
this page is page 0 and not numbered

1

CHAPTER 1

INTRODUCTION

Teaching most sciences is relatively straightforward. A concept is
introduced and then an example or experiment is presented to demonstrate
the concept in action. As a simple example, a physics instructor
explains the concept of interference and then does an experiment in
front of the class to demonstrate interference. Similar pedagogical
techniques are employed in mathematics, engineering, chemistry, and
other sciences. Techniques for teaching computer science, on the other
hand, are still relatively new and often not effective, particularly in
demonstrating new concepts in action.

The most common method of teaching programming concepts utilizes a
blackboard or overhead projector where:

1) An algorithm is written down by hand;

2) The names of the variables, constants, and parameters used by the
algorithm are written down separately by hand;

3) The instructor steps through the algorithm by hand showing how the
variables and parameters change during program execution.
The purpose of this exercise is to teach students the dynamics, or
semantics, of a program in action and to teach students how to do
walkthroughs to verify their own program designs. There are, how-
ever, some serious flaws to this method of teaching program dynam-
ics:

1) This method requires the instructor to simulate a computer by hand,
a very error-prone process;

2) If the students take notes, they will generally find deciphering
the dynamic flow of the algorithm later from their static notes
impossible.

Another technique sometimes used for teaching program dynamics is
to give a student a correct program that implements an algorithm. The
student then must locate a computer or computer terminal, type in the
program, compile the program, and then run the program. This method
allows the student to enter and execute a correct program. Unfortu-
nately, in order to benefit from this type of assignment, the student
must be a somewhat sophisticated computer user to start with, which is
certainly not the case with many beginning students. In particular, the
student must have access to a computer, know how to use a text editor,
and know how to compile and run a program. Even then, the compiled pro-
gram will generally not give a dynamic display of the program in action,
and no one is around to explain to the student what is happening.

2

What kind of system could be developed to solve the twin problems
of teaching and learning program dynamics? Such a system should be
usable by the instructor to demonstrate a new programming concept to an
entire class in a clear, flexible, error-free, and repeatable manner.
The same system should be available for student review at the student’s
leisure and be easy enough for a true novice to use without detailed
knowledge. Some of the more important features of this system would be:

1) A comprehensive library of expertly constructed examples;

2) Forward and backward execution of program statements under user
control;

3) Highlighting of statements being executed;

4) A clear display of variable and parameter values;

5) A clear delineation of the variables and parameters local to vari-
ous procedures and functions.

A software system called DYNAMOD [Ross 88] was developed over a
number of years to incorporate some of these features as an aid to
teaching and learning programming. While it is still quite useful in
this regard, both in the classroom and for individual student use,
extensive experience with DYNAMOD has uncovered a number of deficien-
cies. It was therefore decided that a completely new approach to this
problem was in order; this thesis represents a start on the solution.
The primary contribution of this work is the design and definition of an
"Education Machine", or E−machine. The E−machine is an abstract com-
puter whose emulation on real computers will allow for the implementa-
tion of all of the desired features of the proposed new software system
to replace DYNAMOD.

Chapter 2 contains a description of DYNAMOD, its advantages and
limitations. Chapter 3 provides a description of the system proposed to
succeed DYNAMOD. Chapter 4 is a review of relevant literature and a
discussion of some existing systems that employ techniques similar to
those to be incorporated into the new system. Chapter 5 contains the
development and final design of the E−machine. Chapter 6 provides a
number of examples of Pascal programs and demonstrates their translation
into E−machine code. Finally, Chapter 7 describes new directions for
the project. Chapters 1-4 contain background material essential to
understanding the original work contained in Chapters 5-7.

3

CHAPTER 2

DYNAMOD

DYNAMOD stands for DYNamic Algorithm MODerator. DYNAMOD is a soft-
ware system, the result of a pilot project that studied solutions to the
problem of teaching and learning program execution dynamics. The first,
primitive version was written by a deaf student to illustrate some con-
cepts which were being presented in class (the student could not follow
the discussions of the program walkthroughs, because the person signing
to the student could not convey program dynamics along with the words of
the lecture). This version inspired a formal test system called LOPLE
(Library Of Programming Language Examples)[Rezvani 81],[Ross 81]. A
grant from the Apple Education Foundation [Ross 80] led to the develop-
ment of a more sophisticated version called LING [Ng 82-1,82-2]. A sub-
sequent grant from the National Science Foundation [Ross 83] allowed
LING to be completed and ported from Apple II+ microcomputers to other
computers, including an Amdahl mainframe computer, a VAX minicomputer,
and IBM PC and compatible microcomputers. The current version, which
runs only on VAX and IBM PC and compatible microcomputers, is DYNAMOD
Version 2.0 Release 2 [Ross 88].

DYNAMOD is simple for an instructor or student to use. It consists
of a library of ready-to-run programs installed by an expert from which
programs can be selected and executed under user control as many facets
of program dynamics are displayed on the screen. Instructors can use
DYNAMOD in the classroom with relatively little equipment. By utilizing
a personal computer connected to a liquid crystal computer output dis-
play device and an overhead projector, the instructor can use DYNAMOD to
illustrate programming concepts clearly and easily. Students can have
their own disk containing DYNAMOD, which they can then use at their
leisure to study concepts that are particularly difficult for them.

When DYNAMOD is started, the first thing displayed is a welcome
screen, as shown in Figure 1. Option 1 enters the example library,
option 2 displays an acknowledgement screen, option 3 displays an
instructional manual, and option 4 explains the distribution system for
obtaining copies of DYNAMOD. Normally the instructor or student types a
1 to enter the program library.

4

WELCOME TO

DDDDDD Y Y N N AAA MM
MM OOOOO DDDDDD

D D Y Y NN N A A M
M M M O O D D

D D Y Y N N N A A M
M M O O D D

D D Y N N N AAAAAAA M
M O O D D

D D Y N N N A A M
M O O D D

DDDDDD Y N NN A A M
M OOOOO DDDDDD

Dynamic Pascal Program
Library

Version 2.0 Release
2

Copyright 1981,1987,1988
All Rights Reserved

Rockford J. Ross

Computer Science Depart-
ment

Montana State University
Bozeman, Montana

59717

1 --> Enter Library 2 --> Acknowledgements 3 --> Help 4 --> Dis-
tribution

Figure 1
DYNAMOD Welcome Screen

After a 1 is typed to enter the program library, the screen of Fig-
ure 2 is displayed. In this new screen, option 1 exits DYNAMOD and
returns control to the operating system. Option 2 refreshes the list of
categories shown at the top of the screen. Option 3 lists the names of
program examples indexed by a category; there are usually several exam-
ples which illustrate the same concept in slightly different ways.
Option 4 also lists the names of program examples indexed by a category,
but in addition, it includes a brief explanation of what each example
program does. Finally, option 5 allows the user to execute an example.

5

array1d array2d assert boolean
bounds case
char constant div downto
else elseif
for function global header
if integer
loop nesting operator parameter pro-
cedure readln
real record recursion repeat
search sort
sqrt stats summing then
trailer type
until var while writeln

Select 1 of the following:

1) QUIT
2) Display categories
3) List examples in a category
4) Extended listing of examples in a category
5) Execute an example

Figure 2
DYNAMOD Library Screen

For example, suppose that after reviewing the program names indexed
under category recursion the instructor or student wishes to review pro-
gram fact. Typing a 5 causes DYNAMOD to prompt for the program name, at
which point fact is typed by the user, resulting in the screen of Figure
3. On this screen, the symbol => indicates the line currently being
executed. The Statement Count is the number of lines that have been
executed so far. The area on the right of the screen bordered by dashed
lines will contain the display of the program memory (at this point, no
memory is in use since the var statement has not yet been executed).
Finally, the 5 at the bottom left part of the screen is the input that
the program will use.

6

------fact

?=> program fact;

{inputs an integer n and computes n!}

var
n, result: integer;

function factoral(n: integer): integer;
{computes n factorial recursively}

begin {factoral}
if n = 0 then

factoral := 1
else

factoral := n * factoral(n-1)
end; {factoral}

begin {fact}

5

State-
ment Count = 0

Figure 3
DYNAMOD Program fact Screen

At this point, the user can step through the program by hitting the
return key. At each step, DYNAMOD moves the arrow to the next statement
to be executed and waits for another return before executing the new
statement. As can be seen in Figure 3, the entire program rarely fits
onto the screen all at once. However, DYNAMOD keeps as much of the pro-
gram on the screen as possible. Also, when an instructor is initially
installing a program into the DYNAMOD library, he or she can specify
blocks of lines that should be displayed together.

After the user has stepped through the variable declarations, the
screen will appear as shown in Figure 4. Notice that the variables n
and result now are displayed in the variable section on the right of the
screen; the question mark indicates that their values are currently
undefined. From this the user learns what the action of the var state-
ment is.

7

------fact

begin {factoral}
n = ?

if n = 0 then
result = ?

factoral := 1
else

factoral := n * factoral(n-1)
end; {factoral}

begin {fact}
?=> readln(n);

if n < 0 then
writeln(’bad data, n = ’,n:1)

else begin
result := factoral(n);
writeln(n:1,’ factorial = ’,result:1)

end
end. {fact}

5

State-
ment Count = 4

Figure 4
DYNAMOD Program fact Screen After Partial Execution

Stepping further through the program will eventually give a screen
that looks like the screen of Figure 5. The user by this time has
stepped through four calls of the recursive function factoral (this odd
spelling of factorial is the result of a program restriction that limits
the names of examples to eight characters). The memory section on the
right of the screen contains new memory locations and their correspond-
ing values associated with each call of factoral. By this time the stu-
dent should have a clearer understanding of how recursion works in this
case. Certainly, program dynamics are demonstrated very well.

8

------fact

var
n = 5

n, result: integer;
result = ?

------fac-
toral-------
?=> function factoral(n: integer): integer; factoral = ?

{computes n factorial recursively} n = 5
------fac-

toral-------
begin {factoral}

factoral = ?
if n = 0 then

n = 4
factoral := 1

------factoral-------
else

factoral = ?
factoral := n * factoral(n-1) n

= 3
end; {factoral}

------factoral-------
fac-

toral = ?
begin {fact}

n = 2
readln(n);
if n < 0 then

State-
ment Count = 20

Figure 5
Program fact Screen After Four Calls to Function factoral

For the instructor, DYNAMOD removes nearly all of the work and
frustration from doing a program walkthrough by hand in class. By using
an overhead projector equipped with a liquid crystal computer output
display, the instructor can run a desired program from the library and
explain to his or her students key features of program dynamics. Fur-
thermore, students can review the same program later or perform assign-
ments related to programs in the DYNAMOD library. Thus DYNAMOD
addresses many of the needs of teaching and learning programming by

9

providing:

1) Error-free, repeatable walkthroughs of algorithms;

2) Ease of use in a classroom setting;

3) A large library of expertly constructed programs for review by
uninitiated students;

4) Effective display of the dynamics of a program in execution.

DYNAMOD also allows an instructor or student to alter program input
and watch the effects of such changes on program execution and statement
counts. Among other things, this feature can be used to demonstrate the
notions of time and space complexity.

As a "proof of concept" pilot project, DYNAMOD is quite successful.
However, DYNAMOD contains many limitations which must be addressed in
order to create a truly robust, powerful system for supporting the goals
of teaching and learning programming in a hypertext [CACM 88] environ-
ment. Some of the more crucial limitations are these:

1) Pascal is the only programming language supported;

2) A user can only step forward in the program;

3) It is not easily extensible to include complex constructs such as
records and user-defined types;

4) It does not allow general program entry or modification by users.

Consideration of these drawbacks coupled with extensive use of
DYNAMOD led to a vision of a completely new and flexible system that
would better address the needs of both teachers and students of program-
ming and introductory computer science. The proposed system, of which
this thesis is an important part, is described in the next chapter.

10

CHAPTER 3

PROPOSED SYSTEM

The eventual goal of the system, of which this thesis is a small
but critical part, is to construct a comprehensive introductory computer
science teaching and learning software package. The system will run in
a windowing environment (likely X Windows [Pountain 89]) and include
such features as an interactive textbook, a large library of expertly
constructed example programs, an editor for entering and modifying text
and programs, and a DYNAMOD-like driver for interpreting programs and
displaying their execution dynamics.

The interactive textbook will be a hypertext [CACM 88] system that
will allow the user to interact with and modify the textual information
of the book. Some of the planned features are listed below.

1) The user will be able to highlight text on the screen (the high-
lighting will remain for future readings).

2) The user will be able to place the cursor on a footnote and hit an
"expand" key and the entire reference will "pop" onto the screen.

3) The user will be able to execute program fragments and examples
from the text in a dynamic, DYNAMOD-like fashion.

4) The user will be able to interact with the index by highlighting a
word and hitting the "index" key which will automatically display
passages dealing with the word.

5) The user will be able to add or modify entries in the index in
order to create a personalized index.

The example library will be a comprehensive set of expertly con-
structed example programs that have been designed to illustrate specific
programming constructs. This library represents the major philosophical
difference between the proposed system and other extant systems. The
library will exist to illustrate programming concepts to the beginning
programmer. Each example program will be quite small compared to an
actual, useful program. However, the examples will have been carefully
constructed by an instructor to convey particular programming concepts,
and by observing and experimenting with the examples, the user will gain
insight into aspects of program execution dynamics that are not readily
apparent in other systems. By accentuating certain programming con-
cepts, this library, in conjunction with the dynamic execution module,
will provide a programming laboratory in which specific, simple experi-
ments can be carried out by the user to illustrate and verify the pro-
gramming concepts under study.

At present it is proposed that the text editor of the proposed new
system be a syntax-directed editor. The editor will allow instructors

11

to enter carefully designed programs into the library and also allow
users to enter and experiment with programs of their own. Syntax
directed editors have been shown to be effective in a learning environ-
ment [Scheftic 86]. A syntax directed editor presents the user with a
blank template that the user fills in with the appropriate constructs or
phrases. Additionally, the user can request an explanation of the
structure that is currently being used. For example, the user may be
using the Pascal for statement; in this case a display similar to Figure
6 may be shown. The user would then "fill in the blanks" for the
entries in {}’s and would then have a valid for structure without having
to recall from memory the exact syntax of a for statement. This type of
editor eliminates many of the syntax errors commonly made by users and
allows them to focus on the meaning of their program rather than the
many syntactic details of the language.

FOR {variable} := {expression} {TO | DOWNTO} {expression} DO
BEGIN

END;

Figure 6
for Statement Display Window in a Syntax Directed Editor

Another useful feature of syntax editors is their capacity to pro-
vide explanations of various programming language structures. For exam-
ple, a user may be able to place the cursor on the FOR keyword in the
screen of Figure 6 and press a "help" key. This would then invoke
another window that would contain an explanation of the for statement
similar to that shown in Figure 7.

The combination of the "fill in the blank" format and the help win-
dows to tell the users the meanings of the various language constructs
enables users to implement programs more efficiently. In Chapter 4 some
systems are described that incorporate these features.

12

HELP WINDOW

FOR {variable} := {expression} {TO | DOWNTO} {expression} DO
BEGIN

END;

The FOR statement is a statement for repeating a group of
statement a given number of times. The variable identifier put in
place of the {variable} location is given the value of the first
{expression}. If the variable is greater than the second
{expression} (in the case of TO) the loop is ended and the
statements following the END are executed. If the variable is
less then the second {expression} (in the case of DOWNTO) the
loop is also ended. Otherwise, the statements between the BEGIN
and END are executed. Then the variable is incremented if the TO
was chosen, or decremented if DOWNTO was chosen and the loop goes
back to the comparison above.

The variable used in the FOR statement is treated as a normal
variable in all ways except one. It can not be used on the left
side of an assignment statement. Also, after the loop is ended,
the value of the variable becomes undefined. It does not retain
the value it had inside the loop.

Figure 7
Help Window for a Syntax Directed Editor

In summary, the new system proposed to succeed DYNAMOD will have
all of the features of DYNAMOD with some notable improvements. The most
notable enhancement to the display of program execution dynamics will be
the capacity for both forward and backward execution of program state-
ments under user control. As stated before, the virtual E-machine will
allow easy implementation of the necessary dynamic display features,
especially the forward and backward execution of programs.

13

As a prelude to discussing the E-machine, the next chapter is
devoted to an examination of the literature and a number of existing
software systems that appear to incorporate many of the features pro-
posed for the new system described in this thesis.

14

CHAPTER 4

REVIEW OF LITERATURE AND EXISTING SYSTEMS

The idea of a computer-based teaching aid for displaying program
execution dynamics is not new. Some such aids were surely developed for
local use only and never polished and published. Others had limited
appeal because of being restricted to expensive, specialized hardware.
Early references to such systems include [Ross 81,82] and [Hille 83].
The papers by [Ross 81,82] describe the early work that led to the
DYNAMOD system [Ross 88].

In [Hille 83] a system for the visible execution of Pascal programs
is described. The system accepts a Pascal program as input and pro-
cesses it as follows. Each of the original statements in the Pascal
program is passed through unchanged. Immediately after each statement,
a new statement is inserted that consists of a writeln statement along
with the line number of the statement. The new augmented program is
then translated into a PL/1 program that is in turn executed step by
step by a PL/1 interpreter. This system represents a direct solution to
the problem of displaying program execution dynamics, but it does not
include, or apparently allow easy inclusion of, many desired features,
such as backward execution.

Other related systems for displaying program dynamics focus on the
representation of data structures and the manipulation of data by an
algorithm rather than the overall view of program dynamics. A recent,
good paper on this aspect of programming pedagogy is [Brown 88]. This
paper describes the Balsa-II system. Balsa-II is a system for display-
ing the variables and data structures used in a program in an intuitive
fashion, rather than by their literal meanings. For example, the data
in an array that is being sorted could be displayed in a meaningful man-
ner by interpreting the value in a location of the array as a vertical
line with height based on the value in the location. Then a sorting
routine could run, and gradually the lines would be sorted into ascend-
ing order by height. The user could see the sorting happening by watch-
ing the random collection of lines of various heights form into a trian-
gular shape (the lines being arranged from smallest to largest in
height). When the triangle becomes smooth, the values will all have
been sorted. This system shows strong promise of becoming an effective
pedagogical tool in the teaching and learning of algorithms. Its fea-
tures could become part of a new system similar to the one described in
this thesis. Alone, however, it does not encompass the needs addressed
by this thesis.

Interactive program debuggers also contain elements of the dynamic
display system proposed here. Many, if not most, good program

15

development environments incorporate a debugger. A good debugger has
such features as:

1) Line at a time program execution;

2) A display of variable values during execution;

3) The capability for specifying "break points" that temporarily halt
program execution;

4) A provision for changing the values of variables during execution.

An example of an excellent interactive program debugger is the
Turbo Debugger that comes with Turbo Assembler, produced by Borland
[Turbo 88]. It incorporates all of the above features along with other
special features, including the ability to examine the state of the
microprocessor and machine registers. It allows the user to easily
specify which variables to display and when to display them. It also
allows the user to specify break points either by line number or by a
condition, such as when a variable changes value. These features make
this a valuable tool for the production programmer. Similar features
are planned for the new system described in this thesis.

However, it should be clearly noted at this point that in spite of
apparent similarities between the dynamic display system proposed here
and high-quality debuggers available on the market, there are some cru-
cial differences that arise from the entirely different philosophies
behind the proposed dynamic display and existing debuggers. The purpose
of a debugger, as the name implies, is to allow the user to debug a pro-
gram. The purpose of the dynamic display is to show the user the
dynamic changes in a program during execution. A debugger helps a per-
son who already knows how to write a program uncover and fix errors. In
fact, a user must be quite a sophisticated programmer to obtain the true
benefit of a debugger. The proposed dynamic display system, on the
other hand, is meant to let a beginner see how various program con-
structs function. Because of this, the proposed dynamic display must
show much more and different information than a debugger and do this in
a clearer fashion. It must also accomplish this in a manner that is
useful to the utter novice. This naturally will make the dynamic dis-
play slower and larger than a debugger, which is not a disadvantage in
the setting in which the dynamic display is meant to be used. A debug-
ger is meant to be used in a production environment where speed and the
production of sophisticated, useful programs is all-important. The
dynamic display is meant to be used in a learning environment where
understanding is the key, and small programs for presenting educational
concepts is the overriding concern.

There are other systems on the market that incorporate many of the
features of debuggers and the proposed dynamic display, but which are
aimed more specifically towards education. One such system is ALICE
[ALICE 89]. ALICE is a syntax directed editor and interpreter for Pas-
cal that was specifically designed for student use. Some of ALICE’s
features are:

1) Templates for "fill in the blank" style program entry;

2) A comprehensive help system (over 600 help screens);

16

3) An interactive interpreter that allows the user to step through the
execution of his or her program one statement at a time;

4) Breakpoint setting capability, in the manner of a debugger.

Another system designed with the student in mind is Dr. Pascal by
Visible Software [Visible 89]. This system has many educational fea-
tures. Dr. Pascal consists of an editor and a display system for show-
ing program execution. The editor is a standard text editor (not a syn-
tax directed editor) that allows users to enter and modify programs.
The display system of Dr. Pascal is quite good.

In Dr. Pascal each procedure is placed on the screen as it is exe-
cuting. If the procedure is too large to fit on the screen, the display
is adjusted so that the currently executing line is always on the
screen.

17

As new procedures or instances of procedures are invoked, the old proce-
dure calls are scrolled off the top of the screen. This gives the user
a good intuitive feel for how recursive calls to a function or procedure
execute.

One of the main disadvantages to standard debuggers for student use
is that they give little indication of depth of recursion or even the
fact that a recursive call has happened at all. Dr. Pascal still falls
short of what is required in this regard in several ways. When a refer-
ence parameter is passed to a procedure, there is no indication of where
the parameter’s reference actually is. Also, the variable display does
not show the values of variables which are not in the current scope,
even though their values are being changed as a result of being passed
as reference parameters.

To summarize, while the debuggers included in production program-
ming systems similar to Turbo Pascal by Borland are of immense help to
experienced programmers attempting to ferret out errors in programs,
they are too limited and complex for the beginning programmer and cannot
be adapted easily to the teaching and learning environment envisioned
here. ALICE and Dr. Pascal are more suited to the teaching and learning
environment, but they still are oriented towards the production side of
programming. That is, their primary intent is to aid a student in walk-
ing through a program of his or her creation in search of errors. Nei-
ther of these systems incorporates a library of expertly constructed
programs for perusal by students who do not yet have enough knowledge to
write a program on their own. Also missing are facilities for stepping
backwards through execution, explaining new programming concepts, and
program fragment execution, which are all features of the system pro-
posed in this thesis.

There have been many articles written about using virtual machines
in computer science applications (see, for example, [Elsworth 78]). The
earliest is probably [Share 58]. In all cases cited in the literature
the purpose of the virtual machine is to reduce the effort needed in
constructing compilers. See, for example [Kornerup 80]. Just one com-
piler is needed to translate a programming language, say FORTRAN, into
the language of a virtual machine. Then the problem remains of either
emulating the virtual machine on each real computer or further translat-
ing the virtual machine code into the machine language of each real com-
puter. The emulation approach has proven unsatisfactory in real life,
because an emulation program is invariably slow. However, this approach
was used successfully with the P-machine and P-code of Pascal during the
time when Pascal was viewed as an academic language ([Ellsworth 78]
attributes the design of the P-machine to Nori et al and cites
[Nori 74]). As Pascal has become production oriented, this emulation
approach has been dropped for efficiency reasons.

In spite of the efficiency problems encountered by others, the
abstract machine (the E-machine) approach incorporating an emulator is
the most attractive for the new system proposed here. The entire pur-
pose of this new system is academic, involving the teaching and learning
of programming rather than the development of production programs.
Speed of program execution will never be a primary concern. The E-

18

machine and its emulator will require just one E-machine emulator pro-
gram and then one compiler for each targeted programming language. As
long as the compilers and the emulator are written in a standard,
portable, high level language they will run with only minor modifica-
tions on virtually any computer.

In the next chapter, the E-machine’s design and implementation will
be covered. A complete specification is not given, because the E-
machine is intended to have an open-ended design that allows later
incorporation of new features that are deemed important and interesting.
The specification is, however, sufficient for the design of an emulator
and compilers for the E-machine.

19

CHAPTER 5

THE E-MACHINE

The proposed dynamic display system will consist of various major
parts. The Education Machine, or E−machine, will be one of the primary
components. It will be a virtual machine (i.e., computer) with its own
machine language, called E−code, and it will be responsible for execut-
ing the E−code translations of high level language (e.g., Pascal) pro-
grams. In addition to the E−machine there will be a user interface for
user interaction with the system. There will also be a display inter-
face that updates the screen displays. These two interfaces together
can be thought of as an "operating system" with the E−machine as the
"hardware". This chapter focuses on the design of the E−machine.

Design Considerations

The part played by the E−machine in the proposed system is central
to its design. The E−machine will operate as follows. It will first be
loaded with a compiled E−code translation of a particular high level
language source program. The E−machine will then wait for the user
interface to signal it to execute a step, either forward or backward.
Once this signal has been received, the E−machine will execute the seg-
ment of E−code that corresponds to the current statement in the high
level language source program and then return control to the user inter-
face. Following this, the display interface will note the changes that
have occurred in the E−machine’s state and update the displays accord-
ingly. Note that the E−machine does not interact directly with the
user. All input to and output from the E−machine is handled through the
user and display interfaces. The E−machine acts as if it were a dedi-
cated microprocessor whose only purpose is to wait for a signal from
"outside" and then execute its program based upon that signal. This
definition of how the E−machine is to be used allows constraints to be
placed upon its design that make the design process somewhat simpler.

As already noted, the E−machine is a virtual machine. The concept
of a virtual machine, discussed in the last chapter, is central to many
computer science applications. Compilers and interpreters are the most
common examples of systems designed around a virtual machine. The
design of a virtual machine must take into account the purpose of the
application. This helps to define and give structure and logic to the
virtual machine. In the case of the E−machine, the purpose of the
machine is to enable program execution dynamics of high level program-
ming languages to be displayed easily by the dynamic display interface.

20

This goal places some considerations upon the E−machine’s design. Most
importantly, the E−machine must:

1) Have structures for easy implementation of high level programming
language constructs;

2) Incorporate a simple method for implementing functions, procedures,
and parameters;

3) Be able to execute either forward or backward.

21

The driving force in the design of the E−machine is the requirement
for backward, or reverse, execution. What does it mean for a machine to
run backwards? What does it mean for a high level language program to
execute backwards? As will be seen, these two questions have very simi-
lar and related answers, but they are not the same.

In a machine (virtual or real), the program counter, registers,
main memory and other status information can all be thought of as vari-
ables that change as the machine executes instructions. These variables
can be collectively thought of as the "state" of the machine. If one
knows the current state of a machine, one knows everything necessary for
properly carrying out the next instruction to achieve the proper next
state. In most machines, however, the current state does not contain
enough information to reset the machine to a prior state. That is, most
machines do not keep track of their history of execution. However, the
machine’s history is precisely what must be accessed in order to execute
backwards. How can this information be retained? The previous states
must be recoverable. That is, given the present state of the machine,
there must be a mechanism for changing this state to an arbitrary past
state.

The brute force approach to solving this problem is to store each
current state of the machine just before each new instruction is exe-
cuted (all instructions change the state of a machine). Then, when the
machine is to be restored to some prior state, all that has to be done
is to load the machine with that state and the operation is done. With
this method, the machine can be restored to an arbitrary prior state in
one step.

22

The brute force method is unnecessarily powerful and also very
inefficient. For example, this approach would require that all of main
memory be stored with each state, even though at most one memory loca-
tion would have changed from state to state as single instructions were
executed. A better approach would be to have the machine save the mini-
mal amount of information necessary to recover just the previous state
from the current state in a given reversal step. The machine could then
be restored to an arbitrary prior state by doing the reversal one state
at a time until the desired prior state were obtained. For the purpose
of the E−machine, this approach is sufficient.

Backing up one state at a time is a much simpler proposition than
backing up to an arbitrary state in one step. Rather than storing the
entire state of the machine at each step, it is only necessary to store
the difference between the previous state and the current state. For
example, suppose the instruction

load 4,A

loads the value 4 into the register A. No other registers would have
been changed by executing this instruction, so the only changes to the
state of the machine (in most computer models) would be to the value in
A, the program counter, and perhaps some status information. Saving
these changes rather than the entire state of the machine takes much
less memory, and in a real computer, memory is a valuable commodity.
Therefore the E−machine was designed with this method of backing up in
mind.

A natural question to ask at this point is whether it is possible
to do even better: could the previous state be constructed directly from
the current state without relying on some saved portion of the execution
history? The answer is no, because of one class of instructions:
assignment instructions. An assignment instruction destroys the value
in the register or memory location receiving the assignment; the value
being destroyed must therefore be saved in order for backup to be possi-
ble.

One other aspect of the proposed dynamic display interface influ-
enced the design of the E−machine. The dynamic display is meant to work
with high level language programs. This led to an important observa-
tion: the E−machine actually has to be able to reverse only high level
language statements in one reversal step, not each individual low level
E−code instruction involved in the translation of some high level lan-
guage statement. In particular, the state of the E−machine has to be
restored to the state it was in prior to the execution of the group of
E−code instructions that are the translation of the corresponding high
level language statement.

This observation led to further efficiencies in the design of the
E−machine and to the incorporation of two classes of E−machine code
instructions, critical and noncritical. As will be explained further
later, an E−machine instruction is classified as critical if it destroys
information essential to backing up through a high level language state-
ment; it is classified as noncritical otherwise. In the translation of

23

a high level language statement into E−code, a number of E−machine
instructions will be used only for dealing with intermediate values.
For example, in a high level language arithmetic assignment statement, a
number of intermediate values are likely to be needed in computing the
arithmetic value on the right side of the assignment statement before
this value can be assigned to the variable on the left. However, the
only value that needs to be restored as far as the high level program-
ming language is concerned upon backing up through this assignment
statement is the original value of the variable on the left. The inter-
mediate values computed by various E−code instructions are of no conse-
quence. Hence, such instructions can be classified as noncritical and
their effects ignored for backup purposes.

A particular E−code instruction can be classified as either criti-
cal or noncritical in different circumstances. Different high level
languages will often have quite different statement sets, and what needs
to be remembered for backup purposes may differ substantially from one
language to another. It will be the responsibility of the compilers for
each high level language to produce the correct E−code (involving criti-
cal and noncritical instructions) for allowing backup.

E-machine System Overview

With these considerations for backing up in mind it is now possible
to describe the architecture of the E−machine in more detail. Figure 8
depicts the logical structure of the E−machine. After some delibera-
tion, a stack-based architecture was chosen over other possibilities for
its inherent simplicity. As can be seen, however, there are a number of
components not found in real stack-based computers.

24

Label Label Variable Variable . .
Registers Stacks Registers Stacks . .

.

. D .

. A .

. T .

. A .

.

. M .
. . . E .

. M .

. O .

. R .

. Y .

.

. . . .

.
. . . .

.

.

.

.

.

. . CPU

.

Evaluation . .
Stack Evaluation Program . .

Register Stack Counter . .
.
. P .

. . . R .

. . . O .

. . Previous . G .

. . Program . R .
Counter . A .
. . . M .

Return
Address Return . M .
Stack Address . E .

Register Stack . M .
. O .
. R .

. . . Y .

. . . .

. . . .

Save
Stack Save

Register Stack
. . . .
. . . .

. .

. .

. .

. .

Figure 8
The E-machine

25

Program memory will contain the E−code program currently being exe-
cuted by the E−machine. The program counter will contain the address in
program memory of the current E−code instruction to be executed. The
previous program counter, needed for backup purposes, will contain the
address in program memory of the most recently executed E−code instruc-
tion. The line number register will contain the line number of the high
level language program statement corresponding to the group of E−code
instructions currently being executed. The line number will be needed
by the dynamic display interface to highlight the current high level
source program line being executed.

The variable registers are an unbounded number of registers that
will be assigned to source program variables, constants, and parameters
during compilation from the source program into E−code. Each identifier
name representing memory in the source program will be assigned one
variable register in the E−machine. As one can see in Figure 8, the
variable registers only contain pointers to individual variable stacks,
which in turn contain pointers into data memory, where the actual vari-
able values are stored. The reason for this complex arrangement will
become clearer as variables are discussed more thoroughly below.

The label registers are another unique component of the E−machine
required for backup. There are also an unbounded number of these regis-
ters and, as described later, they are used to keep track of E−code
label instructions in an E−code program for backup purposes. Each
E−code label statement will be assigned a unique label register at com-
pile time. A label register, in turn, points to a label stack that
essentially maintains a history of previous instructions that caused a
branch to this label.

The index register is found in real computers and serves the same
purpose in the E−machine. Under normal circumstances, the data in a
variable is accessed through the appropriate variable register. How-
ever, in the case of high level data structures, such as arrays and
records, the address of an individual data value is not at the memory
location directly accessible through a variable register. Rather, it is
stored at a location offset from this memory location. When necessary,
an offset value can be placed in the index register and the E−machine
can then access the proper memory location as required (by an addressing
mode called register-indexed).

The evaluation stack pointer is also found in real computers. The
evaluation stack pointer keeps track of the top of the evaluation stack.
The evaluation stack is where the results of all arithmetic and logical
operations and assignments are maintained. For example, in an arith-
metic operation, the operands are pushed onto the stack and the opera-
tion is then performed on them. The operands are consumed by the opera-
tion and the result is pushed onto the top of the stack. Assignments
are performed by popping the top value of the evaluation stack and plac-
ing it into a variable. The advantages of a stack architecture are well
known; several popular computers use this design.

The return address stack pointer is a mechanism for implementing
procedure and function calls. When a call is made to an E−machine sub-
routine, the program counter plus one is pushed onto the return address

26

stack. Then, when the E−machine executes a return from subroutine
instruction, all it has to do is load the program counter with the top
of the return address stack.

The save stack pointer is used to store information required for
backup, which would otherwise be lost. Whenever some critical informa-
tion (as determined by the execution of a critical instruction) is about
to be destroyed, the required information is pushed onto the save stack.
This ensures that when backing up, the instruction that most recently
destroyed some critical information can be reversed by retrieving that
critical information from the top of the save stack.

Finally, data memory represents the usual random access memory
found on real computers, but in the E−machine it is only used for hold-
ing data values. In real machines, a similar situation exists in some
systems which provide for separate code and data segments in memory. On
the E−machine, there is no bound to the available memory (or any of the
stack memory). Implementations on real computers will naturally enforce
some bounds, but for the academic (small program) environment envisioned
for this system, no practical problems are expected to be encountered
due to limited memory.

E-machine Instruction Set

The E−machine’s instruction set is a quite small but complete set
of instructions; these instructions allow an E−code program to access
data easily and simply. All arithmetic, logical, and assignment opera-
tions occur on the evaluation stack. Data is stored and recalled using
the variable registers. All operations for backing up occur with a min-
imum of information from the E−code program in question (in general, all
the E−code program has to do is use the correct form of the instruc-
tion--critical or noncritical--to ensure that backing up can occur cor-
rectly).
Addressing Modes

In this section, the various addressing modes available to the
E−machine instruction set are given.

variable mode - V# :

variable register # → top of variable stack → data

This mode accesses the data at the memory location given in the top
element of the variable stack pointed to by variable register #.

constant mode - # :

27

#

This mode is often called the immediate mode in other architec-
tures; # is itself the integer, real, boolean, character, or
address constant operand required in the instruction. Also, there
are some defined constants. INTEGER, REAL, BOOLEAN, CHARACTER, and
ADDRESS are the size in bytes of an integer, real, boolean, charac-
ter, and address variable, respectively.

register mode - R# :

variable register # → top of variable stack

This mode accesses the address at the top of the variable stack
pointed to by variable register #. This address is the location in
data memory of the current instance of variable #.

register indirect - R#+IR :

variable register # → top of variable stack + IR → data

This mode accesses the data at the memory location at the top of
the variable stack pointed to by the variable register # plus the
offset stored in the index register. This is the addressing method
used to access array elements, record items, and elements of other
high level data structures.

variable indirect - V#+IR :

variable register # → top of variable stack →
memory location + IR → data

This mode accesses the data at the memory location stored at the
memory location at the top of the variable stack pointed to by
variable register # plus the offset stored in the index register.
This is the method used to implement high level language pointer
variables.

Index Register - IR :

IR

This mode accesses the value in the index register directly. This
is the only register which acts like a standard, normal machines.
It should only be used in conjunction with the indirect addressing
modes above.

Instruction Set

28

This section lists all of the instructions in the instruction set
of the E−machine. The argument ADDR refers to any addressing mode
listed in the last section. The argument TYPE refers to any of the data
types integer, real, boolean, char, and address; most instructions
require that the type of data being operated upon be specified. The #
refers to an integer constant. This differs from the constant mode
described above in that this # is used only to specify the number of an
E-code label or an E-machine variable register. The MODE argument
determines whether the instruction is to be treated as critical or non-
critical. The exact method for replacing the ADDR, TYPE, and MODE des-
ignators is unspecified and will be left up to the designer of the
E−machine emulator. Backing up through a noncritical instruction often
still requires that something be pushed onto the evaluation stack to
keep the stack of the proper size; in such cases an arbitrary dummy
value is used.

push ADDR, TYPE :

Forward :
Pushes the value in ADDR onto the evaluation stack.

Backward :
Pops the top value of the evaluation stack and stores it in
ADDR.

pop MODE, ADDR, TYPE :

Forward-Critical :
Pushes the value in ADDR onto the save stack and then pops the
top value of the evaluation and stores it in ADDR.

Forward-Noncritical :
Pops the top value of the evaluation stack and stores it in
ADDR.

Backward-Critical :
Pushes the value in ADDR onto the evaluation stack and then
pops the top value of the save stack and places it in ADDR.

Backward-Noncritical :
Pushes the value in ADDR onto the evaluation stack.

add MODE, TYPE :

Forward-Critical :
Pops the top two values of the evaluation stack, pushes them
onto the save stack, and then pushes their sum onto the evalua-
tion stack.

Forward-Noncritical :
Pops the top two values of the evaluation stack and pushes
their sum onto the evaluation stack.

29

Backward-Critical :
Pops the top value of the evaluation stack and discards the
value. Pops the top two elements of the save stack and pushes
them onto the evaluation stack.

Backward-Noncritical :
Pushes a 0 onto the evaluation stack.

sub MODE, TYPE :

Forward-Critical :
Pops the top two values of the evaluation stack, pushes the two
values onto the save stack, and then pushes the bottom value
minus the top value onto the evaluation stack.

Forward-Noncritical :
Pops the top two values of the evaluation stack, and pushes the
bottom value minus the top value onto the evaluation stack.

Backward-Critical :
Pops the top value of the evaluation stack and discards it.
Pops the top two values of the save stack and pushes them onto
the evaluation stack.

Backward-Noncritical :
Pushes a 0 onto the evaluation stack.

mult MODE, TYPE :

Forward-Critical :
Pops the top two values of the evaluation stack, pushes the two
values onto the save stack, and then pushes their product onto
the evaluation stack.

Forward-Noncritical :
Pops the top two values of the evaluation stack and pushes
their product onto the evaluation stack.

Backward-Critical :
Pops the top value of the evaluation stack and discards it.
Pops the top two values of the save stack and pushes them onto
the evaluation stack.

Backward-Noncritical :
Pushes a 0 onto the evaluation stack.

div MODE, TYPE :

Forward-Critical :
Pops the top two values of the evaluation stack, pushes the two
values onto the save stack, and pushes the bottom value divided
by the top value onto the evaluation stack.

Forward-Noncritical :
Pops the top two values of the evaluation stack and pushes the
bottom value divided by the top value onto the evaluation

30

stack.

Backward-Critical :
Pops the top value of the evaluation stack and discards it.
Pops the top two values of the save stack and pushes them onto
the evaluation stack.

Backward-Noncritical :
Pushes a 0 onto the evaluation stack.

neg TYPE :

Forward :
Pops the top of the evaluation stack and pushes the negation of
that value onto the evaluation stack.

Backward :
Pops the top of the evaluation stack and pushes the negation of
that value onto the evaluation stack.

mod MODE, TYPE :

Forward-Critical :
Pops the top two values of the evaluation stack, pushes the two
values onto the save stack, and then pushes the bottom value
modulo the top value onto the evaluation stack.

Forward-Noncritical :
Pops the top two values of the evaluation stack and pushes the
bottom value modulo the top value onto the evaluation stack.

Backward-Critical :
Pops the top value of the evaluation stack and discards it.
Pops the top two values of the save stack and pushes them onto
the evaluation stack.

Backward-Noncritical :
Pushs a 0 onto the evaluation stack.

line # :

Forward :
Loads the line number register with #, then the machine returns
control to the dynamic interface and enters a wait state.

Backward :
Loads the line number register with #, then the machine returns
control to the dynamic interface and enters a wait state.

cast TYPE, TYPE :

Forward :
Pops the top value of the evaluation stack, transforms the
value from the first TYPE to the second, then pushes the value

31

onto the evaluation stack.

Backward :
Pops the top value of the evaluation stack, transforms the
value from the second TYPE to the first, then pushes the value
onto the evaluation stack.

cmp MODE, TYPE :

Forward-Critical :
Pops the top two values of the evaluation stack, pushes the two
values onto the save stack, compares the bottom value with the
top value and then pushes the result of the comparison onto the
evaluation stack (i.e., one of LESS, EQ, and GREATER is
pushed).

Forward-Noncritical :
Pops the top two values of the evaluation stack, compares the
bottom value with the top value and then pushes the result of
the comparison onto the evaluation stack (i.e., one of LESS,
EQ, and GREATER is pushed).

Backward-Critical :
Pops the top value of the evaluation stack and discards it.
Pops the top two values of the save stack and pushes them onto
the evaluation stack.

Backward-Noncritical :
Pops the top value of the evaluation stack and discards it.
Pushes two 0’s onto the evaluation stack.

label MODE, # :

Forward-Critical :
Pushes the previous program counter onto the stack pointed to
by label register #.

Forward-Noncritical :
No operation.

Backward-Critical :
Pops the top value of the stack pointed to by label register #
and places it in the program counter.

Backward-Noncritical :
No operation.

br #:

Forward :
Load the program counter with the address of the label #
instruction.

Backward :
No operation.

32

beql, bneql, bless, bleql, bgtr, bgeql MODE, # :

Forward-Critical :
Pops the top value of the evaluation stack and pushes it onto
the save stack. If the value satisfies the conditional on the
branch, load the program counter with the address of the label
instruction.

Forward-Noncritical :
Pops the top value of the evaluation stack. If the value sat-
isfies the conditional on the branch, loads the program counter
with the address of the label # instruction.

Backward-Critical :
Pops the top value of the save stack and pushes it onto the
evaluation stack.

Backward-Noncritical :
Pushes EQUAL onto the evaluation stack.

33

call # :

Forward :
Pushes the current program counter onto the return address
stack, then loads the address of the label # instruction into
the program counter.

Backward :
No operation.

return :

Forward :
Pops the top value of the return address stack and loads it
into the program counter.

Backward :
No operation.

alloc # :

Forward-Critical :
Pops the top value of the evaluation stack, pushes the value
onto the save stack, pushes the address of a chunk of free mem-
ory of that size onto the variable stack pointed to by variable
register #.

Forward-Noncritical :
Pops the top value of the evaluation stack, pushes the address
of a chunk of free memory of that size onto the variable stack
pointed to by variable register #.

Backward-Critical :
Pops the top value of the variable stack pointed to by variable
register # and frees the memory allocated, pops the top value
of the save stack and pushes it onto the evaluation stack.

Backward-Noncritical :
Pops the top value of the variable stack pointed to by variable
register # and frees the memory allocated. Pushes a 0 onto the
evaluation stack.

link # :

Forward :
Pops the top value of the evaluation stack and pushes it onto
the variable stack pointed to by variable register #.

Backward :
Pops the top value of the variable stack pointed to by variable
register # and pushes it onto the evaluation stack.

34

unlink # :

Forward :
Pops the top value of the variable stack pointed to by variable
register # and pushes it onto the save stack.

Backward :
Pops the top value of the save stack and pushes it onto the
variable stack pointed to by variable register #.

Source Program Variable Representation
in E-machine Code

Understanding how the E-machine provides for the implementation of
high level source language variables is vital to understanding the oper-
ation of the E-machine, especially in backing up. (In this context, the
term variable refers to any identifier in the source program that
requires memory, such as variables, constants, and parameters.) First,
a compiler that generates E-code translations of, say, Pascal programs
assigns each variable in the Pascal program a unique E-machine variable
register. This is done statically at compile time, so that every vari-
able is associated with a unique variable register for the duration of
program execution, regardless of whether that variable is currently
active or not. The variable register for a variable does not contain
the value of the variable. Rather, it contains a pointer to a unique
variable stack for that variable (look at Figure 8 again). Since each
variable register is really only a pointer, it will be the same size
regardless of whether the variable is a simple variable or, for example,
an array.

The variable stack pointed to by a variable register also does not
contain the value of the variable. In this case, each element of the
variable stack is itself a pointer to the actual variable value in data
memory. The stack is necessary because a particular variable may have
multiple associated instances. Consider the case of a variable A that
is local to a recursive Pascal procedure. Each new recursive call to
that procedure would require that a new data memory location be set
aside for new instance of A. A’s variable register would point to A’s
variable stack, and the top of A’s variable stack would point to the
value of the current instance of A in data memory. The second stack
element would point to the previous instance of A in data memory, and so
on. Most variables are not in recursive procedures and thus will only
have at most one instance during program execution. In such cases, the
variable register would point to a variable stack that is just one ele-
ment deep. The case for a variable A with just a single instance is
illustrated in Figure 9. Figure 10 shows the situation of a variable A
having three instance as the result of three recursive calls to a proce-
dure.

35

variable variable data
registers stack memory
. . . .
. . . .
.
. .------. .------. 14.
.
.

A A’s A’s
stack data

Figure 9
E-machine Global Variable Implementation

Whenever a procedure or function exits, the compiled E−code will
ensure that local variable instances are properly removed from data mem-
ory by simply causing the top of the variable stacks to be popped for
each affected variable. If a variable is totally deactivated as a
result, its variable register will simply point to an empty variable
stack.

variable variable data
registers stack memory
. . . .
. . . .
.
. .------. .------. 14.
. . . .--+ . .
. . . .------. 77.
.
.
. . . . +---. 4.
.
.
.

A A’s A’s
stack data

Figure 10
E-machine Recursive Variable Implementation

36

Notice that arrays and records can be handled in the usual fashion,
using offsets (in the index register) from the first location for the
variable in data memory to arrive at individual elements.

The Save Stack

To see how backing up is accomplished with this method of repre-
senting variables, the role of the save stack must be explained. The
first thing to consider is the kinds of information associated with a
variable. There are two kinds: the location of the variable’s memory
and the data in the variable’s memory location. Both are subject to
destruction or loss during normal program execution. It is easier to
see how the second type of information, the data, can be destroyed.
Whenever an assignment is made into a variable, the old data in the
variable’s memory location is destroyed. Therefore, in order to restore
the E−machine’s state to the state prior to the assignment, it is neces-
sary to save the old data. This is done on the save stack. Upon backing
up, the old variable value can then be restored by retrieving it from
the save stack.

Now consider the case of a memory location. Recall that the data
memory location of a variable is kept in the stack corresponding to that
variable. In the case, say, of a Pascal global variable, the single
stack element for that variable continues to point to the proper data
memory location for that variable throughout the execution of the pro-
gram. In the case of a variable (again, this refers to both local vari-
ables and parameters) in a procedure or function, however, the data mem-
ory location, and hence the pointer to this location on the variable
stack, may change with each call. That is, each time a call to the pro-
cedure or function is made, a different data memory location may be
allocated for the value of the variable and pushed onto the top of that
variable’s stack; upon return from the procedure or function, that
address will be popped off the variable’s stack as the variable is deal-
located. At this point, information critical to backup would be lost if
the address popped off were not saved in some way.

This is where the save stack comes in. Whenever any information is
about to be lost in one of the above fashions, the information instead
is pushed onto the save stack. Figure 11 shows the initial variable
register, variable stack, and data memory location for a variable X.
Also included is the save stack.

variable variable data save
registers stack memory stack
. . . .
. . . .

37

.

. .------. .------. 14. . .

.

.

X X’s X’s
stack data

Figure 11
Variable and Save Stack for a Variable X

Notice that the save stack is empty now. (Technically, this situation
could not arise since X has a value at this point, and therefore at some
point in the past must have had an assignment statement performed upon
it which would have required the old value to be pushed onto the save
stack. For purposes of this example, we will ignore this fact.) Now,
let’s perform an assignment operation:

X = 27

The effect this will have upon the E−machine’s structures is shown in

Figure 12. Notice that the top of the save stack now contains the old

value of X and that the new value of X is stored in the old memory loca-

tion. In this case, the information which would have been destroyed was

the data, not the memory location.

variable variable data save
registers stack memory stack
. . . .
. . . .
.
. .------. .------. 27. . 14.
.
.

X X’s X’s
stack data

Figure 12
Variable and Save Stack After Assignment to X

38

In order to back up at this point, all that would be necessary
would be to pop the top of the save stack and place the popped value
into the memory location pointed to by the top of X’s variable stack.
This procedure allows any assignment to be reversed.

Preparing for the reverse execution of statements that lose loca-
tion information is somewhat more involved. To understand this task
better, recall from the previous section how the E−machine architecture
provides for the implementation of high level language variables (remem-
ber, too, that the term variable is used here to stand for any high
level language identifier requiring memory, such as actual variables,
parameters, and constants). Each variable has a permanently assigned
variable register. Each variable register points to a unique, associ-
ated variable stack.

39

Each element of the variable stack is a pointer to an instance of the
variable value in data memory; the top of the variable stack points to
the current, active instance of the variable.

Thus, since the location of a variable’s assigned variable register
remains constant throughout program execution, and this variable regis-
ter always points to the current top element of the associated variable
stack, the only location information that can be lost during normal for-
ward execution is the location of a variable’s value in data memory as a
procedure or function is exited (i.e., the value on top of the variable
stack for the variable). Thus, upon exit of a procedure or function,
when the values of local variables (including parameters and constants)
and their locations in data memory are normally lost, the locations of
these variables, must be saved on the save stack. When backing up
through a procedure or function call, (i.e. executing the procedure or
function in reverse), the original locations of the local variables in
data memory can be restored to the top of their respective variable
stacks from the save stack.

How can one be certain that the original variable values will be in
the restored locations upon backing up? Consider how a value in data
memory is changed. The only way this can happen is through an assign-
ment operation. But earlier in this chapter, a mechanism was introduced
that allowed an assignment instruction to be reversed. Therefore, even
though a memory location may have been assigned numerous different val-
ues since the procedure exited, as backing up occurs, that memory loca-
tion will have been reset to the required value by the time the proce-
dure is encountered in reverse.

Consider the example Pascal program fragment in Figure 13. It con-
sists of a header definition for procedure something with one value
parameter; there are three calls to that procedure from another routine.
The lines labeled 0,1,2, and 3 have corresponding sections in Figure 14.
Figure 14 contains the variable structures and the save stack that cor-
respond to each of the procedure calls in Figure 13. The section
labeled 0 in Figure 14 refers to the state of the structures before any
procedure call has been executed. Notice that the save stack is empty,
and notice too that the variable stack for P is also empty.

Procedure something(P : integer);
.
.
.

0
1 something(7);
2 something(5);
3 something(-16);

Figure 13
A Pascal Procedure Fragment something

40

Now let’s examine line 1 in Figure 13. This is the first call to
procedure something. Notice that during the call, P’s stack in section
1 of Figure 14 now has a value, 1, which is a location in data memory.
Notice also that the data memory location which this points to (data
memory location 1) contains the value of the parameter which was passed
to something. During this call, any references to P are referring to
the data memory location that is pointed by the top of P’s variable
stack.

41

Variable structures Save stack after
During Procedure Call Procedure call

variable variable data save
registers stack memory stack

. . . .

. . . .

.
0 . .------. - - .

.

.

. . . .

. . . .

.
1 . .------. 1 .------. 7 . . 1 .

.

.

. . . .

. . . .

.
2 . .------. 7 .------. 5 . . 7 .

. 1 .

.

.

. . . .

. . . .

.
3 . .------. 4 .------.-16. . 4 .

. 7 .

. 1 .

.

.
P P’s P’s save

stack data stack

Figure 14
Variable and Save Stack During Successive Calls to Procedure something

The save stack in section 1 of Figure 14 shows the state of the
stack after procedure something finishes executing for the first time.
Notice that it now has the value 1 on top. This is because when the
procedure exited, the data memory location to which P was pointing would
have been lost, so it was saved by the E−machine on the top of the save
stack. Consider now the second call to something in line 2 of Figure 13
and compare it with section 2 in Figure 14.

42

The top of P’s variable stack now contains the value 7, which
points to data memory location 7, which contains a 5. Now any refer-
ences to P will refer to memory location 7 (i.e., to the value 5). When
procedure something is exited this time, the top of the variable stack
would again be lost if it were not saved. Thus, the 7 on top of the
variable stack for P is pushed onto the save stack by the E−machine,
resulting in the save stack configuration of section 2 in Figure 14.

The third call to procedure something follows in exactly the same
manner. When the procedure is executing, the variable P refers to the
data memory location contained on the top of P’s variable stack, and
when the procedure ends, that data memory address is pushed onto the
save stack.

Reversing through these procedure calls simply consists of popping
the addresses off the save stack and pushing them onto P’s variable
stack when reversing through the procedure’s exit, and popping the top
of P’s variable stack when reversing through the procedure’s entrance.

The Label Registers

Execution in a program is not a simple, linear affair. There are
branches, calls to subroutines, returns from subroutines, and other non-
sequential types of instructions that add complexity to the problem of
backing up. We have seen how to reverse many E−machine instructions by
utilizing the save stack. What we haven’t yet determined is how to
reset the current program counter so that it points to the proper previ-
ous instruction. If the current instruction was arrived at from some
instruction other than the immediately preceding instruction (e.g., via
a branch instruction) there must be some method available for recovering
the line number of the instruction branched from.

For example, Figure 15 gives a simple E−code program (for clarity,
variables are referred to by name rather than their variable registers,
and addressing modes, data types, and critical and noncritical designa-
tors have been omitted). The program does the following: I’s value is
pushed onto the evaluation stack followed by J’s value. The cmp
instruction of line 3 then compares the top two stack values, consuming
these values, and pushing the result of the comparison onto the stack.
Notice line 4; if the top of stack value denotes "equal", a branch must
be made to the label 1 instruction, which is in line 7 (that is, the
current program counter must be set to 7). Otherwise execution proceeds
sequentially through lines 5 and 6 until line 7 is reached.

The label instruction of line 7 is the interesting instruction in
this case. As seen, depending on the values of I and J, the instruction
executed just previous to line 7 could have been either line 4 or 6.
How can it be determined for backing up which one really did precede
line 7?

43

The brute force method of solving this problem is simple but very
inefficient. If, at each step, the current program counter is stored on
a stack, all that is needed to restore the current program counter upon
backing up is to replace its value with the top of stack value. This
method

1 push I
2 push J
3 cmp
4 breq 1
5 push I
6 pop J
7 label 1
8 halt

Figure 15
Simple E-code Program With a Branch

will work, but it is inefficient for the following reason. Most
instructions in a program have only one possible previous instruction,
the one that directly precedes it in the program. In the example of
Figure 15, only line 7 has more than one possible previous instruction.
All of the other instructions have only one. A more elegant and effi-
cient method to solving this problem, then, is to identify the instruc-
tions with more than one possible previous instruction (referred to
hereinafter as "branch points") and only save the previous program
counter when one of these instructions is executed in the forward direc-
tion. In order to do this, branch point instructions must be identifi-
able.

How can branch points be identified by the E−machine as it executes
an E−code program? The characteristics of a branch point are easy to
categorize. A branch point is any instruction that can be executed in
some order other than sequentially from the instruction immediately pre-
ceding it. Most such instructions can be readily identified: since
both branch and call instructions require a label as one of their argu-
ments, any instruction that is a branch point because of a branch or
call must be an E−code label instruction. This leaves one class of
branch points still unidentified, those arrived at by a return from a
procedure or function. The return instruction does not--and indeed can-
not--have a label as an argument; instead, control must be returned to
the instruction immediately following the call that invoked the proce-
dure or function (the utility of a procedure or function lies in the
fact that it can be called from anywhere and, after execution, will
return to the instruction immediately after the call).

From the above discussion, it is clear that each E−code instruction
that immediately follows a procedure or function call is a branch point.
However, examining an arbitrary E−code instruction in isolation does not

44

allow one to determine whether the previous instruction was a call.
Thus, some sort of mechanism must be employed to mark such an instruc-
tion as a branch point at compile time. Since all branch points except
those arrived at by a return are E−code label instructions in any case,
the same technique can be employed to branch points arrived at by a
return. The compiler can simply be designed to generate an E−code label
instruction immediately following each procedure or function call.

This technique ensures that all branch points are E−code label
instructions. Thus, for successful backup, when the E−machine executes
a label instruction in the forward direction, it must save the previous
program counter value in some fashion. Recall that in the E−machine,
the previous program counter is always maintained in the register by
that name. Every time the current program counter is changed, its old
value is first placed into the previous program counter. (Notice that
this structure is not a stack. Only one value is stored at any one time
in the previous program counter.)

45

In order to save the previous program counter for successful
backup, then, whenever an E−code label instruction is executed, the
E−machine employs its label stacks and label registers (see Figure 8).
Each label instruction is to be assigned a label register at compile
time, where each label register is a pointer to a unique label stack
(the reason for the stack is given later). Thus whenever a label
instruction is encountered by the E−machine, the value in the previous
program counter is pushed onto the stack referenced by that label’s reg-
ister.

Now, look at the example program given in Figure 16. There are two
branch points in this program: line 1 and line 11. This program con-
tains a loop in which lines 1 through 10 are executed until I and J are
equal. Obviously, this loop could iterate a large number of times, and
each time the label instruction of line 1 is executed, it appears that
the previous program counter should be pushed onto the label stack of
label 1. However, except for the very first time line 1 is executed,
the previous program counter will always contain 10. There should be a
way to take advantage of this repetition and save some space.

The E−machine does this in the following way. Each element of the
label stack associated with each branch point has two parts, one for
holding the value of the previous program counter and one for holding a
count, as shown in Figure 17. Rather than just pushing the previous
program counter onto the label stack when a label instruction is exe-
cuted by the E−machine, the E−machine first compares the previous pro-
gram counter to the number stored in the top element of the label stack.
If these two values are equal, the associated counter on the stack is
simply incremented, thus recording the number of times this label
instruction was reached from the same previous instruction. Thus,
rather than storing n identical previous program counter values, where n
is the number of times the loop is iterated, only one copy of the
repeated previous program counter value is saved along with n, a tremen-
dous savings.

0 ...
1 label 1
2 push I
3 push J
4 cmp
5 breq 2
6 push I
7 push 1
8 add
9 pop I
10 br 1
11 label 2
12 halt

Figure 16
Simple E-code Program with a Loop

46

Address Counter

Address Counter

Address Counter

Address Counter

. .

. .

. .

Figure 17
General Label Stack

Look again at Figure 16 and consider what will happen to
the label stack for the branch point instruction at line 1 as
the E−machine executes the instructions. Assume that I equals
3 and J equals 5. The E−machine will step sequentially
through the instructions starting at 0. When the label 1
instruction at line 1 is executed for the first time, the
address of the the instruction executed just prior to it (at
this point, instruction 0) is pushed onto label 1’s label
stack, resulting in the label stack of Figure 18.

0 1

. .

. .

. .

Figure 18
Label Stack After 0 Loop Iterations

As the E−machine continues executing, I and J will be compared,
they will be found to be not equal and so the E−machine will continue
executing sequentially, incrementing I in the process, until line 10 is
reached. At that point, a branch to the label 1 instruction is exe-
cuted, which loads 1 into the program counter. When the label 1
instruction is executed, the address of the instruction that was exe-
cuted just prior to this is pushed onto label 1’s stack. Since that
instruction was the branch instruction at line 10, a 10 must be pushed
as shown in Figure 19.

47

At this point in the execution, the loop has executed once, I
equals 4, J equals 5, and the E−machine has just executed line 1. Pro-
ceeding sequentially with the execution of the program results in I and
J being compared. Once again, I does not equal J and the E−machine exe-
cutes sequentially, again incrementing I, until line 10 is reached. At
this point, the branch to label 1 is executed. The execution of label 1
causes the address of the instruction executed just prior to the label
1, 10, to be pushed onto label 1’s stack. This results in the label
stack of Figure 20. Notice that no new address was actually pushed onto
the stack. Since the top of the stack had the same value as the value
that was to be pushed, the counter of the top of the stack was simply
incremented (from 1 to 2). If the address had been different than the
value of the top of the stack, a new value and counter would have been
pushed onto the top of the stack.

10 1

0 1

. .

. .

. .

Figure 19
Label Stack After 1 Loop Iteration

10 2

0 1

. .

. .

. .

Figure 20
Label Stack After 2 Loop Iterations

How to reverse through a label instruction should now be clear.
The address on top of that label’s stack is simply placed in the program
counter. If the corresponding count is one, the label stack is also
popped, otherwise the count is just decremented.

48

Critical vs. Noncritical Instructions

Early on in the chapter, it was mentioned that a machine running
backwards and a high level language program executing backwards repre-
sented similar but not identical processes. The reason this is so is
that one high level language statement will, in general, correspond to
many machine language instructions. For example, the Pascal assignment
statement

Y := X + Y - 17 * Z * Z;

will be translated into at least ten machine language instructions, as

shown in Figure 21, only one of which has any effect on the values of

the variables in this statement (the final pop instruction). Since the

intent of the proposed system is to display the execution dynamics of

high level language programs, it is unnecessary to be concerned about

precisely backing up the E-code instructions that only calculate inter-

mediate values. This observation led naturally to a classification sys-

tem for E−machine instructions that reflects this situation. If an

E−machine instruction destroys information necessary for backup in the

high level language program, it is classified as critical by the com-

piler; if it does not, it is classified as noncritical.

This identification of E−code instructions as either critical or
noncritical allows the E−machine to save for backup purposes only that
information necessary to reverse statements in the high level language
program. Since the vast majority of compiled E−code instructions will
be noncritical, a large savings in storage space and time is realized.
However, it should be noted that the flexibility is present to accu-
rately back up E-machine code line by line by simply designating each
instruction as critical.

push X
push Y
push 17
push Z

49

mult
push Z
mult
sub
add
pop Y

Figure 21
E-code Translation of X := X + Y - 17 * Z * Z;

50

CHAPTER 6

COMPILING TO E-CODE

The actual design of a compiler for translating some high level
programming language (e.g., Pascal) into E-code; as well as other appli-
cations for the E-machine, is left for others. However, this chapter is
included as a starting point to assist those who will be developing com-
pilers for the E-machine. The following description is only a guide to
the most important considerations facing a compiler writer and is not
meant to be complete.

Recall that the purpose of the E-machine is to allow high level
programming language execution dynamics to be displayed dynamically as
an aid to teaching and learning programming. Therefore, when the
dynamic display interface is to show a high level language program exe-
cuting, both the high level language source program and the compiled E-
code program must both be available. Only the E-code program will be
executing. However, to the user it must appear as if the high level
language program were executing. This can be accomplished using two E-
machine components: the line number register and the variable registers.

Recall from Chapter 5 that the line number register contains the
line number of the source program statement that was translated into the
E-code instruction group that is currently executing. The dynamic dis-
play interface will use the information in this register to indicate to
the user which source program statement in his or her program is execut-
ing. Generating E-code instructions that correctly update the line num-
ber register is one of the most important parts of an E-code compiler.

The variable registers are the second component of the E-machine
that will be used by the dynamic display interface in showing source
program execution. Recall that each variable (that is, each variable,
parameter, and constant) of the source program will be assigned a unique
variable register at compile time. Since it will be necessary for the
dynamic display interface to update the values of any variables that
have changed with each statement execution in the source program, it is
essential that the dynamic display interface have access to a symbol
table that associates each variable in the source program with its
unique variable register. The symbol will allow the dynamic display
interface to ascertain the value of each variable and update the display
of variable values. The creation of this symbol table is another impor-
tant task of an E-code compiler.

Recall from Chapter 5 that many E-code instructions have two modes:
critical and noncritical. An E-code compiler must decide during trans-
lation whether a given E-code instruction should be used in critical or
in noncritical mode. This decision will perhaps be the most compiles

51

part of designing an E-code compiler. Later in this chapter, an ad hoc
method for doing this is presented.

First, let’s look at one possible method of building the symbol
table, a straightforward task. Consider the Pascal program in Figure
22. A simple way to generate a symbol table for this program is just to
start at the beginning of the program and scan one line at a time. Each
time a variable declaration is encountered (again, this is the extended
definition of variable), assign the next available E-machine variable
register to that variable. When the last line of the program is
reached, each program variable will have been assigned a variable regis-
ter. This would take only a single pass through the source program.
The symbol table in Figure 23 was generated in this way from the Pascal
program in Figure 22. Notice in Figure 23 the method used for tagging
parameters with the procedure or function to which they belong. This
same method could be used to tag local variables.

1 program recurse (input,output);
2
3 var
4 ct,n,sum : integer;
5
6 function factorial(n : integer) : integer;
7
8 begin
9 if n = 0
10 then
11 factorial := 1
12 else
13 factorial := n * factorial(n-1)
14 end;
15
16 procedure increment(var x : integer);
17
18 begin
19 x := x + 1
20 end;
21
22 begin
23 sum := 0;
24 n := 1;
25 while n < 4 do
26 if sum < 10
27 then begin
28 sum := sum + factorial(n);
29 increment(n)
30 end
31 end.

Figure 22

52

Example Pascal Program

Generating E-code instructions to update the line number reg-
ister and deciding whether an instruction is critical or not
can both be handled with the same technique. This technique
is called packetizing. Packetizing is a method for dividing
the source program into a set of packets, where each packet
represents the smallest unit of a source program to be high-
lighted by the dynamic display interface as execution progresses.
Until now, it has been assumed that the dynamic display inter-
face would simply highlight the current source program statement
being executed. However, in typical high level languages, a
statement can be quite complex (e.g., an if statement). A
packet will represent smaller components of the source program
that will need to be highlighted by the dynamic display inter-
face. The compiler writer must use his or her knowledge of
the high level programming language to decide how to packetize
that language. Then it must be determined in the E-code where
critical instructions are to occur in translation of packets and
the types of critical instructions to employ. Figure 24 is a
diagram showing how Pascal can be packetized. Following the
example of Figure 24, a packet is defined as the smallest ele-
ment a user of the dynamic display interface would find inter-
esting. This is a very ad hoc definition, but it should help
direct the efforts of a compiler writer, who obviously must
work in close collaboration with the designer of the dynamic
display interface.

53

Name Register

ct 1

n 2

sum 3

factorial:n 4

increment:x 5

Figure 23
Symbol Table For Pascal Program

The packetizing method illustrated in Figure 24 can be used
in compilation as follows. Take each packet in the diagram
and write out if and where critical instructions may occur in
the translation of the packet. Figure 25 shows the result of
this process applied to the diagram in Figure 24. Notice that
the only critical E-code instructions are alloc, link, pop, and
label. Since this is the case, a usable heuristic for identi-
fying critical instructions is to make every instance of those
instructions critical. This will ensure that proper backup will
occur, but not necessarily in the most efficient fashion. If
some of these instructions were designated critical, when, in
fact, they could have been designated noncritical, this would
mean some information that is unnecessary for backing up is
being stored. Finding an optimal way to generate code for
backing up is beyond the scope of this thesis, however, and
will be left for others.

54

[program name(input,output,files);]

[const]
[const declaration]

[type]
[type declaration]

[var]
[variable declaration]

[assignment statement]

[begin]

[end]

[procedure call]

[if (boolean expression)]
[then]

then clause
[else]

else clause

[case (expression) of]
[const :] case body;

[end]

[repeat]
loop body

[until (boolean expression)]

[while (boolean expression) do]
loop body

[for VAR := EXPR to|downto EXPR do]
loop body

[procedure name]
[(parameter declaration);]

procedure body

[function name]
[(parameter declaration):type;]

function body

Figure 24
Ad Hoc Packetizing Method for Pascal

55

There is still one unusual area of code generation that should be
mentioned: how to generate the E-code instructions necessary to update
the (source program) line number register. This can be done easily once
the source program has been packetized. Whenever the compiler encoun-
ters a left packet symbol, in this case, [, it can generate the command

line #

where # is the line number in the source program of the line that con-

tains this packet. The line command generated by the left packet symbol

can be considered to be an E-machine interrupt: it can have the effect

of causing control to be returned to the dynamic display interface just

following the execution of the E-machine code corresponding to the cur-

rent source program packet being executed, and just prior to the execu-

tion of the next packet. When the dynamic display interface sends a

signal to the E-machine to resume, the E-code corresponding to the next

packet of instructions can be executed by the E-machine, and so.

A packetized version of the program of Figure 22 is given in Figure
26. Figure 27 presents a possible in-line translation of the program of
Figure 26. The mode designator c is used for critical instructions and
n for noncritical instructions. Comments are included to help explain
the translation. In the comments, PC refers to program counter and PPC
to previous program counter. Figure 27 should also be viewed in con-
junction with Figure 23, the associated symbol table for the dynamic
display interface.

56

Program Packet
Critical Instructions

[program name(input,output,files);] none

[const] none
[const declaration] none

[type] none
[type declaration] none

[var] none
[variable declaration] alloc #

[assignment statement] pop V#

[begin] none

[end] none

[procedure call] none

[if (boolean expression)] none
[then] none

then clause
[else] label #

else clause
label # (after the entire

if statement)
[case (expression) of] none

[const :] case body; label #
[end] label #

[repeat] label #
loop body

[until (boolean expression)] none
label # (after the entire

repeat-until statement)

[while (boolean expression) do] label #
loop body

label # (after the entire
while statement)

[for VAR := EXPR to downto EXPR do] label #
loop body

label # (after the entire
for statement)

[procedure name] none
[(parameter declaration);] alloc #/link #

procedure body

[function name]
[(parameter declaration):type;] alloc #/link #

function body

Figure 25
Packetizing and Determination of Critical Instructions

57

1 [program recurse (input,output);]

2

3 [var]

4 [ct],[n],[sum] : [integer;]

5

6 [function factorial]([n : integer]) : [integer;]

7

8 [begin]

9 [if n = 0]

10 [then]

11 [factorial := 1]

12 [else]

13 [factorial := n * factorial(n-1)]

14 [end;]

15

16 [procedure increment]([var x : integer]);

17

18 [begin]

19 [x := x + 1]

20 [end;]

21

22 [begin]

23 [sum := 0;]

24 [n := 1;]

25 [while n < 4 do]

26 [if sum < 10]

27 [then begin]

28 [sum := sum + factorial(n);]

29 [increment(n)]

30 [end]

31 [end.]

Figure 26

Example Packetized Pascal Program

58

1 [program recurse (input,output);]
line 1 {display should highlight line 1}

2 {no E-code generated}
3 [var]

line 3 {display should highlight line 3}
4 [ct],[n],[sum] : integer;]

line 4 {display should highlight line 4}
push INTEGER,integer {push INTEGER onto evaluation stack}
alloc c,1 {allocate top-of-stack bytes to variable 1}
line 4 {display should highlight line 4}
push INTEGER,integer {push INTEGER onto evaluation stack}
alloc c,2 {allocate top-of-stack bytes to variable 2}
line 4 {display should highlight line 4}
push INTEGER,integer {push INTEGER onto evaluation stack}
alloc c,3 {allocate top-of-stack bytes to variable 3}

5
6 [function factorial([n : integer]) : integer;]

label c,1 {push PPC onto label 1’s stack}
line 6 {display should highlight line 6}
line 6 {display should highlight line 6}
push INTEGER,integer {push INTEGER onto evaluation stack}
alloc c,4 {allocate top-of-stack bytes to variable 4}
pop c,V4 {pop the top of the stack into variable 4}

7
8 [begin]

line 8 {display should highlight line 8}
9 [if n = 0]

line 9 {display should highlight line 9}
push V4,integer {push value in V4 onto the evaluation stack}
push 0,integer {push 0 onto the evaluation stack}
cmp n,integer {compare top of stack to next lowest,}

{push result}
bneq n,2 {branch to label 2 if the condition is met}

10 [then]
line 10 {display should highlight line 10}

11 [factorial := 1]
line 11 {display should highlight line 11}
push 1,integer {push 1 onto the evaluation stack}
br 3 {branch to label 3}

12 [else]
label c,2 {push PPC onto label 2’s stack}
line 12 {display should highlight line 12}

Figure 27
Example In-Line E-code Translation of a Packetized Pascal Program

59

13 [factorial := n * factorial(n-1)]
line 13 {display should highlight line
label c,3 {push PPC onto label 3’s stack}
push V4,integer {push v4 onto the evaluation stack}
push V4,integer {push v4 onto the evaluation stack}
push 1,integer {push 1 onto the evaluation stack}
sub n,integer {subtract top of stack from next down,}

{push result}
call 1 {call label associated with factorial}
label c,4 {push PPC onto label 4’s stack}
mult n,integer {multiply the top two values of the stack}

{push result}
14 [end;]

line 14 {display should highlight line 14}
unlink 4 {pop the top of 4’s variable stack}

{deactivate 4}
return {pop top of the return address stack into the}

{program counter}
15
16 [procedure increment([var x : integer]);]

label c,5 {push PPC onto label 5’s stack}
line 16 {display should highlight line 16}
line 16 {display should highlight line 16}
link c,5 {pop address from top of stack}

{push onto label 5’s stack}
17
18 [begin]

line 18 {display should highlight line 18}
19 [x := x + 1]

line 19 {display should highlight line 19}
push V5,integer {push V5 onto the evaluation stack}
push 1,integer {push 1 onto the evaluation stack}
add n,integer {add top two values of stack}

{push the result}
pop c,V5,integer{pop the top the the evaluation stack into V5}

20 [end;]
line 20 {display should highlight line 20}
unlink 5 {pop address off 5’s label stack}
return {pop top of the return address into the PC}

21
22 [begin]

line 22 {display should highlight line 22}
23 [sum := 0;]

line 23 {display should highlight line 23}
push 0,integer {push 0 onto the evaluation stack}
pop c,V3,integer{pop the top of the stack into V3}

Figure 27 (continued)

60

24 [n := 1;]
line 24 {display should highlight line 24}
push 1,integer{push 1 onto the evaluation stack}
pop c,V2,integer {pop the top of the stack into V2}

25 [while n < 4 do]
label 6 {push PPC onto label 6’s stack}
line 25 {display should highlight line 25}
push V2,integer {push V2 onto the evaluation stack}
push 4,integer {push 4 onto the evaluation stack}
cmp n,integer {compare the top two values of the stack}
bgeq n,7 {if the top of the stack matches the}

{condition, branch to label 7}
26 [if sum < 10]

line 26 {display should highlight line
push V3,integer {push V3 onto the evaluation stack}
push 10,integer {push 10 onto the evaluation stack}
cmp n,integer {compare top of stack to next down}
bgeq n,8 {branch if the top of stack matches}

{the condition}
27 [then begin]

line 27 {display should highlight line
28 [sum := sum + factorial(n);]

line 28 {display should highlight line 27}
push V3,integer {push V3 onto the evaluation stack}
push V2,integer {push V2 onto the evaluation stack}
call 1 {call subroutine at label 1}
label c,9 {push PPC onto label 9’s stack}
add n,integer {add top two values of the evaluation stack}

29 [increment(n);]
line 29 {display should highlight line 29}
push R2,address {push V2’s address onto the stack}
call 5 {call procedure increment}

30 [end]
label c,8 {push PPC onto label 8’s stack}
line 30 {display should highlight line 30}
br 6 {branch to label 6}
label c,7 {push address of PPC onto label 7’s stack}

31 [end.]
line 31 {display should highlight line 31}
halt {stop executing}

Figure 27 (continued)

The translation in Figure 27 provides the intuition for the way
that compiling a Pascal program to E-code should proceed. A more rigor-
ous definition is beyond the scope of this thesis. The next chapter
contains a recap of some of the main points of this thesis and some new
directions that this project could take.

61

CHAPTER 7

CONCLUSIONS AND NEW DIRECTIONS

The goal of this thesis was the design of a virtual machine archi-
tecture to support research and development in the realm of dynamic
teaching aids for introductory computer science courses, primarily
beginning programming courses. Thus this virtual machine architecture
was to support the execution of high level language programs in a fash-
ion that made the display of all facets of program execution dynamics
feasible and flexible. The most important specification for the virtual
machine architecture was the requirement for reverse execution. This
specification arose from experience with DYNAMOD; a common request from
students viewing DYNAMOD examples in the classroom was for the instruc-
tor to back up and repeat certain statements. Thus was born the E-
machine, a virtual machine that appears to meet the goals of the thesis
quite well.

Much remains to be done to realize the ultimate goal of a compre-
hensive teaching and learning tool for introductory computer science.
An emulator for the E-machine must be written, a dynamic display inter-
face must be designed and implemented, and a user interface must be
developed. Furthermore, at least one compiler, for example, a Pascal to
E-code compiler, must be written. It is proposed that the emulator, all
compilers, and both interfaces be implemented in C in order to ensure
the system’s portability to virtually all computer types likely to be

62

used by students. Once this has been accomplished, the entire package
can be incorporated into a hypertext environment built around an online
textbook.

If this looks like a never-ending project, it is! Unlike a commer-
cial system that must support the production people who develop applica-
tions with that system, and therefore cannot later incorporate radical
changes without disrupting the continued effective use of the system,
the project envisioned here will suffer no such constraints. As a
purely academic system, it can be changed at will to incorporate peda-
gogical innovations that support the mission.

Consider the E-machine itself. As it stands, it should support the
execution of Pascal programs quite well, with one exception: no provi-
sion has been made for handling input and output. This was a conscious
omission that leaves this portion of the design to those implementing
the dynamic display interface. If it turns out that input and output is
best handled by the display interface, that will be fine. However, if
it becomes clear that new instructions need to be added to the E-machine
instruction set to support input and output, that will be fine, too.
Other high level programming languages, if incorporated into this sys-
tem, may also require that new instructions be added to the instruction
set of the E-machine. A good example of this would be the bit-level
operations of C. The E-machine was intended to be an open-ended project
from the start.

In conclusion, it is hoped that the E-machine will not just sit on
a shelf and gather dust, but that it will soon be implemented and become
a part of the envisioned dynamic teaching and learning system. There is
every reason to believe that this will be the case.

63

REFERENCES CITED

ALICE:The Personal Pascal. Looking Glass Software Limited, 124 King St.
N. Waterloo, ON, N2J2X8

Brown, M. H. 1988. Exploring Algorithms Using Balsa-II. COMPUTER. vol.
21, no. 5, May 88, pp14-36

Communications of the ACM 1988. Special issue on hypertext. vol. 31, no.
7, Jul 88

Elsworth E. F. 1978. Compilation via an intermediate language. The Com-
puter Journal. vol. 22, no.3, Aug 79, pp226-233

Hille R. F. and Higginbottom T. F. 1983. A System for Visible Execution
of Pascal Programs. The Australian Computer Journal. vol. 15, no.
2, May 83, pp76-77

Kornerup P., Kristensen B. B., and Madsen O. L. 1980. Interpretation
and Code Generation Based on Intermediate Languages. Software-
Practice and Experience. vol. 10, no. 8, Aug 80, pp635-658

Meng-Kawalek L. 1983. A Pascal Pedagogical System for the Conversational
Monitor System. Unpublished MS project. Computer Science Depart-
ment, Washington State University.

Ng C. 1982. Ling Users Guide. Unpublished MS project. Computer Science
Department, Washington State University.

________. 1982. Ling Programmers Guide. Unpublished MS project. Computer
Science Department, Washington State University.

Nori K. V. et al. 1974. The Pascal <P> Compiler-Implementation Notes.
Berichte des Instituts fur Informatik 10, Eidgenossiche Technische
Hochschule, Zurich.

Pountain D. 1989. The X Window System. BYTE, Jan. 89, 353-360.

Rezvani S. 1981. A Dynamic Library of Interactive Language Examples.
Unpublished MS project. Computer Science Department, Washington
University.

64

Ross R. J. 1980. A Microprocessor System for the Dynamic Presentation of
Programming Language Concepts. Grant from the Apple Education Foun-
dation (Foundation for the Advancement of Computer Aided Educa-
tion), no. 441, 1980-1982.

________. 1981. LOPLE: A Dynamic Library of Programming Language Exam-
ples. ACM SIGCUE Bulletin, 1981

________. 1982. Teaching Programming to the Deaf. ACM SIGCAPH Newslet-
ter, no. 30, Autumn 82, pp18-24

________. 1983. A Dynamic Library of Programming Language Examples.
Grant from the National Science Foundation, SPE-8263156,
SPE-832-0677.

________. 1988. DYNAMOD USER’S GUIDE Version 2.0 Release 1.1. Technical
Report 88-1, Computer Science Department, Montana State University.

Scheftic C. and Goldenson D. R. 1986. Teaching Programming Method and
Problem Solving: The Role of Programming Environments Based on
Structure Editors. Proceedings of the National Educational Comput-
ing Conference, Jun. 1986.

SHARE Ad-hoc Committee on Universal Languages 1958. The Problem of Pro-
gramming Communication with Changing Machines: A Proposed Solution.
Communications of the ACM, vol. 1, no. 8.

Turbo Debugger 1988. 1800 Green Hills Road, Scotts Valley, CA: Borland
International.

User Manual for Dr. Pascal 1989. P. O. Box 7788, Princeton, NJ: Visible
Software.

