢,VO
19 label O 41 popd
20 nop

Figure 12: E-code Translation of Program Increment2

53

representation of the E-code instructions translating program Increment2. As can
be seen in figure 12, in this case the LABEL instruction following the CALL instruc-
tion is not within the E-code packet that contains the CALL instruction. This LABEL
instruction is the first instruction in the E-code packet translating the END state-
ment associated with the while loop. Thus, upon completion of the execution of the
E-code packet translating the procedure’s END statement, the animator would (cor-
rectly) highlight the animation unit containing the END statement of the while loop.
The fact that the LABEL instruction is physically adjacent to an instruction involved
in the translation of the next animation unit (in this case, the while loop’s END
statement) allows the Parser to “adjust” the E-code packet boundaries by querying
the SaveStartInstrNum and SaveEndInstrNum variables as previously discussed.
The sample program found in appendix C illustrates another situation in which

a packet becomes fragmented.

To Highlight or Not. A final field, named DisplayPacket in table 3, was

added to the packet structure to indicate whether or not the animator should dis-
play (highlight) anything at all before the corresponding E-code packet is executed.
There are two miniPascal situations when the animator should not change its display
before execution of a packet:
e before execution of a packet associated with the return from a function call;
e before execution of a packet containing instructions that determine the case
label to which a branch should be made based on the case selector value.
The following two examples illustrate these situations. First, consider the mini-

Pascal statement,
Result := Min(x,y) + 2;

In this example, the animator will eventually highlight the animation unit Min(x,y)
and then await a response from the user before executing the corresponding E-

code packet. When execution of Min is complete and control returns to the calling

54

procedure, a “dummy” packet containing the E-code to pop the value returned
by Min into a temporary variable is executed. Since Min(x,y) has already been
highlighted and its corresponding E-code packet has been executed, there is no
corresponding source code (i.e., animation unit) associated with this dummy packet.
This situation is similar to the fragmentation problem discussed above. In this case,
however, execution of the entire dummy packet should not result in any animation
(highlighting) of the source program. Thus, the DisplayPacket field in the dummy
packet’s associated packet structure is set to FALSE. The animator would continue
to highlight Min(x,y) until execution of the dummy packet is complete, and then
highlight the animation unit containing the statement Result := Min(x,y) + 2;
in order to illustrate the result of executing this assignment statement.

Now, consider the code in figure 13. In this example, upon completion of parse
of the entire case statement (up to the END statement), the Parser Module calls
the GenCaseSearch routine in the Code Driver module. This routine generates
a packet of E-code that enables control to pass to the proper case label at run
time. Here again, this is a “dummy” packet in that there is no animation unit
associated directly with it. For the case statement in figure 13, the animator will first
highlight the animation unit, CASE i OF, and then await a response from the user.
Upon completion of execution of the corresponding E-code packet, the animator will
subsequently call the E-machine to execute the dummy packet, without changing its
display (i.e., CASE i OF continues to be highlighted). Then, since the value of the
case selector is 2, the animator highlights the animation unit containing the case

label 2: and again awaits a response from the user.

The Scanner Module

The Scanner module performs the scanning (or lexical analysis) function for

the compiler. This module consists of the lex-generated yylex routine and two

55

CASE i OF
1: j:=100;
2: J:=200;
3: j:=300;
0THERS: j:=0
END;

Figure 13: Source Code for a CASE Statement

user-supplied routines that handle miniPascal comments and quoted strings, respec-
tively. The yylex routine is called by the Parser when the next token is required.
The other two routines are called internally (from yylex in the Scanner module).
Lex produces a scanner by processing a specification file containing rules that
consist of regular expressions. These regular expressions define the tokens in a
language, in this case miniPascal. Actions, written in C, are interspersed among the
rules—these actions effect the accomplishment of the two scanner tasks performed
upon each call to yylex. The Scanner module’s first task is to recognize and return
miniPascal tokens (and their values) to the parser. Its second task is to enter the
original miniPascal source code into the E-code’s SOURCESECTION via calls the
GenSource routine in the SOURCE module. The Scanner module is also responsible
for ensuring that the miniPascal compiler is not case-sensitive. Thus, when the
Scanner module recognizes a identifier token, it first enters the name of the identifier
into the SOURCESECTION, and then converts the name (in the yytext variable)

to all lower case characters before returning to the Parser.

56

The Code Driver Module

The Code Driver module drives the E-code translation of the source program.
This module is a large one, consisting of thirty-two routines. Many of these routines
are called by the Parser module when the parse reaches a point where code should
be generated. The remaining routines in this module are called internally (from
within the Code Driver module). The Code Driver module interfaces directly with
the Semantic Analysis and Symbol Table modules to perform semantic analysis, and

with the CODE, LABEL, and VARIABLE modules to perform code generation.

The Semantic Analysis Module

The Semantic Analysis module performs semantic analysis during compilation.
This module is a large module, consisting of fifty-eight routines. These routines are
called by the Parser module, the Code Driver module, and the STATSCOPE mod-
ules when semantic checking must be done. The Semantic Analysis routines may
also be called internally (from within the Semantic Analysis module). These rou-
tines perform tasks relevant to both the initialization and the retrieval of semantic
information. For example, the Parser module calls the SetProcAttributes routine
upon encountering a procedure declaration. This routine is dedicated to associating
with the procedure name its (compiler generated) starting program memory address
as well as any formal parameter attributes. Later, when the Parser encounters a
call to the procedure, it calls the GetProcAttributes routine to retrieve this informa-
tion in order to associate the correct program memory address with the generated
E-code call instruction and to verify the actual parameter list. The Semantic
Analysis module interfaces directly with the Symbol Table module to enter and re-
trieve symbol table attribute information. The Semantic Analysis module also inter-

faces directly with the STRING module by calling the EnterString routine to enter

57

the values of string literals and enumerated constant names into the string space

array.

The PACKET Module

The PACKET module produces the E-code packet descriptors during compila-
tion. This module contains routines that initialize a statically allocated array of
structures containing the packet descriptions. With the exception of the WritePKT
routine, the PACKET module routines are called by the Parser module during
the parsing process. The WritePKT routine, called by the Main module at the

end of compilation, writes the packet structure array elements to records in the

PACKETSECTION of the E-code file.

The SOURCE Module

The SOURCE module produces the source code array (for animation purposes).
This module contains the GenSource routine, which initializes a statically allocated
array containing the source code of the miniPascal program being compiled. Each
element in the source code array corresponds to a single line in the miniPascal
source program. The GenSource routine is called by the Scanner module during
the scanning process. The WriteSOURCE routine, called by the Main module at

the end of compilation, writes the source code array elements to records in the

SOURCESECTION of the E-code file.

The LABEL Module

The LABEL module produces the table that maps E-code label numbers to
their corresponding E-code instruction numbers (i.e., E-code label instructions).
This module contains the GenLabRegTable routine, which initializes a statically

allocated array whose elements contain the instruction number of corresponding

58

E-code (label) instructions. The GenLabRegTable routine is called by both the
Parser and the Code Driver modules during the compilation process. The Write LAB

routine, called by the Main module at the end of compilation, writes the label array

elements to records in the LABELSECTION of the E-code file.

The VARIABLE Module

The VARIABLE module produces the table that maps E-code variable register
numbers to their corresponding data memory sizes. This module contains the Gen-
VarRegTable routine, which initializes a statically allocated array whose elements
contain the size of the data memory reserved for corresponding variable register
numbers. The GenVarRegTable routine is called by both the Parser and the Code
Driver modules during the compilation process. The WriteVAR routine, called by
the Main module at the end of compilation, writes the variable register array ele-

ments to records in the VARIABLESECTION of the E-code file.

The STRING Module

The STRING module generates the string array found in the E-code
STRINGSECTION. The miniPascal compiler’s implementation of enumerated types
precipitated the need for a new E-machine component (the string space), and hence
the need for a corresponding section in the E-code file. This new section is called the
STRINGSECTION. Ordinarily, only the internal numeric value of an enumerated
type variable is required in translated object code for real computers and computing
environments. It is desirable, however, for a program animation system to have the
animator display the enumerated constant name rather than (or in addition to) the
internal numeric value of a variable of an enumerated type. The STRINGSECTION
consists of a statically allocated character array containing all of the enumerated

constant names defined in a miniPascal program, as well as the values of any string

59

literals declared in the source program (which may also need to be displayed by
the animator). When the Semantic Analysis module encounters the definition of a
string literal or an enumerated constant name, it calls the EnterString routine in
the STRING module. The WriteSTRINGS routine, called by the Main module at
the end of compilation, writes the string character array to the STRINGSECTION
of the E-code file.

When a miniPascal program is animated, the STRINGSECTION portion of the
E-code file is loaded into the E-machine’s string space. The string space is then
accessed by the animator for displaying string constants and enumerated variable
values. For example, upon completion of execution of the program in figure 14, the
animator can display the enumerated type variable values as shown in figure 15.

Figure 16 illustrates the relationship of the E-machine’s string space with the
variable registers and data memory. This illustration assumes that a variable regis-
ter associated with an enumerated type variable represents 32-bits of data memory.
The 16 high-order bits of this data memory location contain the dynamically de-
termined internal numeric value of the enumerated constant associated with this
variable; the 16 low-order bits contain an index into the string space where the as-
sociated enumerated constant name can be found. As can be seen in figure 16, the
index into the string space is always that of the first constant name of the enumer-
ated type. This is due to the fact that the compiler can statically generate code to
increment or decrement the numeric value of an enumerated type variable (e.g., for
an enumerated type control variable in a for loop). The compiler cannot, however,
statically determine in advance the absolute string space index of the enumerated
constant name associated with an enumerated type variable at any given time. In-
stead, the animator has the capability to retrieve the variable’s numeric value and
the starting string space index. The animator can then step sequentially through

the string space until the name corresponding to the numeric value is found; the

60

Program Payrollil;

TYPE

DAYS = (MON,TUES,WED,THURS,FRI);
FREQUENCY = (WEEK,MONTH) ;

VAR
0ffDay,PayDay:DAYS;
PayFreq:FREQUENCY;

BEGIN
0ffDay:=WED;
PayDay:=FRI;
PayFreq:=WEEK;
END.

Figure 14: Source Code for Program Payrolll

Program Payrollil;

TYPE
DAYS = (MON,TUES,WED,THURS,FRI);
FREQUENCY = (WEEK,MONTH) ;

VAR
0ffDay,PayDay:DAYS;
PayFreq:FREQUENCY;

BEGIN
0ffDay:=WED;
PayDay:=FRI;
PayFreq:=WEEK;
END.

Program Payrolli
0ffDay = 2 /* WED */
PayDay = 4 /* FRI */
PayFreq = 0 /* WEEK */

Figure 15: Animation Display After Execution of Program Payrolll

61

Variable Variable Data String
Registers Stacks Memory Space
PayDay 0 T
OffDay 1 41 2 S
PayFreq 2 —8| 0

olm|1|z|o|g|o|R|u|m|S o= R o |wn|=|a|=2 e8| o |n|= a2 o[2[of=

Figure 16: String Space’s Relationship with Variable Registers and Data Memory

62

names are null-terminated, thus allowing such a search. (A similar situation will
exist when the predeclared Pascal functions, pred and succ, are eventually imple-
mented.)

The animator also accesses the string space when displaying enumerated type
array indices. Thus, upon completion of the execution of the program shown in
figure 17, the animator can display DayCode’s value as shown in figure 18. In
this case, the animator retrieves the values of the enumerated type indices through
information stored in the Static Scope Table. In this example, the Static Scope

Table entry for the variable DayCode contains the following information:

Identifier Name: DayCode

e Upper array bound: 19

e Lower array bound: 0

Entry type: INTEGERENUMI
Variable Reg: 0

Type INTEGERENUMI means that the variable DayCode is an array with integer
elements and an enumerated index type. This indicates to the animator that the

array bounds are indices into the string space rather than absolute numbers.

The Error Module

The Error module produces an error message whenever an error is encountered
during compilation. This module consists of routines to report the following types
of errors:

® ScCan €rrors;

® parse errors;

internal errors;

® parse warnings;

lack of support messages.

63

Program Payroll2;

TYPE
DAYS = (MON,TUES,WED,THURS,FRI);
DAYLIST = ARRAY [MON..FRI] OF INTEGER;

VAR
DayCode:DAYLIST:
Day:DAYS;

BEGIN
FOR Day := MON TO FRI DO
DayCode[Day] := 0;
END.

Figure 17: Source Code for Program Payroll2

Program Payroll2; Program Payroll2
DayCode[MON] = O
TYPE DayCode [TUES] = O
DAYS=(MON, TUES, WED , THURS ,FRI) ; DayCode [WED] = O
DAYLIST=ARRAY [MON..FRI] OF INTEGER; DayCode [THURS] = 0O
DayCode[FRI] = O
VAR
DayCode :DAYLIST:
Day:DAYS;
BEGIN

FOR Day := MON TO FRI DO
DayCode[Day] := 0;
END.

Figure 18: Animation Display After Execution of Program Payroll2

64

Each of these routines prints an appropriate message, and, with the exception of the
parse warning routine, then calls the AbnormalEnd routine in the Main module. The
Error module routines are called by various other modules during the compilation

process.

The Memory Allocation Module

The Memory Allocation module is responsible for allocating and freeing memory
for the various data structures required during the compilation process. This module
consists of allocate and free routines associated with each data structure defined in
the compiler. The Memory Allocation module routines are called by many of the

other modules during the compilation process.

The Assembly Code Module

The Assembly Code module produces a text file containing the pseudo assembly
language translation of a source program. The WrtAsmFile routine in this module
writes a copy of the CODESECTION instructions to a text file in pseudo assembly
language format. This module is not required for compilation since it does not gen-
erate any of the E-code file sections; it does, however, provide an excellent debugging
tool for compiler development. The routines in this module are (optionally) called

by the CODE module as the instructions are generated.

The CODE Module

The CODE module produces the array of C structures containing the E-code
instructions. The CODE module contains the Genlnstr routine which writes a
single E-code instruction to a temporary file, and (optionally) calls the Wrt AsmFile
routine in the Assembly Code module (to output an equivalent pseudo assembly code

instruction). The Genlnstr routine is called by the Parser and Code Driver modules.

65

The CODE module also contains the PatchInstr routine, which maintains an array
of structures that associate a “patch value” with a program memory address. There

are two situations when a code patch is necessary:

1. References to label values before they are known during the generation of case
statement code.

2. The association of the index of the Static Scope Table entry for a proce-
dure/function with the appropriate pushd instruction (see the Parser module
section previously in this chapter).

When compilation is complete, the Main module closes and reopens the tem-
porary CODESECTION file and then calls the WriteCODE routine. This routine
reads the temporary file and writes the records to the CODESECTION of the E-code

file, incorporating any patches into the proper instructions.

The Symbol Table Module

The Symbol Table module manages the compiler’s symbol table. The Symbol
Table module routines are responsible for opening and closing static scopes as well
as entering and retrieving identifier names and their attributes. The Symbol Table
routines are called by the Parser, the Semantic Analysis, the Code Driver, and the
STATSCOPE modules.

Each identifier name in the symbol table has a static scope level and, possi-
bly, a record number, associated with it. This allows the same identifier name to
be used in more than one scope, including scopes nested within each other. The
current scope level is contained in a global variable in the Symbol Table Interface
module. When the Parser module determines the beginning of a scope, it calls the
OpenScope routine, which simply increments the scope level. When the Parser mod-
ule determines an end of scope, it calls the CloseScope routine, which deletes all

symbol table entries for that scope and then decrements the scope level. It should

66

be noted that, at the beginning of compilation, the Parser module (via the Seman-
tic Analysis module) enters the predefined Pascal types—integer, real, boolean, and
char—and the predefined Pascal constants—true, false, and maxint—into the sym-
bol table. These predefined identifiers are associated with the outermost scope of
the program.

The symbol table itself is implemented as a single hash table using chaining to
resolve collisions. The chained buckets are stacked such that the identifiers declared
in the most recent scope are at the top of the stack. This ensures that the proper
identifier is retrieved by an outward search of the buckets associated with the same
identifier name. The hashing algorithm used is “hashpjw” from P.J. Weinberger’s
C compiler, as presented in Compilers: Principles, Technigques, and Tools by Aho,
Sethi, and Ullman [Aho 86].

The basic structure of the symbol table, as well as the design of the Symbol Ta-
ble module, are based on the symbol table design presented in Crafting A Compiler
by Charles N. Fischer and Richard J. LeBlanc, Jr. [Fischer 88]. There are also sev-
eral symbol table features adapted from the symbol table design given in Compiler
Design in C by Allen 1. Holub [Holub 90]. Figure 19 illustrates the symbol table
implementation.

A symbol table entry for an identifier consists of several structures which are
chained together. The various symbol table structures are shown in figure 20. The
identifier’s primary structure, the Symbol Structure, is initialized as soon as the
Parser module encounters the identifier’s declaration. Later, when the parse has
progressed to the point where the identifier’s attributes become known, the re-
maining “descriptor” structures are initialized. Once its attributes are known, an
identifier’s symbol table entry will consist of at least a Symbol Structure, a Type
Descriptor Structure, and a Class Descriptor Structure. The various symbol table

structures are described below.

67

Hash
Table
0
1
2 [Data [[| PP Y Data [[[P> Data [| | |
i Symbol Structure Symbol Structure Symbol Structure
5 NextInScope
6 |
7 Data | | | |
8
9 Symbol Structure NextInScope
10
11 NextInList
12
13
14 | Data | | [" Data [[[|
15 Symbol Structure Symbol Structure

Figure 19: The Symbol Table Hash Implementation

A Symbol structure consists of the following fields:

e IdName (identifier name). This field contains a pointer to the dynamically
allocated memory location containing the identifier name.

e ScopeLlevel. This field contains the static scope level of the identifier.

e RecordNum. If the identifier being described is a field name, this Symbol
Structure field contains the compiler-assigned number of the record containing
the identifier name. If the identifier is not a field name, this number is 0.

e LineNum. This field contains the identifier’s source code line number. Since
all of the symbol table names are stored as lower case, this number is later
used by the STATSCOPE module to retrieve the identifier’s original name (for
animation purposes) from the source code array, which is maintained in the

SOURCE module.

68

ColNum. This field contains the identifier’s starting column number in the
source code and is likewise used by the STATSCOPE module to retrieve the
identifier’s original name.

IdType. This field contains the pointer to the identifier’s Type Descriptor
record.

IdClass. This field contains a pointer to the identifier’s Class Descriptor record.

NextInList. If the identifier is declared within a list of identifiers, this field
contains the pointer to the Symbol Structure of the previous identifier in the
list. The Parser module can then traverse this chain to associate common
attributes with the identifiers in the list. This chain is also used (in reverse
order) when assigning internal numeric values to enumerated constant names.

NextInScope. This field contains a pointer to the Symbol Structure of the
previous identifier in the current static scope level. This chain is traversed by
the STATSCOPE module to retrieve the identifiers declared within a given
static scope (as discussed in the next section).

NextBucket. This field contains the pointer to the previous Symbol Structure
in the hash table entry’s collision chain. This chain is used internally in the

Symbol Table module.

A Type Descriptor structure consists of the following fields:

UseCount. Since numerous other structures may point to the same Type
Descriptor structure, the UseCount field is utilized to prevent the Memory
Allocation module from freeing the structure while it is still in use.

Size. This field contains the identifier’s size (in terms of the host computer’s
smallest addressable memory size, normally bytes).

Packed. This field indicates whether or not a structured type identifier is
packed. The miniPascal compiler recognizes the packed attribute only if the
identifier is a string variable.

TypeName. This field contains an enumerated constant value indicating the

identifier’s type (e.g., INTEGERTYPE, ENUMTYPE, or ARRAYTYPE).

Select Type. This field contains a pointer to another descriptor based on the
value of the TypeName field. For example, if the TypeName is ARRAYTYPE,
Select Type would point to an Array Descriptor record, which would contain
further attribute information pertaining to the identifier.

69

Id Scope |Record| Line Col Id Id |[NextIn|NextIn| Next
Name | Level | Num | Num | Num | Type | Class | List | Scope |Bucket
Symbol Structure
Use) Type | Select Class
Count Size |Packed Name | Type Name SelectClass
Type Descriptor l Class Descriptor
Structure Structure
Use |Elemnt| First | Const Use | Lower | Upper | Enum Is Next
Count | Type | Index | Part Count | Bound | Bound | Desc | Char | Index
Array Descriptor Index Descriptor
Structure Structure
Use First | Base | Max Use Base | Lower | Upper
Count | Const | Type | Val Count | Type |Bound | Bound

Enumeration Descriptor

Subrange Descriptor

Structure Structure
Use |Record g; Num | First
Count | Num %€ | Fields | Field

Record Descriptor

Structure
Use Param | Next
Count Mode Type |Param

Parameter Descriptor

Structure

Figure 20: The Symbol Table Structures

70

A Class Descriptor structure consists of the following fields:

e ClassName. This field contains an enumerated constant value indicat-
ing the identifier’s class (e.g., VARIABLECLASS, CONSTANTCLASS,
or PROCEDURECLASS).

o SelectClass. This field is composed of a union structure containing information
based on the value of the ClassName field. For example, if the ClassName
is VARTABLECLASS, one of the fields in this structure would contain the

variable register number associated with the variable.

The remaining symbol table structures are used in describing specific type or
class attributes pertaining to a given identifier. These symbol table structures are
discussed below. Figure 21 shows the enumerated names of the various miniPascal
identifier types; figure 22 shows the enumerated names of the various miniPascal

identifier classes. (Identifier types POINTERTYPE, SETTYPE, and FILETYPE

listed in figure 21 are not currently implemented.)

/* Identifier types */
typedef enum

INTEGERTYPE, REALTYPE, BOOLEANTYPE, CHARTYPE, ENUMTYPE, SUBRANGETYPE,
POINTERTYPE, SETTYPE, ARRAYTYPE, RECORDTYPE, FILETYPE, EXISTINGTYPE,
STRINGTYPE

} IdTypes;

Figure 21: The miniPascal Identifier Types

/* Identifier classes */
typedef enum

VARIABLECLASS, FIELDCLASS, TYPENAMECLASS, CONSTANTCLASS,

PROCEDURECLASS, FUNCTIONCLASS, INTLITCLASS, REALLITCLASS,

CHARLITCLASS, STRINGLITCLASS, PROGRAMCLASS, TEMPCLASS, PARAMETERCLASS
} IdClasses;

Figure 22: The miniPascal Identifier Classes

71

In some cases, no additional structures are needed to describe an identifier’s
attributes. For example, the three basic symbol structures (defined above) suffice
in describing a variable (i.e., identifier class is VARIABLECLASS) of type integer
(i.e., identifier type is INTEGERTYPE).

An Array Descriptor structure is used when an identifier’s TypeName field (in its
Type Descriptor structure) has the value ARRAYTYPE. The Select Type field holds
a pointer to the corresponding Array Descriptor structure. An Array Descriptor

structure consists of the following fields:

e UseCount. Since numerous other structures may point to the same Array
Descriptor structure, the UseCount field is utilized to prevent the Memory
Allocation module from freeing the structure while it is still in use.

e ElemntType. This field holds a pointer to the Type Descriptor structure
defining the array’s element type (e.g., the predefined integer type or some
previously declared user-defined type).

e FirstIndex. This field holds the pointer to the Index Descriptor structure
describing the array’s (first) index. The Index Descriptor structure is defined
below.

o ConstPart. This field holds the “constant part” used in the algorithm that
calculates the linear address for a (multidimensional) array reference. This
algorithm was taken from [Fischer 88].

An Index Descriptor structure is referenced by the FirstIndex field in a corre-
sponding Array Descriptor structure, as discussed above. It may also be referenced
by the NextIndex field of another Index Descriptor structure. An Index Descriptor
structure consists of the following fields:

e UseCount. Since numerous other structures may point to the same Index
Descriptor structure, the UseCount field is utilized to prevent the Memory
Allocation module from freeing the structure while it is still in use.

e LowerBound. This field holds the (numeric) lower bound of an array index.

e UpperBound. This field holds the (numeric) upper bound of an array index.

72

e EnumDesc. If the array index values are an enumerated type, this field holds
a pointer to the Enumeration Descriptor structure describing the enumerated
type. The Enumeration Descriptor structure is discussed below.

e IsChar. This field’s value is TRUE if the array index values are CHARTYPE;
otherwise this field’s value is FALSE.

e NextIndex. This field holds a pointer to the Index Descriptor structure de-
scribing the next array index (if any).

An Enumeration Descriptor structure is used when an identifier’s TypeName
field (in its Type Descriptor structure) has the value ENUMTYPE. The SelectType
field holds a pointer to the corresponding Enumeration Descriptor structure. An

Enumeration Descriptor structure consists of the following fields:

e UseCount. Since numerous other structures may point to the same Enumera-
tion Descriptor structure, the UseCount field is utilized to prevent the Memory
Allocation module from freeing the structure while it is still in use.

o FirstConst. This field holds the pointer to the Symbol structure describing
the first constant in the enumeration.

e BaseType. This field holds a pointer to the Type Descriptor structure that
describes the first constant in the enumeration.

e MaxVal. This field holds the maximum numeric value associated with the
enumeration (i.e., the number of constants in the enumeration minus 1).

A Subrange Descriptor structure is used when an identifier’s TypeName
field (in its Type Descriptor structure) has the value SUBRANGETYPE. The
Select Type field holds the pointer to the corresponding Subrange Descriptor struc-

ture. A Subrange Descriptor structure consists of the following fields:

e UseCount. Since numerous other structures may point to the same Subrange
Descriptor structure, the UseCount field is utilized to prevent the Memory
Allocation module from freeing the structure while it is still in use.

e BaseType. This field holds a pointer to the Type Descriptor structure de-
scribing the base type of the subrange (e.g., a pointer to the Type Descriptor
structure describing the predefined integer or char types).

73

LowerBound. This field holds the (numeric) lower bound of the subrange.
UpperBound. This field holds the (numeric) upper bound of the subrange.

A Record Descriptor structure is used when an identifier’s TypeName field (in

its Type Descriptor structure) has the value RECORDTYPE. The SelectType field

holds a pointer to the corresponding Record Descriptor structure. A Record De-

scriptor structure consists of the following fields:

UseCount. Since numerous other structures may point to the same Record
Descriptor structure, the UseCount field is utilized to prevent the Memory
Allocation module from freeing the structure while it is still in use.

RecordNum. This field hold the (compiler-generated) number associated with
the record.

Size. This field holds the record’s size (normally, in bytes).
NumPFields. This field holds the number of fields in the record.

FirstField. This field holds a pointer to the Symbol structure associated with
the record’s first field.

A Parameter Descriptor structure is used when an identifier’'s ClassName

field (in its Class Descriptor structure) has the value PROCEDURECLASS or

FUNCTIONCLASS. A Parameter Descriptor structure describes the formal param-

eters associated with a procedure (or function). The union structure corresponding

to the SelectClass field holds a pointer to the Parameter Descriptor structure de-

scribing the first parameter in the formal parameter list. A Parameter Descriptor

structure consists of the following fields:

UseCount. Since numerous other structures may point to the same Parameter
Descriptor structure, the UseCount field is utilized to prevent the Memory
Allocation module from freeing the structure while it is still in use.

Mode. This field holds the parameter’s mode (i.e., VALUE or REFERENCE).

ParamType. This field holds a pointer to the Type Descriptor structure that
describes the parameter.

NextParam. This field holds a pointer to the Parameter Descriptor structure
of the next parameter in the formal parameter list.

74

The STATSCOPE Module

The STATSCOPE module contains the routines that build the Static Scope
Table. The animator uses the Static Scope Table in conjunction with the dynamic
scope stack to determine the data memory values that should be displayed at a given
point during a program’s execution. The Static Scope Table was called the Symbol
Table in Birch’s thesis [Birch 90]; the name was changed here to avoid confusion
with the compiler’s symbol table. This table is a linear array of structures (or
entries) which are in turn divided into numerous scope blocks. The scope blocks
are chained together via parent/child pointers as discussed later. A scope block is
used to describe the program identifiers associated with a single static scope. For
example, a scope block would describe all of the local variable names and locally

declared functions and/or procedures within a given procedure.

Generating a Static Scope Block. The Parser module calls the

STATSCOPE module’s GenStatScopeBlock routine whenever the end of a static
scope is encountered during parsing (i.e., at the end of a procedure, function, or
program). The parsing of an inner scope is always completed before the containing
scope is completely parsed (a result of Pascal syntax).

The GenStatScopeBlock routine drives the generation of the static scope block
in the Static Scope Table for the scope in question from information in the symbol
table for the current scope. (Recall that the symbol table entries for this scope will
be deleted at this point of the parse, so this information must be saved in the Static
Scope Table for animation purposes.) This routine, via calls to other STATSCOPE

module routines, performs the following tasks:

e dynamic allocation of a static scope block. The number of static scope en-
tries (i.e, the size of the static scope block) is passed as a parameter to Gen-
StatScopeBlock;

75

e entry of the static scope’s owner name into the Scope Owner Table. The Scope
Owner Table contains the information necessary to tie all of the static scope
blocks together at the end of compilation. The static scope’s owner name is
passed as a parameter to GenStatScopeBlock;

e initialization of the descriptive information contained in the static scope block
entries.

The names and descriptive attributes of the identifiers declared within a scope
are retrieved by traversing the symbol table’s NextInScope chain; the head of the
appropriate “scope chain” is passed as a parameter to GenStatScopeBlock.

A Static Scope Table entry describing a simple variable identifier includes the
variable’s type attribute (e.g., INTEGER) and its variable register number attribute.
For the more complicated array variable entry, additional fields are utilized to de-
scribe the array bounds. If the array’s index values are simple integers or characters,
the lower and upper bound values are entered directly into the corresponding fields.
For arrays whose index values are enumerated type values, the appropriate indices
into the STRINGSECTION array are computed and entered into the static scope
entry’s array bound fields (see the STRING module section previously in this chap-
ter). For multidimensional arrays, additional scope blocks are used to describe the
other index bounds. These additional index scope blocks are chained via the NxtIdx
field. A corresponding entry is placed in the Scope Owner Table indicating that the
array “owns” the index scope block (via the Array Descriptor field). Record variable
entries also use an additional scope block to describe the fields within the record.
The child pointer is used to associate a record name with its defining scope block.
Here again, an entry is placed in the Scope Owner Table indicating that the record

“owns” the scope block (via the Record Descriptor field).

The ProcNum Field. The Static Scope Table’s ProcNum field can now

be explained. As each program, procedure, and function name identifier is

76

encountered during compilation, it is assigned a unique “procedure number.” The
identifier names are referred to as static scope names in the following discussion.
The procedure number is produced by a counter variable in the Semantic Analy-
sis module. Thus, the procedure number assigned to a miniPascal program name
is always 0. The next static scope name declaration encountered in the program
would be assigned the procedure number 1, and so on. A static scope name’s pro-
cedure number is stored as one of its symbol table attributes. Thus, when the
GenStatScopeBlock routine encounters a static scope name while traversing a con-
taining scope’s NextInScope chain, one of the attributes it retrieves is the corre-
sponding procedure number. This number is then placed in the ProcNum field of
the Static Scope Table entry describing the static scope name.

The animator uses the ProcNum field in conjunction with the dynamic scope
stack when determining the dynamics of program execution. The use of this field is
best explained by an example. The program shown in figure 23 contains a recursively
called function (function Fact). That Fact is recursive implies that for any given
call to function Fact, the animator must be able to determine the “depth” of the
pertinent data memory values associated with the variables declared in function
Fact, as well as the depths of any variables in the calling (program) scope. These
values are retrieved by querying the appropriate variable stacks, as discussed in
chapter 2. Thus, upon the final recursive call to function Fact, the animator should
be able to display data memory values as shown in figure 24.

The ProcNum field is used in the following manner when determining the depths
of the variables declared in a program, procedure or function scope. After the
E-machine has been loaded with the E-code translation of a source program, the
animator queries the E-machine to determine the total number of static “procedure”
scopes that are described in the Static Scope Table. The Static Scope Table for the

example in figure 23 is shown in table 4. The animator then dynamically allocates

7

Program Ftrl;

VAR

n,nfact: INTEGER;

Function Fact(n:

BEGIN
IFn=20

THEN Fact:
ELSE Fact:

END;

BEGIN
n:=3;

INTEGER) : INTEGER;

=1
=n * Fact(n-1)

nfact:=Fact(n);

END.

Figure 23: Source Code for Program Ftrl

Program Ftrl;

VAR
n,nfact: INTEGER;

Function Fact(n:
BEGIN
IFn=20
THEN Fact:
ELSE Fact:
END;

BEGIN
n:=3;
nfact :=Fact (n)
END.

INTEGER) : INTEGER;;

=1
=n * Fact(n-1)

)

Program Ftrl
n=3
nfact is undefined
Function Fact
n=3
Fact is undefined
Function Fact
n=2
Fact is undefined
Function Fact
n=1
Fact is undefined
Function Fact
n=2~0
Fact = 1

Figure 24: Animation Display After Final Recursive Call of Function Fact

a procedure count array that contains an entry corresponding to each of these scopes.
Thus, for the program shown in figure 23, this array has two entries. Entry 0 cor-
responds to the program scope and entry 1 corresponds to function Fact. During
program animation, the animator sets the values of the procedure count array en-
tries to reflect the current number of active calls to the corresponding procedure or
function. (This means that the animator reinitializes the values in the procedure
count array every time control is passed to the animator.) At the same time, the
E-machine’s dynamic scope stack contains a history of active scopes, with the Static

Scope Table entry number of the most current scope being the value at the top of

78

this stack.

En Id Upr | Lwr | Nxt | Off Type Rec | Par | Ch | Var | Proc
try | Name | Bnd | Bnd | Idx | set Siz | ent | ild | Reg | Num
Scope block describing function Fact

0 - - - - HEADER - 4 - - -

1 n - - - - INTEGER - - - 2 -

2 Fact - - - - INTEGER - - - 3 -

3 - - - - END - - - - -
Scope block describing program Fitrl

4 - - - - HEADER - 9 - - -

5 n - - - - INTEGER - - - 1 -

6 | nfact - - - - INTEGER - - - 0 -

7 Fact - - - - FUNCTION - - 0 - 1
8 - - - - END - - - - -
Bootstrap scope block

9 - - - - HEADER - - - - -
10 Ftrl - - - - PROGRAM - - 4 - 0
11 - - - - END - - - - -

Now, consider the animation of the current example. Suppose the program has
executed to the point that it is in the third recursive call to function Fact. When the

animator begins displaying data memory variables after the execution of the packet

Table 4: Static Scope Table Resulting from Compilation of Program Ftrl

79

translating the animation unit Fact:=1, the procedure count array and the dynamic
scope stack are in the state shown in figure 25. The values in the procedure count
array indicate that the program Ftrl has one active “call” and that function Fact has
four active calls. In this example, the animator begins its retrieval of data memory
values by examining the value at the bottom of the dynamic scope stack. The bottom
stack value is 10, which means that the animator now examines the tenth entry in
the Static Scope Table. This entry is a PROGRAM entry describing Ftrl. The
ProcNum field in the PROGRAM entry has the value 0. Next, the animator will
examine entry 0 in the procedure count array to determine the depth of the variables
to be displayed for this invocation of the program scope. Since the program scope
cannot be called recursively, this value will always be 1. Thus, when the animator
retrieves the values of the variables described in the program’s child scope block, it
will instruct the E-machine to retrieve the data memory values associated with the
top of the appropriate variable stacks. After these values have been displayed, the

animator decrements the value in entry 0 of the procedure count array.

Procedure Dynamic
Count Scope
Array Stack
(Program Ftrl) 0 1 0 | 10 (bottom)
(Function Fact) 1 4 1 7
2 7
3 7
4 | 7 (top)

Figure 25: Procedure Count Array and Dynamic Scope Stack

80

Next, the animator examines the value in entry 1 in the dynamic scope stack.
This value is 7, corresponding to the seventh entry in the Static Scope Table. This
entry, whose ProcNum field has the value 1, describes function Fact. The animator
then examines entry 1 in the procedure count array. The current value in this
entry is 4, indicating that the animator should instruct the E-machine to retrieve
data memory values associated with the fourth level of the appropriate variable
stacks when displaying variable values described in the function’s child scope block.
These values reflect the function’s variable values resulting from its initial call from
the program scope. The animator then decrements the value in entry 1 of the
procedure count array so that the next iteration will result in displaying the values
associated with the first recursive call to function Fact. The animator continues this
process until the dynamic scope stack is exhausted, resulting in the display shown

in figure 24.

Writing the STATSCOPESECTION. When parsing is completed, the Main

module calls the WriteSTATSCOPE routine. This routine first traverses the Scope
Owner Table in reverse order to initialize the program, procedure, and function par-
ent /child pointers that will appear in the final linear array containing the complete
Static Scope Table. Since the nesting characteristics of miniPascal allow the same
name to be given to more than one procedure or function, the reverse order traversal
ensures that the proper child is found. The final entry in the Scope Owner Table
describes a “bootstrap” scope block, which will become the final scope block in the
completed Static Scope Table. The Scope Owner Table contains the information
needed to initialize the child pointer in the bootstrap scope block; this child pointer
is the computed index of the first entry in the scope block describing the local vari-
ables, procedures, and functions belonging to the program. Also, the parent pointer

in the program scope block can now be initialized with the computed index of the

81

bootstrap scope block. Similarly, each function and procedure can have its child
and parent pointers initialized.
Finally, the WriteSTATSCOPE routine traverses the Scope Owner Ta-

ble in forward order to sequentially write the various scope blocks to the

STATSCOPESECTION of the E-code file.

Example of STATSCOPESECTION Generation. Program Samp2, shown

in figure 26, is used to illustrate the generation of the STATSCOPESECTION. This
program contains two procedures, named A and B, which are at the same static
scope level. Procedure A contains a nested function, also named B. Table 5 is the
Scope Owner Table for this program. The Scope Owner Table holds the following

information:

e Owner Name. This field contains the corresponding static scope’s owner’s
name (for program, procedure, and function scopes);

e Pointer to Scope Block. This field contains the memory address of the cor-
responding scope’s dynamically allocated scope block. The numbers used in
this example are for illustrative purposes only;

o Scope Table Index. This field contains the computed (final) index of the first
entry of the static scope block describing the corresponding static scope;

e Number of Scope Entries. This field contains the number of identifiers (e.g.,
variable names and function names) declared in the corresponding static scope;

o Array Descriptor (indicates the “owner” of additional scope blocks containing
index descriptions for multidimensional array variables). This field contains
the memory address of a dynamically allocated symbol table array descriptor
structure, and thus allows array variables sharing the same user defined type
to share an index scope block;

e Record Descriptor (indicates the “owner” of the additional scope containing
record field descriptions). This field contains the memory address of a dy-
namically allocated symbol table record descriptor structure, and thus allows
record variables that share the same user defined type also to share a field
description scope block.

82

Program Samp2;

TYPE
LIST = ARRAY [1..4] OF INTEGER;

VAR
X,Y:INTEGER;
List1:LIST;
Procedure A(VAR X,Y:INTEGER);

Function B(I:INTEGER) : INTEGER;
BEGIN { Function B }

END; { Function B }

BEGIN { Procedure A }

END; { Procedure 4 }
Procedure B(I,J:INTEGER);
VAR

List2:LIST;
BEGIN { Procedure B }

END; { Procedure B }

BEGIN { Program Samp2 }

END. { Program Samp2 }

Figure 26: Source Code for Program Samp?2

83

Owner Pointer to | Scope Table | Number of Array Record
Name Scope Block Index Scope Entries | Descriptor | Descriptor
B 1000 0 4 - -
A 3002 4 5 - -
B 5001 9 5 - -
Samp2 6240 14 7 - -
Bootstrap 7000 21 3 - -

Table 5: Scope Owner Table for Program Samp2

Tables 6 through 10 show the five scope blocks generated by the STATSCOPE

module during compilation. Table 11 shows the completed Static Scope table as it

would be written to the STATSCOPESECTION at the end of compilation.

En Id Upr | Lwr | Nxt | Off Type Rec | Par | Ch | Var | Proc
try | Name | Bnd | Bnd | Idx | set Siz | ent | ild | Reg | Num
0 - - - - | HEADER | - A -
1 I - - - - | INTEGER | - N N -
2 B - - - - | INTEGER | - - -1 6 -
3 - - - - END - I -

Table 6: Scope Block for Function B in Procedure A in Program Samp2

En Id Upr | Lwr | Nxt | Off Type Rec | Par | Ch | Var | Proc
try | Name | Bnd | Bnd | Idx | set Siz | ent | ild | Reg | Num
0 - - - - | HEADER | - A -
1 X - - - - | INTEGER | - I N -
2 Y - - - - | INTEGER | - - -1 3 -
3 B - - - - | FUNCTION | - - 2
4 - - - - END - I -

Table 7: Scope Block for Procedure A in Program Samp2

84

En Id Upr | Lwr | Nxt | Off Type Rec | Par | Ch | Var | Proc
try | Name | Bnd | Bnd | Idx | set Siz | ent | ild | Reg | Num
0 - - - - | HEADER | - -1 -
1 I - - - - | INTEGER | - -] 8 -
2 J - - - - | INTEGER | - - -
3 | List2 | 4 1 - - | INTEGER | - - 1o -
4 - - - - END - - -
Table 8: Scope Block for Procedure B in Program Samp2
En Id Upr | Lwr | Nxt | Off Type Rec | Par | Ch | Var | Proc
try | Name | Bnd | Bnd | Idx | set Siz | ent | ild | Reg | Num
0 - - - - HEADER - A -
1 X - - - - INTEGER - A | -
2 Y - - - - INTEGER - A R -
3 | Listl | 4 1 - - INTEGER - I N -
4 A - - - - | PROCEDURE | - A 1
5 B - - - - | PROCEDURE | - A 3
6 - - - - END - A -
Table 9: Scope Block for Program Scope in Program Samp2
En Id Upr | Lwr | Nxt | Off Type Rec | Par | Ch | Var | Proc
try | Name | Bnd | Bnd | Idx | set Siz | ent | ild | Reg | Num
0 - - - - | HEADER | - A -
1 | Samp2 - - - - | PROGRAM | - - - - 0
2 - - - - END - -] - -

Table 10: Scope Block for “Bootstrap” Scope in Program Samp2

85

En Id Upr | Lwr | Nxt | Off Type Rec | Par | Ch | Var | Proc
try | Name | Bnd | Bnd | Idx | set Siz | ent | ild | Reg | Num
Scope block describing function B in procedure A

0 - - - - HEADER - 4 - - -
1 I - - - - INTEGER - - - 5 -
2 B - - - - INTEGER - - - 6 -
3 - - - - END - - - - -
Scope block describing procedure A

4 - - - - HEADER - 14 - - -
5 X - - - - INTEGER - - - 4 -
6 Y - - - - INTEGER - - - 3 -
7 B - - - - FUNCTION - - 0 - 2
8 - - - - END - - - - -
Scope block describing procedure B

9 - - - - HEADER - 14 - - -
10 1 - - - - INTEGER - - - 8 -
11 J - - - - INTEGER - - - 7 -
12 List2 4 1 - - INTEGER - - - 9 -
13 - - - - END - - - - -
Scope block describing program Samp2

14 - - - - HEADER - 21 - - -
15 X - - - - INTEGER - - - 1 -
16 Y - - - - INTEGER - - - 0 -
17 Listl 4 1 - - INTEGER - - - 2 -
18 A - - - - PROCEDURE - - 4 - 1
19 B - - - - PROCEDURE - - 9 3
20 - - - - END - - - - -
Bootstrap scope block

21 - - - - HEADER - - - - -
22 | Samp2 | - - - - PROGRAM - - 14 - 0
23 - - - - END - - - - -

Table 11: Final Static Scope Table for Program Samp2

86

CHAPTER 5

CONCLUSIONS AND FUTURE
ENHANCEMENTS

Conclusions

The first compiler for the E-machine has been designed and implemented. The
compiler’s source language, called miniPascal, is a subset of ISO Standard Pascal.
The miniPascal compiler is a one-pass compiler written in ANSI Standard C and
was developed using the Unix development tools, lex and yacc [Mason 90], [Lesk 75],
[Johnson 75]. The compiler’s scanner module, produced by running lex on a Unix
machine, and its parser module, produced by running yacc on a Unix machine, were
subsequently downloaded to a DOS machine. These two modules, compiled and
linked with numerous semantic analysis and code generation modules, comprise the
miniPascal compiler. A number of miniPascal programs compiled into E-machine
object files have been successfully animated using a simple DOS animator to drive

the E-machine.

87

Future Enhancements

Since miniPascal is a subset of Pascal, future versions of miniPascal will include
additional Pascal features. A next logical feature to be implemented is pointers—
particularly important to animate, because they are often a difficult concept for
students to grasp. Other desirable features to be implemented in the future include:
records with variant parts, the with statement, sets, and predeclared functions and
procedures. It would be particularly useful to implement the predeclared procedure,
read. The availability of the read procedure would greatly facilitate the initialization
of data (e.g., arrays) in programs demonstrating concepts such as sorting and matrix
multiplication.

One feature that is not completely implemented in the current version is the
method of displaying the value returned by a function call. Currently, the code
generated by the compiler allows the animator to display a function value only when
displaying the variable values in a window associated with the called function itself.
The function name, however, is actually declared in the calling scope, and hence
its value is available in this scope. It would be desirable to have the function value
also displayed in the calling scope’s data memory window. A problem occurs when
a function is called multiple times from the same scope, either by calls in several
different statements or by multiple calls within the same statement. The question
here is whether to display only the most recent value returned by the function, or to
display all previous function values as well. Once this design decision is made, the
compiler will require modification to produce code to support the display method.

The compiler should also be enhanced to identify the E-code instructions that are
considered critical. Currently, the compiler simply designates all E-code instructions

as critical, thus hampering the efficiency of the E-machine.

88

Another compiler enhancement is improvement of error handling. Currently,
only minimal error reporting is supported by the compiler, and there is no attempt
at error recovery. This minimal support is considered sufficient for the present
DYNALAB system since the miniPascal programs will be prepared by expert pro-
grammers. Later, however, the DYNALAB system may be used by students prepar-
ing their own programs for animation. Thus, error handling must be enhanced to
provide a more “friendly” environment for the miniPascal programmers.

Finally, since the DYNALAB system is intended to be an evolutionary system,
the miniPascal compiler will continue to evolve in order to support new animation
features. For example, the animator may provide visualization of expression evalua-
tion in order to demonstrate precedence rules in a language. The animator may also
display “TRUE” or “FALSE” as conditional expressions are evaluated. It may be
desirable to have the programmer indicate groups of source code lines that should
appear in the same source code animation window in order to clearly illustrate some
concept. All of these animation features require modifications to the compiler in
order to generate the supporting code.

Thus, even though the miniPascal compiler is a usable first compiler for the
E-machine, its evolution is expected to continue. The compiler is also expected to

serve as a pattern for developers of future E-machine compilers.

89

REFERENCES

90

References

[Aho 86]

[Birch 90]

[Brown 88-1]

[Brown 88-2]

[Fischer 88]

[Holub 90]

[Jensen 91]

[Johnson T75]

[Lesk 75]

[Mason 90]

[Ng 82-1]

[Ng 82-2]

[Patton 89]

[Ross 91]

A. V. Aho, R. Sethi, and J. D. Ullman. Compzlers: Principles, Tech-
niques, and Tools. Addison-Wesley, Reading, Massachusetts. 1986.

M. L. Birch. An Emulator for the E-machine. Master’s thesis. Com-
puter Science Department, Montana State University. June 1990.

M. Brown. Algorithm Animation. The MIT Press, Cambridge, Mas-
sachusetts. 1988.

M. Brown. “Exploring Algorithms Using Balsa-II”, Computer
Volume 21, Number 5. May 1988.

C. N. Fischer and R. J. LeBlanc, Jr. Crafting a Compiler. Ben-
jamin/Cummings Publishing Company, Menlo Park, California. 1988.

A. 1. Holub. Compziler Design in C. Prentice Hall, Englewood Cliffs,
New Jersey. 1990.

K. Jensen and N. Wirth. Pascal: User Manual and Report. Springer-
Verlag, New York, New York. 1991.

S. C. Johnson. “Yacc: Yet Another Compiler-Compiler”, Computer
Science Technical Report Number 32. Bell Laboratories, Murray Hill,
New Jersey. July 1975.

M. E. Lesk and E. Schmidt. “Lex - A Lexical Analyzer Generator”,
Computer Science Technical Report Number 39. Bell Laboratories,
Murray Hill, New Jersey. October 1975.

T. Mason and D. Brown. lez & yacc. O’Reilly and Associates,
Sebastopol, California. 1990.

C. Ng. Ling User’s Guide. Unpublished Master’s project. Computer
Science Department, Washington State University. 1982.

C. Ng. Ling Programmer’s Guide. Unpublished Master’s project.
Computer Science Department, Washington State University. 1982.

S. D. Patton. The E-machine: Supporting the Teaching of Program
Ezecution Dynamacs. Master’s thesis. Computer Science Department,
Montana State University. June 1989.

R. J. Ross. “Experience with the DYNAMOD Program Animator”,
Proceedings of the Twenty-second Symposium on Computer Science

Education, SIGCSE Bulletin, 23(1):35-42. 1991.

91

[Ross 93] R. J. Ross. “Visualizing Computer Science”, Invited chapter to appear
in the AACE monograph, Scientific Visualization in Mathematics and
Science Education. 1993.

[Winslett 93] R. Winslett. Juno. Master’s thesis in progress. Computer Science De-
partment, Montana State University.

92

APPENDICES

93

APPENDIX A

THE E-MACHINE INSTRUCTION SET

This appendix, which is adapted from chapter 2 of Birch’s thesis, lists all of the
instructions in the instruction set of the E-machine. A pseudo assembly language
format is used to describe the instructions, however the instruction stream itself
is actually an array of structures loaded from the CODESECTION portion of the
E-machine object file at run time. The object file is described in detail in chapters 2
and 4 of this thesis.

Each instruction is composed of four fields (or arguments):

e an opcode mnemonic (e.g., push, pop, add);
¢ a flag marking the instruction critical or noncritical (CFLAG);
e an field denoting the data type to be used in the instruction (TYPE);

e a field containing either a number (#) or an addressing mode (ADDR);
Addressing modes and their formats are described in appendix B.

The mnemonic field is separated from the others by one or more spaces, and the
remaining fields are separated by commas. The CFLAG field must be either ¢ or n
to designate whether the instruction is to be treated as critical (¢) or noncritical (n).
The TYPE field holds a single capital letter, I, R, B, C, or A, referring to the data
types integer, real, boolean, character, or address, respectively. The # refers to a

constant specifying the number of an E-code label, a constant numeric value, or an

94

E-machine variable register number. If the ADDR argument is used for the fourth
field, it refers to any of the addressing modes described in appendix B.

In the following description of the instruction set, the effects of executing an
instruction both forward and in reverse are given. The actions taken in each case
will be different, depending on whether the instruction has been designated critical
or noncritical. Some instructions have no critical/noncritical flag, because their
execution (either forward or in reverse) would be the same in either case. Reversing
through a noncritical instruction sometimes requires that something be pushed onto

the evaluation stack to keep the stack of the proper size; in such cases an arbitrary

value, called DUMMY is used.

add CFLAG, TYPE

Adds the top two values on the evaluation stack and places the result onto the evaluation
stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes them onto the
save stack, and then pushes their sum onto the evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack and pushes their
sum onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards the value. Pops
the top two elements of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

alloe CFLAG, #

Allocates a block of memory of # size.

Forward: Attempts to allocate # computer words of storage. If successful, the address of
the first word of data memory that was allocated is pushed onto the evaluation stack.
Otherwise, a NULL address is pushed onto the evaluation stack.

Reverse: Pops the top value off the evaluation stack, which should be a data address, and
frees # words of data memory starting at that address.

and CFLAG, TYPE

Bitwise and’s the top two values of the evaluation stack and places the result onto the
evaluation stack.

95

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two values
onto the save stack, and then pushes the bottom value bitwise and’ed with the top
value onto the evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack and pushes the
bottom value bitwise and’ed with the top value onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops the top
two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

br #
Unconditionally branches to label #.

Forward: Loads the program counter with the address of the label # instruction.

Reverse: No operation.

brt, brf CFLAG, #

Conditionally branches depending on whether the top of the evaluation stack is TRUE or
FALSE.

Forward-Critical: Pops the top value off the evaluation stack and pushes it onto the save
stack. If the value satisfies the conditional on the branch (TRUE for brt, FALSE for
brf), the program counter is loaded with the address of the label # instruction.

Forward-Noncritical: Pops the top value off the evaluation stack. If the value agrees with
the conditional branch (TRUE for brt, FALSE for brf), the program counter is loaded
with the address of the label # instruction.

Reverse-Critical: Pops the top value of the save stack and pushes it onto the evaluation
stack.

Reverse-Noncritical: Arbitrarily pushes DUMMY onto the evaluation stack.

call #

Branches to label # saving the program address which follows the call instruction so that
execution will continue there upon execution of a return instruction.

Forward: Pushes the current program counter onto the return address stack, then loads
the address of the label # instruction into the program counter.

Reverse: Pops the top value from the return address stack.

cast CFLAG, TYPE, TYPE
Changes the top value of the evaluation stack from the first TYPE to the second.

Forward-Critical: Pops the top value of the evaluation stack and pushes it onto the save
stack, then transforms the value from the first TYPE to the second. The result is
pushed onto the evaluation stack.

96

Forward-Noncritical: Pops the top value of the evaluation stack, then transforms the value
from the first TYPE to the second. The result is pushed onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack. The pops the top value of
the save stack and pushes it onto the evaluation stack.

Reverse-Noncritical Nothing happens.

div CFLAG, TYPE

Divides the second value from the top of the evaluation stack by the first and places the
result onto the evaluation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two values
onto the save stack, and pushes the bottom value divided by the top value onto the
evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack and pushes the
bottom value divided by the top value onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops the top
two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

eql, neql, less, leql, gtr, geql CFLAG, TYPE
If the second value from the top of the evaluation stack compares favorably with the first,

then TRUE is pushed onto the evaluation stack. Otherwise FALSE is pushed onto the
evaluation stack.

Forward-Critical: Pops the top two values off the evaluation stack, pushes the two values
onto the save stack, compares the bottom value with the top. If the result of the
comparison matches the comparison operation performed, a boolean TRUE is pushed
onto the evaluation stack, otherwise, a boolean FALSE is pushed onto the evaluation
stack.

Forward-Noncritical: Pops the top two values off the evaluation stack and compares the
bottom value with the top value. If the result matches the comparison operation
performed, a boolean TRUE is pushed onto the evaluation stack, otherwise, a boolean
FALSE is pushed onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it, then pops the
top two values off the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

inst CFLAG, #

Creates an instance of the variable register #.

Forward-Critical: Allocates enough data memory for the variable represented by the vari-
able register #. The address of the allocated memory is then pushed onto the variable
register’s stack.

97

Forward-Noncritical: Allocates enough data memory for the variable represented by the
variable register #. The size of the variable is stored in the variable register. The
address of the allocated memory is then pushed onto the variable register’s stack.

Reverse-Critical: The data memory occupied by the variable register is freed and the top
value is popped off the variable register’s stack.

Reverse-Noncritical: Frees the space taken up by the variable in data memory and pops
the top value off the variable register’s stack.

label #

Marks the location to which a branch may be made.

Forward: Pushes the previous program counter onto the stack pointed to by label register
#.

Reverse: Pops the top value of the stack pointed to by label register # and places it in
the program counter.

link #
Associates one variable register with the value of another.
Forward: Pops the top value of the evaluation stack and pushes it onto the variable stack
pointed to by variable register #.

Reverse: Pops the top value of the variable stack pointed to by variable register # and
pushes it onto the evaluation stack.

loadar CFLAG, ADDR
Places the address ADDR in the address register.

Forward-Critical: The contents of the address register are pushed onto the save stack.
Then the address computed for the addressing mode is placed in the address register.
Important note: it is the address that is computed by the addressing mode that is
used, not the contents of that address.

Forward-Noncritical: The address computed for the addressing mode is placed in the
address register. Same note for Forward-Critical applies here.

Reverse-Critical: The address on top of the save stack is popped off and placed in the
address register.

Reverse-Noncritical: Nothing happens.

loadir CFLAG, #
Places the # into the index register.

Forward-Critical: The contents of the index register are pushed onto the save stack. Then
is placed in the address register.

Forward-Noncritical: # is placed in the index register.

98

Reverse-Critical: The value on top of the save stack is popped off and placed in the index
register.

Reverse-Noncritical: Nothing happens.

mod CFLAG, TYPE

Finds the remainder of the division of the second value from the top of the evaluation stack
by the first and places the result onto the evaluation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two values
onto the save stack, and then pushes the bottom value modulo the top value onto the
evaluation stack.

Forward-Noncritical Pops the top two values of the evaluation stack and pushes the bottom
value modulo the top value onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops the top
two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

mult CFLAG, TYPE

Multiplies the top two values on the evaluation stack and places the result onto the evalu-
ation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two values
onto the save stack, and then pushes their product onto the evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack and pushes their
product onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops the top
two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

neg TYPE

Negates the top value on the evaluation stack.

Forward: Pops the top of the evaluation stack and pushes the negation of that value onto
the evaluation stack.

Reverse: Pops the top of the evaluation stack and pushes the negation of that value onto
the evaluation stack.

nop This instruction is the standard no-operation instruction. It can be used to create packets
for high level program text for which no E-machine instructions are generated but which
nonetheless need to be highlighted for animation purposes. An example of this is the begin
keyword in Pascal. In illustrating the flow of control during program animation, a begin
keyword may need to be highlighted (and thus have its own underlying E-machine packet
of instructions). The nop instruction can be used in these cases.

99

not CFLAG, TYPE

Bitwise complements the top value of the evaluation stack.
Forward: Pops the top of the evaluation stack and pushes the bitwise not of that value
onto the evaluation stack.

Reverse: Pops the top of the evaluation stack and pushes the bitwise not of that value
onto the evaluation stack.

or CFLAG, TYPE

Bitwise or’s the top two values of the evaluation stack and places the result onto the evalu-
ation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two values
onto the save stack, and then pushes the bottom value bitwise or’ed with the top value
onto the evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack and pushes the
bottom value bitwise or’ed with the top value onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops the top
two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

pop CFLAG, TYPE, ADDR
Pops the top value of the evaluation stack and places it in ADDR.

Forward-Critical: Pushes the value in ADDR onto the save stack and then pops the top
value of the evaluation stack and stores it in ADDR.
Forward-Noncritical: Pops the top value of the evaluation stack and stores it in ADDR.

Reverse-Critical: Pushes the value in ADDR onto the evaluation stack and then pops the
top value of the save stack and places it in ADDR.

Reverse-Noncritical: Pushes the value in ADDR onto the evaluation stack.

popar CFLAG

Pops the address on top of the evaluation stack and places it in the address register.

Forward-Critical: The contents of the address register are pushed onto the save stack. The
address on top of the evaluation stack is popped and placed in the address register.

Forward-Noncritical: The address on top of the evaluation stack is popped off and placed
in the address register.

Reverse-Critical: The contents of the address register are pushed onto the evaluation stack.
Then the address on top of the save stack is popped off and placed in the address
register.

Reverse-Noncritical: The contents of the address register are pushed onto the evaluation
stack.

100

popd Pops the top value from the dynamic scope stack.
Forward: Pops the top value from the dynamic scope stack and pushes it onto the save
dynamic scope stack.

Reverse: Pops the top value from the save dynamic scope stack and pushes it onto the
dynamic scope stack.

popir CFLAG

Pops the integer on top of the evaluation stack and places it in the index register.
Forward-Critical: The contents of the index register are pushed onto the save stack. Then
the integer on top of the evaluation stack is popped off and placed in the index register.

Forward-Noncritical: The integer on top of the evaluation stack is popped off and placed
in the index register.

Reverse-Critical: The contents of the index register are pushed onto the evaluation stack.
Then the integer on top of the save stack is popped off and placed in the index register.

Reverse-Noncritical: The contents of the index register are pushed onto the evaluation

stack.

push TYPE, ADDR
Pushes the value in ADDR onto the evaluation stack.

Forward: Pushes the value in ADDR onto the evaluation stack.

Reverse: Pops the top value of the evaluation stack and stores it in ADDR.

pusha ADDR

Pushes the calculated address of ADDR onto the evaluation stack. This instruction is
intended to be used for pushing the addresses of parameters passed by reference.
Forward: Pushes the calculated address of ADDR onto the evaluation stack.

Reverse: Pops and discards the address on top of the evaluation stack.

pushd #

Pushes the # onto the dynamic scope stack (where # is the index of a program, procedure,
or function entry in the Static Scope Table)

Forward: Pushes # onto the dynamic scope stack.

Reverse: Pops the top value from the dynamic scope stack.

read CFLAG, TYPE

Reads a value from the user.

Forward: A user interface function is called to get input from the user. The input is
converted from a string to the appropriate type and pushed onto the evaluation stack.

101

Reverse: The top value is popped off the evaluation stack.

return Returns to the appropriate program address following a call instruction.

Forward: Pops the top value of the return address stack and loads it into the program

counter.

Reverse: Pushes the previous program counter onto the return address stack.

shl CFLAG, TYPE, #
Shifts the value on top of the evaluation stack # bits to the left filling on the right with 0’s.

Forward-Critical: Pops the top value of the evaluation stack, pushes it onto the save stack,
then shift it # bits to the left and pushes the result back onto the evaluation stack.

Forward-Noncritical: Pops the top value of the evaluation stack, shifts it left # bits, then
pushes the result back onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack. Then pops the top value of
the save stack and pushes it onto the evaluation stack.

Reverse-Noncritical: Nothing happens.

shr CFLAG, TYPE, #
Shifts the value on top of the evaluation stack # bits to the right filling on the left with 0’s.

Forward-Critical: Pops the top value of the evaluation stack, pushes it onto the save stack,
then shift it # bits to the right and pushes the result back onto the evaluation stack.

Forward-Noncritical: Pops the top value of the evaluation stack, shifts it right # bits,
then pushes the result back onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack. Then pops the top value of
the save stack and pushes it onto the evaluation stack.

Reverse-Noncritical: Nothing happens.

sub CFLAG, TYPE
Subtracts the value on the top of the evaluation stack from the second value from the top
and places the result onto the evaluation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two values
onto the save stack, and then pushes the bottom value minus the top value onto the
evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack, and pushes the
bottom value minus the top value onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops the top
two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

102

unalloc CFLAG, #

Deallocates a block of memory of # size beginning at the data address atop the evaluation
stack.

Forward-Critical: Pops the top value off the evaluation stack, which should be a data
address, copies # words of data memory starting at that address to the save stack,
then frees the data memory.

Forward-Noncritical: Pops the top value off the evaluation stack, which should be a data
address, and frees # words of data memory starting at that address.

Reverse-Critical: Pops the top value off the save stack, which should be a data address,
pushes it onto the evaluation stack and allocates # words of data memory starting at
that location. # words are then moved from the save stack to this data memory.

Reverse-Noncritical: Allocates # words of data memory and pushes the address of the
first word of allocated memory onto the evaluation stack.

uninst CFLAG, #

Dispose of an instance of variable register #.
Forward-Critical: Frees the memory occupied by the variable then pops the top data
memory address off the variable register’s stack and pushes it onto the save stack.

Forward-Noncritical: Frees the memory occupied by the variable then pops the top address
off the variable register’s stack.

Reverse-Critical: Pops the address off the save stack and pushes it onto the variable
register’s stack then reallocates enough data memory for the variable # starting at
that address.

Reverse-Noncritical: Reallocates enough data memory for the variable # and pushes the
address of the data memory allocated onto the variable register’s stack.

unlink #

Disassociates a variable register from another.

Forward: Pops the top value of the variable stack pointed to by variable register # and
pushes it onto the save stack.

Reverse: Pops the top value of the save stack and pushes it onto the variable stack pointed
to by variable register #.

write CFLAG, TYPE

Displays a value for the user.

Forward-Critical: The top of the evaluation stack is popped and the value pushed onto the
save stack. This value is then converted into a string and passed to a user interface
function which takes appropriate action to display the value.

Forward-Noncritical: The top of the evaluation stack is popped and is converted into a
string and passed to a user interface function to be displayed.

103

Reverse-Critical: The value on top of the save stack is popped and pushed onto the
evaluation stack. Then a user interface function is called to handle undisplaying of
the last value displayed.

Reverse-Noncritical: DUMMY is pushed onto the evaluation stack and then a user inter-
face function is called to handle undisplaying of the last value displayed.

xor CFLAG, TYPE

Bitwise exclusive-or’s the top two values of the evaluation stack and places the result onto
the evaluation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two values
onto the save stack, and then pushes the bottom value bitwise exclusive or’ed with
the top value onto the evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack and pushes the
bottom value bitwise exclusive or’ed with the top value onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops the top
two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

104

APPENDIX B

THE E-MACHINE ADDRESSING MODES

This appendix, which is adapted from chapter 2 of Birch’s thesis, describes the
various addressing modes allowed in E-machine instructions. Quite a few modes
are defined in order to accommodate standard high level language data structures
more conveniently. Note that each addressing mode refers to either the data at
the computed address or the computed address itself, depending on the instruction.
That is, for those instructions that need a data value, such as push, the data value
at the address computed from the addressing mode is used. For instructions that
need an address, such as pop, the address that was computed from the addressing
mode is used.

For each addressing mode listed below, an example of its intended use is given.
Each example is given in pseudo assembly language form for clarity; it is important
to remember that no assembler (and hence no assembly language) has yet been
developed for the E-machine. However, the pseudo assembly language examples

should be easily understood.

105

constant mode - C#

This mode is often called the immediate mode in other architectures; # is itself the integer,
real, boolean, character, or address constant operand required in the instruction.

Fzample:
A = 1.5;
could be translated into:

push R,C1.5 ; push 1.5
pop R, V1 ; assign to A

variable mode - V#:

variable register # — top of variable stack — data memory

This mode accesses the data memory location given in the top element of the variable stack
that is pointed to by variable register #. This mode is intended to address source program
variables that are of one of the basic E-machine types.

FEzample:
B:=1;
could be translated into:

push I,C1 ; push 1
pop c,I,V3 ; assign to B

variable indirect - (V#):

variable register # — top of variable stack — data memory — data memory

This mode accesses the data in data memory whose location is stored at another data
memory location, which is pointed to by the top of the variable stack pointed to by variable
register #. This mode is intended for accessing the contents of a high level language pointer
variables. It would be particularly useful for handling parameters in C which are passed as
pointers for the intention of passing by reference.

Ezample:

int foo(C)
int *C

{
}

*C =1,

106

could be translated into:

label ¢,5 ; procedure entry

inst c,V3 ; create new instance of C
pop c,A, V3 ; assign argument passed to *c
push I,C1 ; push 1

pop c,I,(V3) ; assign to *c

uninst ¢,V3 ; destroy instance of C
return ; return from call

variable offset mode - V#{offset}:

variable register # — top of variable stack + IR — data memory

This mode accesses the data pointed to by the top of the variable register # stack plus
a byte offset which was previously loaded into the index register. This mode is useful for
accessing fields in a structured data type such as a Pascal record or C struct.

Fzample:

A := D.Field2

could be translated into:

push 1,2 ; D is at offset of 2 in structure
popir ¢ ; put offset into index register
push R, V4{IR} ; push D.Field2

pop ¢,R,V1 ; assign to A

address indirect - (A):

address register — data memory

This mode provides access to data located at the data address in the address register. The
address register must be loaded with a data memory address which points to data memory.
This mode is useful for multiple indirection.

Fzample:

could be translated into:

loadar ¢, V7 ; load addr reg with addr of g
loadar c,(A) ; load addr reg with addr of *g
push I,(A) ; push *(*g)

pop c,I,V3 ; assign to ¢

107

address offset mode - A{offset}:

address register + IR — data memory

This mode provides access to structured data through the address register. The index
register is added to the address register to provide an address to the data to be accessed.
This mode is useful for indirection with structured data, such as pointers to records in
Pascal.

Fzample:
I:= Hf.Data

could be translated into:

push A VS8 ; push HT (address value of H)
popar c ; load ar with HT

push I,C2 ; Data has offset of 2 in record
popir ¢ ; load ir with offset

push T, A{IR} ; push HT.Data

pop c,I,V9 ; assign to I

variable indexed mode - V#[index]:

variable register # — top of variable stack + IR * data size — data memory

This address mode uses the top of the variable register # stack as a base address and adds
the index register, which must be previously loaded, multiplied by the number of bytes
occupied by the data type, which is a basic E-machine data type. The resulting address
points to the data item. This mode is useful for accessing an array whose elements are of a
basic E-machine data type.

Fzample:
B := L[3];

could be translated into:

push n,I3 ; put index of 3 into
popir ¢ ; the index register
push I V12[IR] ; push L[3]

pop c,I,V2 ; assign to B

address indexed mode - Afindex]:

address register + IR * data size — data memory

This mode provides the same function as variable indexed mode, except instead of a variable
register providing the base address, the address register is loaded with the base address.
This mode could be used for accessing elements of an array which is pointed to by a variable.

Fzample:

B := ST[4];

could be translated into:

push
popar
push
popir
push

pop

A,V19
c

1,4

c
LA[IR]
c,I,V2

108

; put address of array into
; address register

; put index of 4 into

; the index register

; push S7[4]

; assign to B

109

APPENDIX C

A miniPASCAL COMPILATION EXAMPLE

This appendix provides an example showing the complete results of the compi-
lation of a miniPascal program. The compilation was produced on a DOS machine.
The example program, shown in figure 27, is referred to as program Samp3 through-
out the remainder of this appendix. The numbers on the left refer to source program
line numbers. The program, as shown in figure 27 (with the exception of the line
numbers), is written to the SOURCESECTION portion of the E-machine object
file (or E-code file). Program Samp3 contains several features that were not illus-
trated previously. These features include constant and type declarations, a record
definition, a two dimensional array, and an array of records. The record definition,
DRec, consists of two fields, one of which is a two-dimensional array of the pre-
viously defined Matrx type. An array of these records (DBase) is then declared,
with an instance of such an array (Data) being declared in the variable declaration
section of the main program. Another variable—also named Data—is declared in
the formal parameter list of procedure InitD. In this case, Data is declared as only
a single record of type DRec.

Program Samp3 also contains a situation in which a packet becomes fragmented
(see chapter 4 for a discussion of the packet fragmentation problem). The frag-
mentation occurs in procedure InitD, which contains a nested for loop in which the

inner for loop is a single statement within another conditionally executed statement.

110

The particular packet fragmentation situation found in program Samp3 is discussed
later in this appendix.

Table 12 shows the array containing the program memory addresses correspond-
ing to program Samp3’s generated E-code label instructions. The column holding
the label numbers (or label register numbers) is included for clarity—only the array
of program memory addresses is actually written to the LABELSECTION portion
of the E-code file.

Table 13 shows the array containing the data memory sizes reserved for pro-
gram Samp3’s variable registers. The columns holding the variable names and the
variable register numbers are included for clarity—only the array of data memory
sizes is actually written to the VARIABLESECTION portion of the E-code file.
The variable registers whose corresponding names are blank are temporary regis-
ters needed to hold intermediate values. In this implementation, the data memory
sizes are in terms of bytes; hence, the corresponding data memory size for a 32-bit
integer (e.g., J) is 4. As can be seen in table 13, the full size of the array of records
(variable Data represented by variable register number 3) is reserved for the array.
The full size of a single record (40 bytes) is reserved for the record Data (variable
register number 6) found in procedure InitD. Variable register number 18, repre-
senting a 2-byte temporary variable, holds the result of the if comparison found in
function Fact.

Figure 28 shows the contents of program Samp3’s string space array. In this
example, the string literal, ’Sample Program’ associated with the string constant
Name, is entered into the string array. The string array is subsequently written to
the STRINGSECTION portion of the E-code file.

Table 14 shows the Packet Table generated for program Samp3. The column
holding the packet number is included for clarity—the remaining fields (columns)

are written to the PACKETSECTION of the E-code file. As can be seen in table 14,

111

packet number 24 is a fragmented packet. This fragmentation situation is discussed
later in this appendix. There are also two packets (numbers 36 and 43) whose
execution should not result in changing the animation display. These two packets
correspond to a return from a function call; this situation was discussed in the Parser
module section of chapter 4.

Table 15 shows the Static Scope Table for program Samp3. The column holding
the entry number is included for clarity—the remaining fields (columns) are written
to the STATSCOPESECTION of the E-code file. Two previously unillustrated
types of scope blocks are found in table 15. These are a record description scope
block (entries 6-9) and an array index description scope block (entries 10-13).

As can be seen in table 15, two identifiers (entry 1 in procedure InitD’s scope
block and entry 21 in program Samp3’s scope) both refer to the same child scope
block, which is the record scope block describing a record of type DRec (entries 6-
9). The compiler is able to determine that this record description scope block needs
to be present only once (and possibly referenced multiple times) by querying the
Scope Owner Table’s Record Descriptor field, as discussed in the STATSCOPE
module section of chapter 4.

Examine entry number 7 in table 15. This entry describes field A of a record
of type DRec; field A is an array of type Matrx. The bounds of A’s first index are
included in entry number 7. The Nxtldx field of this entry holds the index of the
first entry of the scope block describing A’s second index (entries 10-13). Entry
numbers 7 and 8, which describe the fields named A and B, also utilize the Offset
field to denote the fields’ offsets from the beginning of the record. Finally, note that
the RecSiz field is utilized for a variable representing an array of records (e.g., entry
number 21 describing the variable Data in program Samp3). This value is required
by the animator for proper calculation of offsets when displaying values associated

with arrays of records.

112

Figure 29 shows the pseudo assembly language representation of the E-code in-
structions generated for program Samp3. Figure 29 is formatted to enumerate the
program’s animation units, with translated E-code packets printed directly beneath
corresponding animation units. Here again, the reader is reminded that the pseudo
assembly language format is used for clarity—it is an array of C structures represent-
ing the E-code instruction stream that is actually written to the CODESECTION
of the E-code file.

Figure 29 illustrates several situations that need to be discussed. First, examine
E-code instruction numbers 3-11. Each name declared in the constant declaration
section is assigned a variable register number. The constants’ values are then stored
in their corresponding variable registers. Thus, the compiler treats constants as
though they were variable names in order to allow the animator access to their val-
ues at run time. Figure 30 shows a possible animation snapshot after the constant
declarations have been executed (i.e., at this point the keyword TYPE will be high-
lighted, indicating that it is the next animation unit to be executed). It should be
noted that as each of the subsequent type declarations are executed, the animator
simply sequentially highlights the corresponding animation unit—there will be no
corresponding data memory values added to the right-hand side of the display until
variable names are actually declared. The nop instructions (numbers 12-15) serve as
“dummy” instructions to allow the animator to highlight the appropriate animation
unit.

As mentioned above, program Samp3 contains a situation in which a packet is
fragmented. This packet, number 24, is the E-code translation of the animation
unit

Data.A[I,J] := I + 101.33 * MultF;

This animation unit is part of a single for statement, thus illustrating the frag-

mentation of a packet resulting from a single for statement nested within a

113

conditionally executed statement, in this case another for statement. The frag-
mentation problem is manifested as follows. As the inner for loop is executed, the
animator sequentially highlights the four animation units composing the inner for
statement (i.e., the animation units translated by E-code packets numbered 21-24).
The animator repeats this process upon each iteration of the inner loop. When the
inner loop index eventually reaches its upper limit, the branch to label 7 (shown in
instruction number 64) is taken. The E-code instruction defining label 7 (instruc-
tion number 117) is contained in packet number 24, which translates the above-
mentioned animation unit. At this point, however, this animation unit should not
be highlighted (since the instructions translating the assignment statement repre-
sented by the animation unit will not now be executed). The FragAddr field for
packet number 24 in the Packet Table (shown in table 14) holds the value 117, indi-
cating that packet number 24 is considered fragmented whenever control branches
into the packet at (or beyond) instruction number 117. The animator queries the
E-machine’s program counter and packet register to determine which animation unit
(if any) should be highlighted prior to the E-machine’s execution of the correspond-
ing packet. Thus, the animator, upon querying the E-machine’s program counter
(currently 117) and packet register (currently 24), determines that packet number 24
is fragmented at its current point of entry, instruction number 117. The animator
must now retain its previous display while the E-machine executes instruction num-
bers 117-118. When the branch to label 2 (shown in instruction number 118) is
accomplished, the E-machine returns control to the animator, which again queries
the E-machine’s program counter (currently 33) and packet register (currently 19).
Since packet number 19 is not fragmented, the animator now highlights the anima-

tion unit corresponding to this packet,

I :=1 TO Rows

114

Finally, figures 31 and 32 show two possible animation screens occurring during
the animation of program Samp3. Figure 31 shows an animation display that could
occur immediately before procedure InitD is called from the main program (i.e., the
animator is highlighting the animation unit InitD(Data[Num],3); while awaiting
a response from the user). The dotted lines shown in the source program window
indicate omitted source lines. Figure 32 shows an animation display that could
occur immediately before a return is issued from procedure InitD (i.e., the animator
is highlighting the animation unit END; in procedure InitD). Here again, the dotted

lines indicate omitted source lines.

115

0 Program Samp3;

1 CONST

2 Rows = 3;

3 Cols = 3;

4 Name = ’Sample Program’;

5 TYPE

6 Matrx = ARRAY [1..Rows,1..Cols] of REAL;
7 DRec = RECORD

8 A:Matrx;

9 B:INTEGER;

10 END; { DRec }

11 DBase = ARRAY [1..2] OF DRec;
12 VAR

13 Data:DBase;

14 Num,nFact : INTEGER;

15

16 Procedure InitD(VAR Data:DRec;
17 MultF:INTEGER) ;
18 VAR

19 I,J:INTEGER;

20 BEGIN { Procedure InitD }

21 FOR I := 1 TO Rows DO

22 FOR J := 1 TO Cols DO

23 Data.A[I,J] := I + 101.33 * MultF;
24 Data.B := MultF;

25 END; { Procedure InitD }

26

27 Function Fact(n:INTEGER) : INTEGER;
28 BEGIN { Function Fact }

29 IFn=20

30 THEN Fact := 1

31 ELSE Fact := n * Fact(n-1)
32 END; { Function Fact }

33

34 BEGIN { Program Samp3 }

35 Num := 2;

36 InitD(Data[Num],3);

37 nFact := Fact(Data[Num].B);

38 END. { Program Samp3 }

Figure 27: The E-code SOURCESECTION for Program Samp3

116

Label Label
Register | Program
Number | Address

L0 187
L1 21
L2 33
L3 42
L4 119
L5 51
L6 60
L7 117
L8 139
L9 145
L10 157
L11 179
L12 166
L13 208
L14 233

Table 12: The E-code LABELSECTION for Program Samp3

117

Variable | Variable | Variable
Name | Register Size
Number

Rows 0 4
Cols 1 4
Name 2 4
Data 3 80
nFact 4 4
Num 5 4
Data 6 40
MultF 7 4
J 8 4

1 9 4

10 4

11 4

12 4

13 4

14 4

15 4

n 16 4
Fact 17 4
18 2

19 4

20 4

21 4

22 4

23 4

24 4

25 4

26 4

Table 13: The E-code VARTABLESECTION for Program Samp3

118

String
Space
0 0
1 S
2 a
3 m
4 P
5 1
6 e
7
8 P
9 T
10 | o
11 | 8
12 | r
13 | a
14 | m
15| 0

Figure 28: The E-code STRINGSECTION for Program Samp3

119

Packet | Start | End | Start | Start | End | End | Scope | Frag | Display
Number | Addr | Addr | Line Col | Line | Col | Index | Addr | Packet
0 0 1 0 0 0 13 0 -1 TRUE
1 2 2 1 0 1 4 0 -1 TRUE
2 3 5 2 1 2 9 1 -1 TRUE
3 6 8 3 1 3 9 2 -1 TRUE
4 9 11 4 1 4 24 3 -1 TRUE
5 12 12 5 0 5 3 3 -1 TRUE
6 13 13 6 1 6 40 3 -1 TRUE
7 14 14 7 1 10 6 3 -1 TRUE
8 15 15 11 1 11 29 3 -1 TRUE
9 16 16 12 0 12 2 3 -1 TRUE
10 17 17 13 1 13 11 4 -1 TRUE
11 18 20 14 1 14 18 6 -1 TRUE
12 21 22 16 1 16 15 0 -1 TRUE
13 23 23 16 17 16 30 1 -1 TRUE
14 24 25 17 17 17 31 2 -1 TRUE
15 26 26 18 3 18 5 2 -1 TRUE
16 27 28 19 4 19 15 4 -1 TRUE
17 29 29 20 3 20 7 4 -1 TRUE
18 30 31 21 4 21 13 4 -1 TRUE
19 32 46 21 8 21 21 4 -1 TRUE
20 47 47 21 23 21 24 4 -1 TRUE
21 48 49 22 5 22 14 4 -1 TRUE
22 50 64 22 9 22 22 4 -1 TRUE
23 65 65 22 24 22 25 4 -1 TRUE
24 66 118 23 6 23 39 4 117 | TRUE
25 119 130 24 4 24 19 4 -1 TRUE
26 131 138 25 4 25 7 7 -1 TRUE
27 139 140 27 1 27 13 0 -1 TRUE
28 141 142 27 15 27 24 1 -1 TRUE
29 143 143 27 25 27 33 2 -1 TRUE
30 144 144 28 3 28 7 2 -1 TRUE
31 145 152 29 4 29 11 2 -1 TRUE
32 153 153 30 6 30 9 2 -1 TRUE
33 154 156 30 11 30 19 2 -1 TRUE
34 157 158 31 6 31 9 2 -1 TRUE
35 159 165 31 23 31 31 2 -1 TRUE
36 166 168 - - - - 2 -1 FALSE
37 169 178 31 11 31 31 2 -1 TRUE
38 179 186 32 4 32 7 8 -1 TRUE
39 187 188 34 1 34 5 8 -1 TRUE
40 189 190 35 2 35 10 8 -1 TRUE
41 191 207 36 2 36 20 8 -1 TRUE
42 208 232 37 11 37 27 8 -1 TRUE
43 233 235 - - - - 8 -1 FALSE
44 236 237 37 2 37 28 8 -1 TRUE
45 238 250 38 2 38 5 8 -1 TRUE

Table 14: The E-code PACKETSECTION for Program Samp3

120

En Id Upr | Lwr | Nxt | Off Type Rec | Par | Ch | Var | Proc
try | Name | Bnd | Bnd | Idx | set Siz | ent | ild | Reg | Num
Scope block describing procedure InitD

0 - - - - HEADER - 17 - - -
1 Data - - - - RECORD - - 6 6 -
2 MultF - - - - INTEGER - - - 7 -
3 1 - - - - INTEGER - - - 9 -
4 J - - - - INTEGER - - - 8 -
5 - - - - END - - - - -
Scope block describing record of type DRec

6 - - - - HEADER - - - - -
7 A 3 1 10 | O REAL - - - - -
8 B - - - 36 INTEGER - - - - -
9 - - - - END - - - - -
Scope block describing second indez of array of type Matrz

10 - - - - HEADER - - - - -
11 3 1 - - - - - - - -
12 - - - - END - - - - -
Scope block describing function Fact

13 - - - - HEADER - 17 - - -
14 n - - - - INTEGER - - - 16 -
15 Fact - - - - INTEGER - - - 17 -
16 - - - - END - - - - -
Scope block describing program Samp3

17 - - - - HEADER - 27 - - -
18 Rows - - - - INTCONST - - - 0 -
19 Cols - - - - INTCONST - - - 1 -
20 Name - - - - STRINGCONST - - - 2 -
21 | Data 2 1 - - RECORD 40 - 6 3 -
22 Num - - - - INTEGER - - - 5 -
23 | nFact - - - - INTEGER - - - 4 -
24 InitD - - - - PROCEDURE - - 0 - 1
25 Fact - - - - FUNCTION - - 13 - 2
26 - - - - END - - - - -
Bootstrap scope block

27 - - - - HEADER - - - - -
28 | Samp3 | - - - - PROGRAM - - 17 - 0
29 - - - - END - - - - -

Table 15: The E-code STATSCOPESECTION for Program Samp3

121

Pkt Animation Unit
Num
Instr E-code
Num Instruction
0 Program Samp3;
0 pushd C28 ; Push program’s Static Scope Table
; index onto dynamic scope stack

1 nop
1 CONST
2 nop
2 Rows = 3;
3 inst ¢,VO ; Create instance of Rows
4 push I,C3 ; Store value of Rows in data memory

5 pop c,I,VO0

3 Cols = 3;
6 inst c,V1 ; Create instance of Cols
7 push I,C3 ; Store value of Cols in data memory
8 popc,I,V1

4 Name = ’Sample Program’;
9 inst c,V2 ; Create instance of Name
10 push I,C1 ; Store Name’s string space index in
11 pop ¢,C,V2 ; corresponding variable register
5 TYPE
12 nop
6 Matrx = ARRAY [1..Rows,1..Cols] OF REAL;
13 nop
7 DRec = RECORD
A:Matrx;
B:INTEGER;
END;
14 nop
8 DBase = ARRAY [1..2] OF DRec;
15 nop
9 VAR
16 nop

10 Data:DBase;
17 inst ¢c,V3 ; Create instance of Data

Figure 29: The E-code CODESECTION for Program Samp3

11

12

13

14

15

16

17

18

19

Num,nFact:INTEGER;

18
19
20

inst c¢,V4
inst c¢,Vb
br O

Procedure InitD

122

Create instance of nFact
Create instance of Num
Branch to beginning of main program

; Enter Procedure InitD
; Push procedure’s Static Scope Table
; index onto dynamic scope stack

; Link Data to actual param

Create instance of MultF

; Put actual param into MultF

Create instance of J
Create instance of I

Initialize I with value of 1

Branch around MAXINT test and
increment of I on first pass
through the loop

Test label of outer FOR loop

Test that I has not exceeded MAXINT
If so, branch out of loop

Increment T

Test for I reaching upper loop limit

21 label 1 ;
22 pushd C24 ;
(VAR Data:DRec;
23 link V6 ;
MultF:INTEGER) ;

24 inst c¢,V7 ;
25 pop c¢,I,V7 ;
VAR

26 nop

I,J:INTEGER;

27 inst c,V8 ;
28 inst c¢,V9 ;
BEGIN

29 nop

FOR I :=1

30 push I,C1 ;
31 pop c,I,V9

I :=1 TO Rows

32 br 3 ;
33 label 2
34 push I,VO

35 push I,C32767

36 eql c,I ;
37 brt c,4 ;
38 push I,VO

39 push I,C1

40 add c,I ;
41 pop ¢,I,V9

42 label 3

43 push I,V9

44 push I,C3

45 gtr ¢,I H
46 brt c,4 ;

Figure 29 (continued)

If so, branch out of loop

20

21

22

23

24

DO
47 nop
FOR J := 1
48 push I,C1 ;
49 pop ¢,I,V8
J :=1 TO Cols
50 br 6 ;
b1 label 5 ;
52 push I,V8
53 push I,C32767
54 eql c,I ;
55 brt c,7 ;
56 push I,V8
57 push I,C1
b8 add c,I ;
59 pop ¢,I,V8
60 label 6
61 push I,V8
62 push I,C3
63 gtr ¢,I ;
64 brt c,7 ;
DO

65 nop

Data.A[I,J] := I + 101
66 inst ¢,V10
67 push I,V9
68 pop ¢,I,V10
69 inst c¢,Vi1
70 push I,V8
71 pop c,I,Vi1
72 inst c¢,V12
73 push I,CO
74 pop c,I, V12
75 push I,V10

Mo We We We We Ve We We We Ve W

76 push I,C3
77 mult c,I

78 push I,Vi1
79 add c,I

80 pop c,I,V10
81 push I,V10
82 push I,C4
83 sub c¢,I

84 pop c,I,V10

123

; Initialize J with value of 1

Branch around MAXINT test and
increment of J on first pass
through the loop

Test label of inner FOR loop

Test that J has not exceeded MAXINT

If so, branch out of loop

Increment J

Test for J reaching upper loop limit

If so, branch out of loop

.33 * MultF;

Create instance of temporary
variable (V10) and store value of
first index (I) in V10

Create instance of temporary
variable (Vi1) and store value of
second index (J) in V11

Create instance of temporary
variable (V12) and calculate the
final (lineal) array index value
based on the values of the two
indices, I and J

(Packet number 24 continued on next page)

Figure 29 (continued)

124

(Continuation of packet number 24)
85 push I,V10
86 push I,C4
87 mult c,I
88 push I,bVi12
89 add c,I ; Store calculated value of final
90 pop c,I, V12 ; index in V12
91 push I,Vi2
92 push I,CO
93 add c,I ; Convert index value in V12 to
94 pop c,I,V12 offset value
95 inst c,V13 Create instance of temporary
96 push R,C101.33 variable (V13) to hold result
97 push I,V7 of 101.33 * MultF
98 cast ¢,I,R Cast MultF to REAL
99 mult c,R 101.33 * MultF
100 pop c,R,V13 Store multiplication result in V13
101 inst c,Vi4 Create instance of temporary
102 push I,V9 variable (V14) to hold result
103 cast ¢,I,R I + V13 and cast I to REAL
104 push R,V13
105 add c,R ; I + V13
106 pop c,R,V14 ; Store addition result in V14
107 push R,Vi4
108 push I,V12
109 popir c ; Put offset value in index reg
110 pop c¢,R,V6{IR} Put V14’s value in Data.A[I,J]
111 uninst c,Vi14 Delete instances of temporary
112 uninst c,V13 variables created within the
113 uninst c,V12 inner FOR loop
114 uninst c,Vi1l
115 uninst c¢,V10

116 br b ; Branch to test of inner FOR loop

117 label 7 ; Branch out label of inner FOR loop

118 br 2 ; Branch to test of outer FOR loop
25 Data.B := MultF;

119 label 4 ; Branch out label of outer FOR loop

120 inst c¢,V15
121 push I,CO
122 pop ¢,I,V1b
123 push I,V15
124 push I,C36
126 add c,I

126 pop c¢,I,Vib ; Store offset of field B in V15

127 push I, V7 Put MultF on evaluation stack

128 push I,Vib Put offset of field B on eval stack
129 popir c Put offset of field B in index reg
130 pop c¢,I,V6{IR} Put MultF in Data.B

Create instance of a temporary
variable (V15) to hold offset of
field B

Calculate offset of field B

Figure 29 (continued)

26

27

28

29

30

31

32

33

34

125

END;
131 nop
132 uninst ¢,Vi1b ; Delete instance of temporary

variable

Delete instance of J

Delete instance of I

Delete instance of MultF

Unlink Data

Pop procedure’s Static Scope Table
from the dynamic scope stack
Return to calling scope

133 uninst c¢,V8
134 uninst c¢,V9
135 uninst c¢,V7
136 unlink c,V6
137 popd

Mo Mo Me We We W We We W

138 return

Function Fact
139 label L8 ; Enter Function Fact
140 pushd C25 ; Push function’s Static Scope Table
; index onto dynamic scope stack

(n:INTEGER)

141 inst c,V16 ; Create instance of n
142 pop ¢,I,V16 ; Put actual param into n
: INTEGER;
143 inst c¢,V17 ; Create instance of Fact (function’s

; return value)

BEGIN
144 nop
IFn=20

145 label L9
146 inst c,V18 ; Create instance of temporary
147 push I,V16 ; variable (V18) to hold comparison

148 push I,CO ; result
149 eql c,I ; Check for n =0
150 pop c¢,B,V18 ; Put comparison result in V18
161 push B,V18
152 brf c¢,10 ; If n not = 0, branch to ELSE
THEN
153 nop
Fact := 1
154 push I,C1 ; Put 1 in Fact
155 pop c¢,I, V17
156 br 11 ; Branch around ELSE
ELSE
167 label 10 ; ELSE label
158 nop

Figure 29 (continued)

35
159
160
161
162
163
164
1656

36
166
167
168

37
169
170
171
172
173
174
175
176
177
178

inst c¢,V19
push I,Vi16
push I,C1
sub c,I

pop c,1,V19
push I,V19
call 8

label 12
inst c¢,V20
pop ¢,1,V20

Fact(

)

t)

e Mo we W

we We we we

126

n-1)
Create instance of temporary

: variable (V19) to hold n-1

Subtract 1 from n

Put n-1 in V19

Push n-1 onto evaluation stack
Call Fact

Return from Fact

Create instance of temporary
variable (V20) to hold function
value

Fact := n * Fact(n-1)

inst c,V21
push I,V16
push I,V20
mult c,I

pop c,I,V21
push I,V21
pop c,I,V17
uninst c,V21
uninst c¢,V20
uninst c,V19

38 END;

179
180
181

182
183
184
1856
186

39 BEGIN
187
188

40 Num
189
190

label 11
nop
push I,V17

uninst c,V18
uninst c,V17
uninst c,V16
popd

return

label O
nop

i= 2;

push I,C2
pop c,I,Vb

Figure 29 (continued)

; Create instance of temporary

variable (V21) to hold n* Fact(n-1)

Put multiplication result in V21

Put function wvalue in Fact
Delete instances of temporary
variables created in ELSE clause

Branch out label for ELSE

Put function value on eval stack
index from the dynamic scope stack
Delete instance of temp variable
Delete instance of Fact’s result var
Delete instance of n

Pop function’s Static Scope Table
Return to calling scope

Start label for main program

Put value of 2 in Num

41

42

InitD(Data[Num],3);

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

207

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

inst c¢,V22
push I,V5
pop c,I,V22
push I,V22
push I,C1
sub c,I

pop c,I,V22
push I,C3
inst c¢,V23
push I,V22
push I,C40
mult c,I
pop c,1,V23
push I,V23
popir c
pusha V3{IR}

call 1

e W Wwe Mo we

t)
t)
)
)
)
H
H

127

Create instance of temporary
variable (V22) and store value
of index (Num) in V22
Calculate final (linear) array
index

; Put final array index in V22
; Put 3 on evaluation stack

; Create instance of temporary
: variable (V23) to hold offset of
; Data

; Calculate Data’s offset and
; put it in V23

Put Data’s offset in index reg
Put address of Data[Num] on
eval stack

Call InitD

Fact (Data[Num] .B);

label 13
inst c,V24
push I,V5
pop c,1,V24
inst c¢,V25
push I,CO
pop c,I,V25
push I,V24
push I,C1
sub c¢,I

pop c,1,V24
push I,V24
push I,C40
mult c,I
push I,V2b
add c,I

pop c,I,V25
push I,V25
push I,C36
add c,I

pop c,I,V25
push I,V2b
popir c

push I,V3{IR}

call 8

Figure 29 (continued)

we Mo We we Ve we W

Return from InitD

Create instance of temporary
variable (V24) and store value
of index (Num) in V24

Create instance of temporary
variable to hold calculated
offset of Data[Num].B

Put offset of Data[lNum].B in
index re

Put Data%Num].B on eval stack
Call Fact

43
233
234
235

44 nFact
236
237

45 END.
238
239
240
241
242
243
244
245
246
247
248
249
250

label 14

inst c,

V26

pop c,1,V26

:= Fact(Data[Num] .B);
push I,

V26

pop c,I,V4

nop
uninst
uninst
uninst
uninst
uninst
uninst
uninst
uninst
uninst
uninst
uninst

popd

Figure 29 (continued)

c,V26
c,V25
c,V24
c,V23
c,V22
c,V4
c,Vb
c,V3
c,V2
c,V1
c,VO

)

128

; Return from Fact

; Create instance of temp variable
(V26) to hold function value

)

Delete
Delete
Delete
Delete
Delete
Delete

; variables

instance
instance
instance
instance
instance
instance

of
of
of
of
of
of

; Put value of Fact in nFact

; Delete instances of temporary

nFact
Num
Data
Name
Cols
Rows

Pop program’s Static Scope Table
index from the dynamic scope stack

129

Program Samp3;

CONST

Rows = 3;

Cols = 3;

Name = ’Sample Program’;
TYPE

Matrx = ARRAY [1..Rows,1..Cols] OF
DRec = RECORD
A:Matrx;
B:INTEGER;
END; { DRec }
DBase = ARRAY [1..2] OF DRec;
VAR
Data:DBase;
Num,nFact : INTEGER;

REAL

Program Samp3

Rows = 3
Cols = 3
Name = ’Sample Program’

Figure 30: Animation Display After Constant Declarations in Program Samp3

130

Program Samp3; Program Samp3
CONST Rows = 3
Rows = 3; Cols = 3
Cols = 3; Name = ’Sample Program’
Name = ’Sample Program’; Data[1] .4
TYPE undef undef undef
Matrx = ARRAY [1..Rows,1..Cols] OF REAL undef undef undef
DRec = RECORD undef undef undef
A:Matrx; Datal[1] .B is undefined
B:INTEGER; Datal2] .4
END; { DRec } undef undef undef
DBase = ARRAY [1..2] OF DRec; undef undef undef
VAR undef undef undef
Data:DBase; Datal[2] .B is undefined
Num,nFact : INTEGER; Num = 2
nFact is undefined
BEGIN { Program Samp3 }
Num := 2;
InitD(Data[Num],3);

Figure 31: Animation Display Before Calling Procedure InitD in Program Samp3

131

Procedure InitD(VAR Data:DRec;
MultF:INTEGER) ;
VAR
I,J:INTEGER;
BEGIN { Procedure InitD }
FOR I := 1 TO Rows DO
FOR J := 1 TO Cols DO
Data.A[I,J] := I + 101.33 * MultF;
Data.B := MultF;
END; { Procedure InitD }

BEGIN { Program Samp3 }

Num := 2;
InitD(Data[Num],3);

nFact := Fact(Data[Num].B);
END. { Program Samp3 }

Program Samp3

Rows = 3
Cols = 3
Name = ’Sample Program’

Data[1] .4
undef undef undef
undef undef undef
undef undef undef
Data[1] .B is undefined
Data[2] .4
304.99 304.99 304.99
305.99 305.99 305.99
306.99 306.99 306.99
Data[2].B = 3
Num = 2
nFact is undefined
Procedure InitD
Data.A
304.99 304.99 304.99
305.99 305.99 305.99
306.99 306.99 306.99
Data.B = 3

MultF = 3
I =4
J =4

Figure 32: Animation Display at End of Procedure InitD in Program Samp3

