THE E-MACHINE: SUPPORTING THE TEACHING OF

PROGRAM EXECUTION DYNAMICS

by

Samuel Dellette Patton

A thesis submitted in partial fulfillment of the requirements for the degree

of

Master of Science

in

Computer Science

MONTANA STATE UNIVERSITY Bozeman, Montana

June 1989

APPROVAL

of a thesis submitted by

Samuel Dellette Patton

This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies.

Date

Chairperson, G

Approved for the Major Department

Date

Head, Major D

Approved for the College of Graduate Studies

Date

Graduate Dean

ii

STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a master's degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made.

Permission for extensive quotation from or reproduction of this thesis may be granted by my major professor, or in his absence, by the Dean of Libraries when, in the opinion of either, the proposed use of the material is for scholarly purposes. Any copying or use of the material in this thesis for financial gain shall not be allowed without my written permission.

Signature _	
Date	

TABLE OF CONTENTS

Page

LIST OF FIGURES v ABSTRACT vii 1. INTRODUCTION 1 2. DYNAMOD 5 3. PROPOSED SYSTEM 13 4. REVIEW OF LITERATURE AND EXISTING SYSTEMS 18 5. THE E-MACHINE 25 Design Considerations 25 E-machine System Overview 30 E-machine Instruction Set 34 Addressing Modes 35 Instruction Set 36 Source Program Variable Representation in E-machine Code 42 The Save Stack 44 The Label Registers 51 Critical vs. Noncritical Instructions 59 6. COMPILING TO E-CODE

LIST OF FIGURES

Figure Page
1. DYNAMOD Welcome Screen6
<pre>2. DYNAMOD Library Screen</pre>
3. DYNAMOD Program <i>fact</i> Screen
4. DYNAMOD Program <i>fact</i> Screen After Partial Execution9
5. Program <i>fact</i> Screen After Four Calls to Function <i>Factoral</i> 10
6. <i>for</i> Statement Display Window in a Syntax Directed Editor 15
7. Help Window for a Syntax Directed Editor
8. The E-machine
9. E-machine Global Variable Implementation
10. E-machine Recursive Variable Implementation
11. Variable and Save Stack for a Variable X
12. Variable and Save Stack After Assignment to X
13. A Pascal Procedure Fragment something
14. Variable and Save Stack During Successive Calls

v

	to	Procedure	Something			•••••	50
15. 		Simple	E-code	Program	With	a	Branch 53
16. 		Simple	E-code	Program	with	a	Loop 56
17. 56	Gei	neral Labe	el Stack				
18.		Label	Stack	After	0 Loo	p	Iterations 57
19.		Label	Stack	After	1 Lo	qo	Iteration 58

LIST OF FIGURES --- Continued

FigurePage															
20.	Label Stack			After 2		2		Loop			Iterations 58				
21. 	E-code	Transl	ation	of	Х	:=	Х	+	Y	-	17	*	Ζ	*	Z; 60
22. 63	Example	Pascal	Prog	ram				•••		•••					
23. 65	Symbol	Table F	'or Pa	scal	Prog	gram		•••		•••					
24. 	Ad	Нос		Packe	etizi	ng		Met	hod		fo	r		Pasc	cal 66
25. 	Packeti	izing	and	Deter	rmina	ation	. (of	Cr	itic	al	In	stru	ictio	ons 68
26. 69	Example	Packet	ized H	Pascal	L Pr	rogra	.m .	•••		•••					
27.	Example Packetize	In-Line ed	e E-co	de T:	rans]	latio Pas	on d cal 70-72	ofa 2	a				P	rogr	cam

vi

ABSTRACT

The teaching of computer programming contains aspects that are found in few other disciplines. The mixture of syntactic and semantic knowledge required for programming is enough to overwhelm many beginning students. An earlier attempt at addressing this problem resulted in a software system called DYNAMOD. DYNAMOD is a library of expertly constructed Pascal programs and an interpreter that displays the execution of these programs on a computer video terminal in a step by step fashion under user control, effectively demonstrating the dynamics, or meaning, of a program. As a "proof of concept" system, DYNAMOD is quite successful, but it suffers from several limitations. In recognition of both the successes and limitations of DYNAMOD, it was decided to begin afresh and design an entirely new, much more ambitious system. The basis of this system is a virtual machine called the E-Machine which provides a very flexible structure for displaying the dynamic aspects of algorithms without distracting the student with syntactic details. The design of the E-machine is the primary work of this thesis. Important new features incorporated into the E-machine include, among others, internal structures which allow forward and backward execution of instructions and simple implementation of value and reference parameters. The E-machine will eventually form the basis of a comprehensive hypertext system for teaching and learning programming and other fundamental concepts of computer science.