this page is page 0 and not nunbered

CHAPTER 1

| NTRODUCTI ON

Teaching nost sciences is relatively straightforward. A concept is
i ntroduced and then an exanple or experinment is presented to denonstrate
the concept in action. As a sinple exanple, a physics instructor
explains the concept of interference and then does an experinent in
front of the class to denobnstrate interference. Simlar pedagogi cal
techniques are enployed in mathenmatics, engineering, chenistry, and
ot her sciences. Techniques for teaching conputer science, on the other
hand, are still relatively new and often not effective, particularly in
denonstrating new concepts in action.

The nost comon nethod of teaching programrmng concepts utilizes a
bl ackboard or overhead projector where:

1) An algorithmis witten down by hand;

2) The nanes of the variables, constants, and paraneters used by the
algorithmare witten down separately by hand;

3) The instructor steps through the algorithm by hand showi ng how the
vari abl es and paraneters change during program execution.
The purpose of this exercise is to teach students the dynanics, or
semantics, of a programin action and to teach students how to do
wal kt hroughs to verify their own program designs. There are, how
ever, some serious flaws to this nmethod of teaching program dynam
ics:

1) This nethod requires the instructor to sinulate a conmputer by hand,
a very error-prone process;

2) If the students take notes, they will generally find deciphering
the dynamic flow of the algorithm later from their static notes
i mpossi bl e.

Anot her technique sonetinmes used for teaching program dynamics is
to give a student a correct program that inplenents an algorithm The
student then nust locate a conmputer or conmputer terminal, type in the
program conpile the program and then run the program This nethod
allows the student to enter and execute a correct program Unfortu-
nately, in order to benefit from this type of assignnent, the student
nmust be a somewhat sophisticated conputer user to start with, which is
certainly not the case with nany begi nning students. In particular, the
student nust have access to a conputer, know how to use a text editor,
and know how to conpile and run a program Even then, the conpiled pro-
gramw || generally not give a dynanmic display of the programin action,
and no one is around to explain to the student what is happening.

2

What kind of system could be developed to solve the twin problems
of teaching and learning program dynamics? Such a system should be
usable by the instructor to demonstrate a new programming concept to an
entire class in a clear, flexible, error-free, and repeatable manner.
The same system should be available for student review at the student’s
leisure and be easy enough for a true novice to use without detailed
knowledge. Some of the more important features of this system would be:

1) A comprehensive library of expertly constructed examples;

2) Forward and backward execution of program statements under user
control;

3) Highlighting of statements being executed;
4) A clear display of variable and parameter values;

5) A clear delineation of the variables and parameters local to vari-
ous procedures and functions.

A software system called DYNAMOD [Ross 88] was developed over a
number of years to incorporate some of these features as an aid to
teaching and learning programming. While it is still quite useful in
this regard, both in the classroom and for individual student use,
extensive experience with DYNAMOD has uncovered a number of deficien-
cies. It was therefore decided that a completely new approach to this
problem was in order; this thesis represents a start on the solution.
The primary contribution of this work is the design and definition of an
"Education Machine'™, or E-machine. The E-machine is an abstract com-
puter whose emulation on real computers will allow for the implementa-
tion of all of the desired features of the proposed new software system
to replace DYNAMOD.

Chapter 2 contains a description of DYNAMOD, its advantages and
limitations. Chapter 3 provides a description of the system proposed to
succeed DYNAMOD. Chapter 4 is a review of relevant literature and a
discussion of some existing systems that employ techniques similar to
those to be incorporated into the new system. Chapter 5 contains the
development and final design of the E-machine. Chapter 6 provides a
number of examples of Pascal programs and demonstrates their translation
into E-machine code. Finally, Chapter 7 describes new directions for
the project. Chapters 1-4 contain background material essential to
understanding the original work contained in Chapters 5-7.

CHAPTER 2

DYNAMOD

DYNAMOD st ands for DYNanmic Al gorithm MDerator. DYNAMOD is a soft-
ware system the result of a pilot project that studied solutions to the
probl em of teaching and | earni ng program execution dynam cs. The first,
primitive version was witten by a deaf student to illustrate some con-
cepts which were being presented in class (the student could not follow
t he di scussions of the program wal kt hroughs, because the person signing
to the student could not convey program dynanics along with the words of
the lecture). This version inspired a formal test system called LOPLE
(Library O Programm ng Language Exanples)[Rezvani 81],[Ross 81]. A
grant from the Apple Education Foundation [Ross 80] led to the devel op-
nment of a nore sophisticated version called LING[Ng 82-1,82-2]. A sub-
sequent grant from the National Science Foundation [Ross 83] allowed
LING to be conpleted and ported from Apple |1+ microconputers to other
conputers, including an Amdahl mainfranme conputer, a VAX niniconputer,
and I1BM PC and conpatible mcroconputers. The current version, which
runs only on VAX and IBM PC and conpatible microconputers, is DYNAMOD
Version 2.0 Rel ease 2 [Ross 88].

DYNAMOD is sinple for an instructor or student to use. It consists
of a library of ready-to-run programs installed by an expert from which
progranms can be sel ected and executed under user control as nany facets
of program dynanics are displayed on the screen. |Instructors can use
DYNAMOD in the classroomwith relatively little equipment. By utilizing
a personal conputer connected to a liquid crystal conputer output dis-
pl ay device and an overhead projector, the instructor can use DYNAMOD to
illustrate progranm ng concepts clearly and easily. Students can have
their own disk containing DYNAMOD, which they can then use at their
| ei sure to study concepts that are particularly difficult for them

When DYNAMOD is started, the first thing displayed is a welcone
screen, as shown in Figure 1. Option 1 enters the exanple library,
option 2 displays an acknow edgenent screen, option 3 displays an
i nstructional manual, and option 4 explains the distribution system for
obt ai ni ng copi es of DYNAMOD. Nornally the instructor or student types a
1 to enter the programlibrary.

VWELCOVE TO
DDDDDD Y Y N N AAA VM
MM (00000) DDDDDD
D D Y Y NN N A A M
M M M 0] O D D
D D Y Y N N N A A M
M M 0] O D D
D D Y N N N AAAAAAA M
M o] @] D D
D D Y N N N A A M
M o] @] D D
DDDDDD Y N NN A A M
M (00000) DDDDDD
Dynam ¢ Pascal Progr am
Li brary
Version 2.0 Rel ease
2
Copyri ght 1981, 1987, 1988
All Rights Reserved
Rockford J. Ross
Conput er Sci ence Depart -
ment
Montana State University
Bozeman, Mont ana
59717

1 --> Enter Library 2 --> Acknow edgenents 3-->Help 4 -->Dis-
tribution

Figure 1
DYNAMOD Vel cone Screen

After a 1 is typed to enter the programlibrary, the screen of Fig-
ure 2 is displayed. In this new screen, option 1 exits DYNAMOD and
returns control to the operating system Option 2 refreshes the list of
categories shown at the top of the screen. Option 3 lists the nanes of
program exanpl es i ndexed by a category; there are usually several exam
ples which illustrate the sane concept in slightly different ways.
Option 4 also lists the nanmes of program exanpl es i ndexed by a category,
but in addition, it includes a brief explanation of what each exanple
program does. Finally, option 5 allows the user to execute an exanpl e.

arrayld array2d assert bool ean
bounds case

char const ant div downt o
el se el seif

for function gl obal header
i f i nt eger

| oop nesting oper at or par anet er pr o-
cedure readl n

real record recursion r epeat
search sort

sqrt stats sunm ng t hen
trailer type

until var whil e witeln

Sel ect of the follow ng:

1) QT

2) Display categories

3) List exanples in a category

4) Extended Ilisting of
5) Execute an exanple

exanples in a category

Fi gure 2
DYNAMOD Li brary Screen

For exanpl e, suppose that after reviewi ng the program names indexed
under category recursion the instructor or student wi shes to review pro-
gramfact. Typing a 5 causes DYNAMOD to pronpt for the program nane, at
whi ch point fact is typed by the user, resulting in the screen of Figure
3. On this screen, the synbol => indicates the line currently being

executed. The Statenent Count is the nunber of lines that have been
executed so far. The area on the right of the screen bordered by dashed
lines will contain the display of the program nenory (at this point, no

nmenory is in use since the var statenent has not yet been executed).
Finally, the 5 at the bottomleft part of the screen is the input that
the programw || use.

?2=> program fact;
{inputs an integer n and conputes n!}

var
n, result: integer;

function factoral(n: integer): integer;
{computes n factorial recursively}

begin {factoral}

if n = 0 then
factoral = 1
el se
factoral = n * factoral (n-1)

end; {factoral}

begin {fact}

ment Count = 0

Fi gure 3
DYNAMOD Program fact Screen

At this point, the user can step through the program by hitting the
return key. At each step, DYNAMOD noves the arrow to the next statenent
to be executed and waits for another return before executing the new
statenent. As can be seen in Figure 3, the entire programrarely fits
onto the screen all at once. However, DYNAMOD keeps as much of the pro-
gram on the screen as possible. Al so, when an instructor is initially
installing a program into the DYNAMOD library, he or she can specify
bl ocks of lines that shoul d be displayed together.

After the user has stepped through the variable declarations, the
screen will appear as shown in Figure 4. Notice that the variables n
and result now are displayed in the variable section on the right of the
screen; the question mark indicates that their values are currently

undef i ned. Fromthis the user |earns what the action of the var state-
ment is.

begin {factoral}
n = ?
i f n = 0 t hen
result = 7?2
factoral = 1
el se
factoral = n * factoral(n-1)
end; {factoral}
begin {fact}
?=> readl n(n);
if n < 0 then
witeln(’bad data, n = ',n:1)
el se begin
result := factoral(n);
witeln(n:1,’ factorial = ' ,result:1)
end
end. {fact}
5
nment Count = 4
Fi gure 4
DYNAMOD Program fact Screen After Partial Execution
Stepping further through the program will eventually give a screen

that |looks like the screen of Figure 5. The user by this time has
stepped through four calls of the recursive function factoral (this odd
spelling of factorial is the result of a programrestriction that limts
the nanes of exanples to eight characters). The nmenory section on the
right of the screen contains new nenory |ocations and their correspond-
i ng values associated with each call of factoral. By this time the stu-
dent should have a clearer understanding of how recursion works in this
case. Certainly, programdynam cs are denonstrated very well.

var
n = 5
n, result: i nteger;
result = 7?2
toral -------
?=> function factoral(n: integer): integer; factoral = ?
{conputes n factorial recursively} n = 5
toral -------
begin {factoral}
factoral = ?
i f n = 0 t hen
n = 4
factoral i= 1
------ factoral -------
el se
factoral = ?
factoral = n * factoral(n-1) n
= 3
end; {factoral}
------ factoral -------
toral = ?
begi n {fact}
n = 2
readl n(n);
if n < 0 then
nment Count = 20

Figure 5
Program fact Screen After Four Calls to Function factora

For the instructor, DYNAMOD renoves nearly all of the work and
frustration fromdoi ng a program wal kt hrough by hand in class. By using
an overhead projector equipped with a liquid crystal conputer output
di splay, the instructor can run a desired program from the library and
explain to his or her students key features of program dynanics. Fur-
thernore, students can review the sane program | ater or perform assign-
nments related to prograns in the DYNAMOD |library. Thus DYNAMOD
addresses nmany of the needs of teaching and |earning programing by

provi di ng:
1) Error-free, repeatabl e wal kt hroughs of al gorithns;
2) Ease of use in a classroom setting;

3) A large library of expertly constructed programs for review by
uninitiated students;

4) Effective display of the dynanmics of a programin execution.

DYNAMOD al so allows an instructor or student to alter program input
and watch the effects of such changes on program execution and statenent
counts. Among other things, this feature can be used to denobnstrate the
noti ons of tine and space conplexity.

As a "proof of concept" pilot project, DYNAMOD is quite successful.
However, DYNAMOD contains many limtations which nust be addressed in
order to create a truly robust, powerful systemfor supporting the goals
of teaching and learning programring in a hypertext [CACM 88] environ-
nment. Some of the nore crucial limtations are these:

1) Pascal is the only progranmm ng | anguage support ed;
2) A user can only step forward in the program

3) It is not easily extensible to include conplex constructs such as
records and user-defined types;

4) It does not allow general programentry or nodification by users.

Consi deration of these drawbacks coupled wth extensive use of
DYNAMOD led to a vision of a conpletely new and flexible system that
woul d better address the needs of both teachers and students of program
m ng and introductory conputer science. The proposed system of which
this thesis is an inportant part, is described in the next chapter.

10

CHAPTER 3

PROPCSED SYSTEM

The eventual goal of the system of which this thesis is a small
but critical part, is to construct a conprehensive introductory conputer
science teaching and | earning software package. The systemw Il run in
a wi ndowing environment (likely X Wndows [Pountain 89]) and include
such features as an interactive textbook, a large library of expertly
constructed exanple progranms, an editor for entering and nodifying text
and prograns, and a DYNAMOD-like driver for interpreting prograns and
di spl ayi ng their execution dynanics.

The interactive textbook will be a hypertext [CACM 88] system that
will allow the user to interact with and nodify the textual information
of the book. Sonme of the planned features are listed bel ow

1) The user will be able to highlight text on the screen (the high-

l[ighting will remain for future readings).

2) The user will be able to place the cursor on a footnote and hit an
"expand" key and the entire reference will "pop" onto the screen.

3) The user will be able to execute program fragnents and exanples

fromthe text in a dynam c, DYNAMOD-1ike fashion.

4) The user will be able to interact with the index by highlighting a
word and hitting the "index" key which will automatically display
passages dealing with the word.

5) The user will be able to add or nodify entries in the index in
order to create a personalized index.
The exanple library will be a conprehensive set of expertly con-
structed exanpl e prograns that have been designed to illustrate specific

progranmm ng constructs. This library represents the nmajor phil osophical
di fference between the proposed system and other extant systems. The

library will exist to illustrate programrng concepts to the beginning
programer. Each exanple program will be quite snall conpared to an
actual, useful program However, the exanples will have been carefully

constructed by an instructor to convey particul ar programm ng concepts,
and by observing and experinmenting with the exanples, the user will gain
i nsight into aspects of program execution dynamcs that are not readily
apparent in other systens. By accentuating certain progranmng con-
cepts, this library, in conjunction with the dynam c execution nodul e,
will provide a progranm ng | aboratory in which specific, sinple experi-
nments can be carried out by the user to illustrate and verify the pro-
granm ng concepts under study.

At present it is proposed that the text editor of the proposed new
system be a syntax-directed editor. The editor will allow instructors

11

to enter carefully designed prograns into the library and also allow
users to enter and experinent with programs of their own. Synt ax
directed editors have been shown to be effective in a |earning environ-
ment [Scheftic 86]. A syntax directed editor presents the user with a
bl ank tenplate that the user fills in with the appropriate constructs or
phr ases. Additionally, the wuser can request an explanation of the
structure that is currently being used. For exanple, the user may be
using the Pascal for statenent; in this case a display simlar to Figure
6 may be shown. The user would then "fill in the blanks" for the
entries in {}'s and would then have a valid for structure w thout having
to recall frommenory the exact syntax of a for statenent. This type of
editor elimnates many of the syntax errors conmonly nade by users and
allows them to focus on the neaning of their program rather than the
many syntactic details of the |anguage.

FOR {variabl e} := {expression} {TO | DOMNTG {expression} DO
BEG N

END,

Figure 6
for Statenent Display Wndow in a Syntax Directed Editor

Anot her useful feature of syntax editors is their capacity to pro-
vi de expl anations of various progranmi ng | anguage structures. For exam
ple, a user may be able to place the cursor on the FOR keyword in the
screen of Figure 6 and press a "help" key. This would then invoke
anot her wi ndow that would contain an explanation of the for statenent
simlar to that shown in Figure 7.

The conbination of the "fill in the blank" format and the help win-
dows to tell the users the neanings of the various |anguage constructs
enabl es users to inplenent prograns nore efficiently. |In Chapter 4 sone

systens are described that incorporate these features.

12

HELP W NDOW

FOR {variabl e} := {expression} {TO | DOMNTG {expression} DO
BEG N
END;

The FOR statenent is a statenment for repeating a group of

statenent a given nunber of tines. The variable identifier put in
pl ace of the {variable} location is given the value of the first

{expression}. If the variable is greater than the second
{expression} (in the case of TO the loop is ended and the
statenments following the END are executed. |If the variable is

| ess then the second {expression} (in the case of DOMNNTO the
loop is also ended. Oherw se, the statenents between the BEG N
and END are executed. Then the variable is increnented if the TO
was chosen, or decrenmented if DOANTO was chosen and the | oop goes
back to the conparison above.

The variable used in the FOR statenment is treated as a norma

variable in all ways except one. It can not be used on the left
side of an assignnent statenent. Also, after the loop is ended,
the value of the variable becones undefined. It does not retain

the value it had inside the |oop

Fi gure 7
Hel p Wndow for a Syntax Directed Editor

In summary, the new system proposed to succeed DYNAMOD will have
all of the features of DYNAMOD with sone notable inprovenents. The nost
not abl e enhancenent to the display of program execution dynanmcs will be
the capacity for both forward and backward execution of program state-
ments under user control. As stated before, the virtual E-rmachine wll
allow easy inplenentation of the necessary dynanmic display features,
especially the forward and backward execution of prograns.

13

As a prelude to discussing the E-machine, the next chapter is
devoted to an exanmination of the literature and a nunber of existing
software systens that appear to incorporate nany of the features pro-
posed for the new system described in this thesis.

14

CHAPTER 4

REVI EW OF LI TERATURE AND EXI STI NG SYSTEMS

The idea of a computer-based teaching aid for displaying program
execution dynamics is not new. Sonme such aids were surely devel oped for
| ocal use only and never polished and published. QO hers had limted
appeal because of being restricted to expensive, specialized hardware
Early references to such systenms include [Ross 81,82] and [Hille 83].
The papers by [Ross 81,82] describe the early work that led to the
DYNAMOD system [Ross 88].

In [Hlle 83] a systemfor the visible execution of Pascal prograns
is described. The system accepts a Pascal program as input and pro-
cesses it as follows. Each of the original statements in the Pascal
program is passed through unchanged. |mediately after each statenent,
a new statement is inserted that consists of a witeln statenment al ong
with the |ine nunber of the statenment. The new augnmented program is
then translated into a PL/1 program that is in turn executed step by
step by a PL/1 interpreter. This systemrepresents a direct solution to
the problem of displaying program execution dynanics, but it does not
i nclude, or apparently allow easy inclusion of, many desired features,
such as backward execution

O her related systens for displaying program dynanics focus on the
representation of data structures and the manipulation of data by an
algorithm rather than the overall view of program dynam cs. A recent,
good paper on this aspect of programm ng pedagogy is [Brown 88]. This
paper describes the Balsa-1l1 system Balsa-Il is a system for display-
ing the variables and data structures used in a programin an intuitive
fashion, rather than by their literal neanings. For exanple, the data
in an array that is being sorted could be displayed in a neani ngful man-
ner by interpreting the value in a location of the array as a vertica
line with height based on the value in the location. Then a sorting
routine could run, and gradually the lines would be sorted into ascend-
ing order by height. The user could see the sorting happening by watch-
ing the random collection of |ines of various heights forminto a trian-

gular shape (the lines being arranged from snallest to largest in
height). Wen the triangle becones snoboth, the values will all have
been sorted. This system shows strong prom se of becom ng an effective
pedagogi cal tool in the teaching and learning of algorithms. Its fea-

tures could becone part of a new systemsimilar to the one described in
this thesis. Alone, however, it does not enconpass the needs addressed
by this thesis.

Interactive program debuggers also contain elenents of the dynamc
di splay system proposed here. Many, if not nost, good program

15

devel opnent environnents incorporate a debugger. A good debugger has
such features as:

1) Line at a time program execution;
2) A display of variable values during execution

3) The capability for specifying "break points" that tenporarily halt
program executi on;

4) A provision for changing the values of variables during execution.

An exanple of an excellent interactive program debugger is the
Turbo Debugger that comes with Turbo Assenbler, produced by Borland

[Turbo 88]. It incorporates all of the above features along with other
special features, including the ability to exanmine the state of the
nm croprocessor and nmachine registers. It allows the user to easily

specify which variables to display and when to display them It also
allows the user to specify break points either by line nunber or by a
condition, such as when a variable changes value. These features nake
this a valuable tool for the production progranmer. Simlar features
are planned for the new system described in this thesis.

However, it should be clearly noted at this point that in spite of
apparent simlarities between the dynami c display system proposed here
and high-quality debuggers available on the narket, there are sone cru-
cial differences that arise from the entirely different philosophies
behi nd the proposed dynam c display and existing debuggers. The purpose
of a debugger, as the nane inplies, is to allow the user to debug a pro-
gram The purpose of the dynamic display is to show the user the
dynam ¢ changes in a program during execution. A debugger hel ps a per-
son who al ready knows how to wite a programuncover and fix errors. In
fact, a user must be quite a sophisticated programmer to obtain the true
benefit of a debugger. The proposed dynamic display system on the
other hand, is neant to let a beginner see how various program con-
structs function. Because of this, the proposed dynam c display nust
show much nore and different information than a debugger and do this in
a clearer fashion. It nmust also acconplish this in a manner that is
useful to the utter novice. This naturally will make the dynanmic dis-
play slower and larger than a debugger, which is not a disadvantage in
the setting in which the dynamc display is nmeant to be used. A debug-
ger is neant to be used in a production environnent where speed and the
production of sophisticated, useful prograns is all-inportant. The
dynamic display is nmeant to be used in a learning environnment where
understanding is the key, and small prograns for presenting educationa
concepts is the overriding concern

There are other systens on the market that incorporate many of the
features of debuggers and the proposed dynamic display, but which are
aimed nore specifically towards education. One such system is ALICE
[ALICE 89]. ALICE is a syntax directed editor and interpreter for Pas-
cal that was specifically designed for student use. Sone of ALICE s
features are:

1) Tenplates for "fill in the blank" style programentry;
2) A conprehensive hel p system (over 600 hel p screens);

16

3) An interactive interpreter that allows the user to step through the
execution of his or her programone statenent at a tine;

4) Breakpoint setting capability, in the manner of a debugger.

Anot her system designed with the student in nind is Dr. Pascal by
Visible Software [Visible 89]. This system has many educational fea-
tures. Dr. Pascal consists of an editor and a display system for show
i ng program execution. The editor is a standard text editor (not a syn-
tax directed editor) that allows users to enter and nodify prograns.
The display systemof Dr. Pascal is quite good.

In Dr. Pascal each procedure is placed on the screen as it is exe-
cuting. |If the procedure is too large to fit on the screen, the display
is adjusted so that the currently executing line is always on the
screen.

17

As new procedures or instances of procedures are invoked, the old proce-
dure calls are scrolled off the top of the screen. This gives the user
a good intuitive feel for how recursive calls to a function or procedure
execut e.

One of the mmin disadvantages to standard debuggers for student use
is that they give little indication of depth of recursion or even the
fact that a recursive call has happened at all. Dr. Pascal still falls
short of what is required in this regard in several ways. Wen a refer-
ence paraneter is passed to a procedure, there is no indication of where
the paraneter’'s reference actually is. Al so, the variable display does
not show the values of variables which are not in the current scope,
even though their values are being changed as a result of being passed
as reference paraneters.

To sunmarize, while the debuggers included in production program
mng systenms sinmilar to Turbo Pascal by Borland are of imense help to
experi enced programmers attenpting to ferret out errors in prograns,
they are too limted and conpl ex for the begi nning programer and cannot
be adapted easily to the teaching and |earning environnent envisioned
here. ALICE and Dr. Pascal are nore suited to the teaching and | earning
environnent, but they still are oriented towards the production side of
programm ng. That is, their primary intent is to aid a student in wal k-
ing through a program of his or her creation in search of errors. Nei-
ther of these systens incorporates a library of expertly constructed
progranms for perusal by students who do not yet have enough know edge to
wite a programon their own. Also missing are facilities for stepping
backwards through execution, explaining new progranni ng concepts, and
program fragnent execution, which are all features of the system pro-
posed in this thesis.

There have been many articles witten about using virtual machines
in conputer science applications (see, for exanmple, [Elsworth 78]). The
earliest is probably [Share 58]. In all cases cited in the literature
the purpose of the virtual machine is to reduce the effort needed in
constructing conpilers. See, for exanple [Kornerup 80]. Just one com
piler is needed to translate a progranm ng |anguage, say FORTRAN, into
the | anguage of a virtual machine. Then the problem renmains of either
ermul ating the virtual nachine on each real conputer or further translat-
ing the virtual machine code into the machi ne | anguage of each real com
puter. The enul ation approach has proven unsatisfactory in real life,
because an enulation programis invariably slow However, this approach
was used successfully with the P-nachine and P-code of Pascal during the
time when Pascal was viewed as an acadenic |anguage ([Ellsworth 78]
attributes the design of the P-machine to Nori et al and cites
[Nori 74]). As Pascal has become production oriented, this enulation
approach has been dropped for efficiency reasons.

In spite of the efficiency problenms encountered by others, the
abstract nmachine (the E-machine) approach incorporating an emulator is
the nost attractive for the new system proposed here. The entire pur-
pose of this new systemis acadenic, involving the teaching and | earning
of programming rather than the developnent of production prograns.
Speed of program execution will never be a prinary concern. The E-

18

machine and its emulator will require just one E-machine enul ator pro-
gram and then one conpiler for each targeted programm ng |anguage. As
long as the conpilers and the ermulator are witten in a standard,
portable, high level |anguage they will run with only minor nodifica-
tions on virtually any conputer.

In the next chapter, the E-machine’s design and inplenentation wll
be covered. A complete specification is not given, because the E-
machine is intended to have an open-ended design that allows |ater
i ncorporation of new features that are deenmed i nportant and interesting.
The specification is, however, sufficient for the design of an emul ator
and conpilers for the E-nachine.

19

CHAPTER 5

THE E-MACHINE

The proposed dynamic display system will consist of various major
parts. The Education Machine, or E-machine, will be one of the primary
components. It will be a virtual machine (i.e., computer) with its own
machine language, called E-code, and it will be responsible for execut-
ing the E-code translations of high level language (e.g., Pascal) pro-
grams. In addition to the E-machine there will be a user interface for
user interaction with the system. There will also be a display inter-
face that updates the screen displays. These two interfaces together
can be thought of as an "operating system'"™ with the E-machine as the
"hardware'. This chapter focuses on the design of the E-machine.

Design Considerations

The part played by the E-machine in the proposed system is central
to its design. The E-machine will operate as follows. It will First be
loaded with a compiled E-code translation of a particular high level
language source program. The E-machine will then wait for the user
interface to signal it to execute a step, either forward or backward.
Once this signal has been received, the E-machine will execute the seg-
ment of E-code that corresponds to the current statement in the high
level language source program and then return control to the user inter-
face. Following this, the display interface will note the changes that
have occurred in the E-machine’s state and update the displays accord-
ingly. Note that the E-machine does not interact directly with the
user. All input to and output from the E-machine is handled through the
user and display interfaces. The E-machine acts as if it were a dedi-
cated microprocessor whose only purpose is to wait for a signal from
"outside" and then execute its program based upon that signal. This
definition of how the E-machine is to be used allows constraints to be
placed upon its design that make the design process somewhat simpler.

As already noted, the E-machine is a virtual machine. The concept
of a virtual machine, discussed in the last chapter, is central to many
computer science applications. Compilers and interpreters are the most
common examples of systems designed around a virtual machine. The
design of a virtual machine must take into account the purpose of the
application. This helps to define and give structure and logic to the
virtual machine. In the case of the E-machine, the purpose of the
machine is to enable program execution dynamics of high level program-
ming languages to be displayed easily by the dynamic display interface.

20

This goal places some considerations upon the E-machine’s design. Most
importantly, the E-machine must:

1) Have structures for easy implementation of high level programming
language constructs;

2) Incorporate a simple method for implementing functions, procedures,
and parameters;

3) Be able to execute either forward or backward.

21

The driving force in the design of the E-machine is the requirement
for backward, or reverse, execution. What does it mean for a machine to
run backwards? What does it mean for a high level language program to
execute backwards? As will be seen, these two questions have very simi-
lar and related answers, but they are not the same.

In a machine (virtual or real), the program counter, registers,
main memory and other status information can all be thought of as vari-
ables that change as the machine executes instructions. These variables
can be collectively thought of as the 'state" of the machine. 1f one
knows the current state of a machine, one knows everything necessary for
properly carrying out the next instruction to achieve the proper next
state. In most machines, however, the current state does not contain
enough information to reset the machine to a prior state. That is, most
machines do not keep track of their history of execution. However, the
machine’s history is precisely what must be accessed in order to execute
backwards. How can this information be retained? The previous states
must be recoverable. That is, given the present state of the machine,
there must be a mechanism for changing this state to an arbitrary past
state.

The brute force approach to solving this problem is to store each
current state of the machine just before each new instruction is exe-
cuted (all instructions change the state of a machine). Then, when the
machine is to be restored to some prior state, all that has to be done
is to load the machine with that state and the operation is done. With
this method, the machine can be restored to an arbitrary prior state in
one step.

22

The brute force method is unnecessarily powerful and also very
inefficient. For example, this approach would require that all of main
memory be stored with each state, even though at most one memory loca-
tion would have changed from state to state as single instructions were
executed. A better approach would be to have the machine save the mini-
mal amount of information necessary to recover just the previous state
from the current state in a given reversal step. The machine could then
be restored to an arbitrary prior state by doing the reversal one state
at a time until the desired prior state were obtained. For the purpose
of the E-machine, this approach is sufficient.

Backing up one state at a time is a much simpler proposition than
backing up to an arbitrary state in one step. Rather than storing the
entire state of the machine at each step, it is only necessary to store
the difference between the previous state and the current state. For
example, suppose the instruction

load 4,A

loads the value 4 into the register A. No other registers would have
been changed by executing this instruction, so the only changes to the
state of the machine (in most computer models) would be to the value in
A, the program counter, and perhaps some status information. Saving
these changes rather than the entire state of the machine takes much
less memory, and in a real computer, memory is a valuable commodity.
Therefore the E-machine was designed with this method of backing up in
mind.

A natural question to ask at this point is whether it is possible
to do even better: could the previous state be constructed directly from
the current state without relying on some saved portion of the execution
history? The answer 1is no, because of one class of instructions:
assignment instructions. An assignment instruction destroys the value
in the register or memory location receiving the assignment; the value
being destroyed must therefore be saved in order for backup to be possi-
ble.

One other aspect of the proposed dynamic display interface influ-
enced the design of the E-machine. The dynamic display is meant to work
with high level language programs. This led to an important observa-
tion: the E-machine actually has to be able to reverse only high level
language statements in one reversal step, not each individual low level
E-code instruction involved in the translation of some high level lan-
guage statement. In particular, the state of the E-machine has to be
restored to the state it was in prior to the execution of the group of
E-code instructions that are the translation of the corresponding high
level language statement.

This observation led to further efficiencies in the design of the
E-machine and to the incorporation of two classes of E-machine code
instructions, critical and noncritical. As will be explained further
later, an E-machine instruction is classified as critical if it destroys
information essential to backing up through a high level language state-
ment; it is classified as noncritical otherwise. In the translation of

23

a high level language statement into E-code, a number of E-machine
instructions will be used only for dealing with intermediate values.
For example, in a high level language arithmetic assignment statement, a
number of intermediate values are likely to be needed in computing the
arithmetic value on the right side of the assignment statement before
this value can be assigned to the variable on the left. However, the
only value that needs to be restored as far as the high level program-
ming Mlanguage 1is concerned upon backing up through this assignment
statement is the original value of the variable on the left. The inter-
mediate values computed by various E-code instructions are of no conse-
quence. Hence, such instructions can be classified as noncritical and
their effects ignored for backup purposes.

A particular E-code instruction can be classified as either criti-
cal or noncritical in different circumstances. Different high level
languages will often have quite different statement sets, and what needs
to be remembered for backup purposes may differ substantially from one
language to another. 1t will be the responsibility of the compilers for
each high level language to produce the correct E-code (involving criti-
cal and noncritical instructions) for allowing backup.

E-machine System Overview

With these considerations for backing up in mind it is now possible
to describe the architecture of the E-machine in more detail. Figure 8
depicts the logical structure of the E-machine. After some delibera-
tion, a stack-based architecture was chosen over other possibilities for
its inherent simplicity. As can be seen, however, there are a number of
components not found in real stack-based computers.

Label
Regi sters

Eval uati on
St ack
Regi st er

Ret urn
Addr ess
St ack
Regi st er

Save
St ack
Regi st er

Label
St acks

Eval uati on
St ack

Ret urn
Addr ess
St ack

Save
St ack

Figure 8
The E-nmachi ne

24

Vari abl e

Regi sters

Vari abl e
St acks

Pr ogr am
Count er

25

Program nmenory will contain the E-code program currently being exe-
cuted by the E-machine. The program counter will contain the address in
program memory of the current E-code instruction to be executed. The
previ ous program counter, needed for backup purposes, will contain the
address in program memory of the most recently executed E-code instruc-
tion. The line nunber register will contain the line number of the high
level language program statement corresponding to the group of E-code
instructions currently being executed. The line number will be needed
by the dynamic display interface to highlight the current high level
source program line being executed.

The variable registers are an unbounded number of registers that
will be assigned to source program variables, constants, and parameters
during compilation from the source program into E-code. Each identifier
name representing memory in the source program will be assigned one
variable register in the E-machine. As one can see in Figure 8, the
variable registers only contain pointers to individual variabl e stacks,
which in turn contain pointers into data memory, where the actual vari-
able values are stored. The reason for this complex arrangement will
become clearer as variables are discussed more thoroughly below.

The | abel registers are another unique component of the E-machine
required for backup. There are also an unbounded number of these regis-
ters and, as described later, they are used to keep track of E-code
label instructions in an E-code program for backup purposes. Each
E-code label statement will be assigned a unique label register at com-
pile time. A label register, in turn, points to a |abel stack that
essentially maintains a history of previous instructions that caused a
branch to this label.

The index register is found in real computers and serves the same
purpose in the E-machine. Under normal circumstances, the data in a
variable is accessed through the appropriate variable register. How-
ever, in the case of high level data structures, such as arrays and
records, the address of an individual data value is not at the memory
location directly accessible through a variable register. Rather, it is
stored at a location offset from this memory location. When necessary,
an offset value can be placed in the index register and the E-machine
can then access the proper memory location as required (by an addressing
mode called register-indexed).

The evaluation stack pointer is also found in real computers. The
evaluation stack pointer keeps track of the top of the eval uation stack.
The evaluation stack is where the results of all arithmetic and logical
operations and assignments are maintained. For example, in an arith-
metic operation, the operands are pushed onto the stack and the opera-
tion is then performed on them. The operands are consumed by the opera-
tion and the result is pushed onto the top of the stack. Assignments
are performed by popping the top value of the evaluation stack and plac-
ing it into a variable. The advantages of a stack architecture are well
known; several popular computers use this design.

The return address stack pointer 1is a mechanism for implementing
procedure and function calls. When a call is made to an E-machine sub-
routine, the program counter plus one is pushed onto the return address

26

st ack. Then, when the E-machine executes a return from subroutine
instruction, all it has to do is load the program counter with the top
of the return address stack.

The save stack pointer is used to store information required for
backup, which would otherwise be lost. Whenever some critical informa-
tion (as determined by the execution of a critical instruction) is about
to be destroyed, the required information is pushed onto the save stack.
This ensures that when backing up, the instruction that most recently
destroyed some critical information can be reversed by retrieving that
critical information from the top of the save stack.

Finally, data nenory represents the usual random access memory
found on real computers, but in the E-machine it is only used for hold-
ing data values. In real machines, a similar situation exists in some
systems which provide for separate code and data segments in memory. On
the E-machine, there is no bound to the available memory (or any of the
stack memory). Implementations on real computers will naturally enforce
some bounds, but for the academic (small program) environment envisioned
for this system, no practical problems are expected to be encountered
due to limited memory.

E-machine Instruction Set

The E-machine’s instruction set is a quite small but complete set
of instructions; these instructions allow an E-code program to access
data easily and simply. All arithmetic, logical, and assignment opera-
tions occur on the evaluation stack. Data is stored and recalled using
the variable registers. All operations for backing up occur with a min-
imum of information from the E-code program in question (in general, all
the E-code program has to do is use the correct form of the instruc-
tion--critical or noncritical--to ensure that backing up can occur cor-
rectly).

Addressing Modes

In this section, the various addressing modes available to the
E-machine instruction set are given.

variable mode - V# :

[variable register # | - [top of variable stack | - [data]

This mode accesses the data at the memory location given in the top
element of the variable stack pointed to by variable register #.

constant mode - # :

27

This nmobde is often called the inmediate node in other architec-
tures; # is itself the integer, real, boolean, character, or

address constant operand required in the instruction. Al so, there
are sone defined constants. | NTEGER, REAL, BOOLEAN, CHARACTER, and
ADDRESS are the size in bytes of an integer, real, boolean, charac-
ter, and address variable, respectively.

regi ster node - R# :

[variable register # | - [top of variable stack]

This node accesses the address at the top of the variable stack
pointed to by variable register #. This address is the location in
data nmenory of the current instance of variable #.

register indirect - RE+HIR :

[variable register # | - [top of variable stack + TR | - [data]

This nmode accesses the data at the nmenory location at the top of
the variable stack pointed to by the variable register # plus the
of fset stored in the index register. This is the addressing nethod
used to access array elenents, record itens, and el enents of other
hi gh | evel data structures.

variable indirect - V#+IR

[variable register # | - [top of variable stack | -
[menory Tocation + IR - [data]

This npde accesses the data at the nmenory location stored at the
menory location at the top of the variable stack pointed to by
variable register # plus the offset stored in the index register.
This is the method used to inplenent high |evel |anguage pointer

vari abl es.
I ndex Register - IR :

This node accesses the value in the index register directly. This
is the only register which acts like a standard, normal machines.
It should only be used in conjunction with the indirect addressing
nodes above.

I nstruction Set

28

This section lists all of the instructions in the instruction set
of the E-machine. The argument ADDR refers to any addressing mode
listed in the last section. The argument TYPE refers to any of the data
types integer, real, boolean, char, and address; most instructions
require that the type of data being operated upon be specified. The #
refers to an integer constant. This differs from the constant mode
described above in that this # is used only to specify the number of an
E-code label or an E-machine variable register. The MODE argument
determines whether the instruction is to be treated as critical or non-
critical. The exact method for replacing the ADDR, TYPE, and MODE des-
ignators is unspecified and will be left up to the designer of the
E-machine emulator. Backing up through a noncritical instruction often
still requires that something be pushed onto the evaluation stack to
keep the stack of the proper size; in such cases an arbitrary dummy
value is used.

push ADDR, TYPE :

Forward :
Pushes the value in ADDR onto the evaluation stack.

Backward :
Pops the top value of the evaluation stack and stores it in
ADDR.

pop MODE, ADDR, TYPE :

Forward-Critical :
Pushes the value in ADDR onto the save stack and then pops the
top value of the evaluation and stores it in ADDR.

Forward-Noncritical :
Pops the top value of the evaluation stack and stores it in
ADDR.

Backward-Critical :
Pushes the value in ADDR onto the evaluation stack and then
pops the top value of the save stack and places it in ADDR.

Backward-Noncritical :
Pushes the value in ADDR onto the evaluation stack.

add MODE, TYPE :

Forward-Critical :
Pops the top two values of the evaluation stack, pushes them
onto the save stack, and then pushes their sum onto the evalua-
tion stack.

Forward-Noncritical :
Pops the top two values of the evaluation stack and pushes
their sum onto the evaluation stack.

sub

mul t

div

29

Backward-Cri ti cal
Pops the top value of the evaluation stack and discards the
value. Pops the top two elements of the save stack and pushes
them onto the eval uati on stack.

Backwar d- Noncri ti cal
Pushes a 0 onto the eval uation stack.

MCODE, TYPE :

Forward-Critical
Pops the top two val ues of the evaluation stack, pushes the two
values onto the save stack, and then pushes the bottom val ue
m nus the top value onto the eval uation stack.

Forwar d- Noncri ti cal
Pops the top two val ues of the evaluation stack, and pushes the
bottom val ue m nus the top value onto the eval uation stack.

Backward-Cri ti cal
Pops the top value of the evaluation stack and discards it.
Pops the top two values of the save stack and pushes them onto
t he eval uati on stack.

Backwar d- Noncri ti cal
Pushes a 0 onto the eval uation stack.

MCODE, TYPE :

Forward-Critical
Pops the top two val ues of the evaluation stack, pushes the two
val ues onto the save stack, and then pushes their product onto
t he eval uati on stack.

Forwar d- Noncri ti cal
Pops the top two values of the evaluation stack and pushes
their product onto the eval uation stack.

Backward-Cri ti cal
Pops the top value of the evaluation stack and discards it.
Pops the top two values of the save stack and pushes them onto
t he eval uati on stack.

Backwar d- Noncri ti cal
Pushes a 0 onto the eval uation stack.

MODE, TYPE :

Forward-Critical
Pops the top two val ues of the evaluation stack, pushes the two
val ues onto the save stack, and pushes the bottom val ue divi ded
by the top value onto the eval uati on stack.

Forwar d- Noncri ti cal
Pops the top two values of the evaluation stack and pushes the
bottom value divided by the top value onto the evaluation

30

st ack.

Backward-Cri ti cal
Pops the top value of the evaluation stack and discards it.
Pops the top two values of the save stack and pushes them onto
t he eval uati on stack

Backwar d- Noncritica
Pushes a 0 onto the eval uation stack.

neg TYPE :

Forward :
Pops the top of the evaluation stack and pushes the negation of

that value onto the evaluation stack

Backward :
Pops the top of the evaluation stack and pushes the negation of
that value onto the eval uation stack

nod MODE, TYPE :

Forward-Critical
Pops the top two val ues of the evaluation stack, pushes the two
values onto the save stack, and then pushes the bottom val ue
nmodul o the top val ue onto the eval uation stack

Forwar d- Noncritica
Pops the top two values of the evaluation stack and pushes the
bottom val ue nodul o the top value onto the evaluation stack

Backward-Criti cal
Pops the top value of the evaluation stack and discards it.
Pops the top two values of the save stack and pushes them onto
t he eval uation stack

Backwar d- Noncritica
Pushs a 0 onto the eval uati on st ack.

line # :
Forward :
Loads the line nunber register with #, then the machine returns
control to the dynamic interface and enters a wait state.
Backward :

Loads the line nunber register with #, then the machine returns
control to the dynamic interface and enters a wait state.

cast TYPE, TYPE

Forward :
Pops the top value of the evaluation stack, transforns the
value fromthe first TYPE to the second, then pushes the val ue

cnp

31

onto the eval uation stack.

Backward :
Pops the top value of the evaluation stack, transforns the
value from the second TYPE to the first, then pushes the val ue
onto the eval uation stack.

MODE, TYPE :

Forward-Critical
Pops the top two val ues of the evaluation stack, pushes the two
val ues onto the save stack, conpares the bottom value with the
top value and then pushes the result of the conparison onto the
evaluation stack (i.e., one of LESS, EQ and GREATER is
pushed).

Forwar d- Noncri ti cal
Pops the top two values of the evaluation stack, conpares the
bottom value with the top value and then pushes the result of
the conparison onto the evaluation stack (i.e., one of LESS,
EQ and GREATER is pushed).

Backward-Criti cal
Pops the top value of the evaluation stack and discards it.
Pops the top two values of the save stack and pushes them onto
t he eval uati on stack.

Backwar d- Noncri ti cal
Pops the top value of the evaluation stack and discards it.
Pushes two 0's onto the eval uati on stack.

| abel MODE, # :

br

Forward-Critical
Pushes the previous program counter onto the stack pointed to
by | abel register #.

Forwar d- Noncri ti cal
No operati on.

Backward-Criti cal
Pops the top value of the stack pointed to by |abel register #
and places it in the program counter.

Backwar d- Noncri ti cal
No operati on.

#:

Forward :
Load the program counter with the address of the |abel #
i nstruction.

Backward :

No operati on.

beql ,

32

bneql, bless, bleql, bgtr, bgeql MOXDE, # :

Forward-Critical
Pops the top value of the evaluation stack and pushes it onto

the save stack. |If the value satisfies the conditional on the
branch, load the program counter with the address of the | abel
instruction.

Forwar d- Noncri ti cal
Pops the top value of the evaluation stack. |If the value sat-
isfies the conditional on the branch, |oads the program counter
with the address of the |abel # instruction.

Backwar d-Cri ti cal
Pops the top value of the save stack and pushes it onto the
eval uati on st ack.

Backwar d- Noncri ti cal
Pushes EQUAL onto the eval uation stack.

33

call # :
Forward :
Pushes the current program counter onto the return address
stack, then loads the address of the label # instruction into
t he program counter.
Backward :
No operati on.
return :
Forward :
Pops the top value of the return address stack and loads it
into the program counter
Backward :
No operati on.
alloc #:

Forward-Critical
Pops the top value of the evaluation stack, pushes the val ue
onto the save stack, pushes the address of a chunk of free mem
ory of that size onto the variable stack pointed to by variable
regi ster #.

Forwar d- Noncritica
Pops the top value of the evaluation stack, pushes the address
of a chunk of free nmenory of that size onto the variable stack
pointed to by variable register #.

Backward-Criti cal
Pops the top value of the variable stack pointed to by variable
register # and frees the nmenory allocated, pops the top value
of the save stack and pushes it onto the eval uation stack

Backwar d- Noncritica
Pops the top value of the variable stack pointed to by variable
register # and frees the menory allocated. Pushes a 0 onto the
eval uati on stack.

link # :

Forward :
Pops the top value of the evaluation stack and pushes it onto
the variable stack pointed to by variable register #.

Backward :
Pops the top value of the variable stack pointed to by variable
regi ster # and pushes it onto the eval uation stack

34

unlink # :

Forward :
Pops the top value of the variable stack pointed to by variable
regi ster # and pushes it onto the save stack

Backward :

Pops the top value of the save stack and pushes it onto the
vari abl e stack pointed to by variable register #.

Source Program Vari abl e Representation
i n E-machi ne Code

Under st andi ng how the E-nmachine provides for the inplenentation of
hi gh | evel source |anguage variables is vital to understanding the oper-
ation of the E-nachine, especially in backing up. (In this context, the
term variable refers to any identifier in the source program that
requi res nenory, such as variables, constants, and parameters.) First,
a conpiler that generates E-code translations of, say, Pascal prograns
assigns each variable in the Pascal program a uni que E-nachine variable
register. This is done statically at conpile time, so that every vari-
able is associated with a unique variable register for the duration of
program execution, regardless of whether that variable is currently
active or not. The variable register for a variable does not contain
the value of the variable. Rather, it contains a pointer to a unique
variable stack for that variable (look at Figure 8 again). Since each
variable register is really only a pointer, it will be the same size
regardl ess of whether the variable is a sinple variable or, for exanple,
an array.

The variable stack pointed to by a variable register also does not
contain the value of the variable. |In this case, each elenent of the
variable stack is itself a pointer to the actual variable value in data
menory. The stack is necessary because a particular variable may have
mul ti pl e associated instances. Consider the case of a variable A that
is local to a recursive Pascal procedure. Each new recursive call to
that procedure would require that a new data nenory |location be set
aside for new instance of AL A's variable register would point to A's
variable stack, and the top of A's variable stack would point to the
value of the current instance of A in data nmenory. The second stack
el ement would point to the previous instance of Ain data nmenory, and so
on. Most variables are not in recursive procedures and thus will only
have at npbst one instance during program execution. In such cases, the
variable register would point to a variable stack that is just one ele-
nment deep. The case for a variable A with just a single instance is
illustrated in Figure 9. Figure 10 shows the situation of a variable A
having three instance as the result of three recursive calls to a proce-
dure.

35

variable variable data
registers stack memory
. o il 14 .
A A’s A’s
stack data
Figure 9

E-machine Global Variable Implementation

Whenever a procedure or function exits, the compiled E-code will
ensure that local variable instances are properly removed from data mem-
ory by simply causing the top of the variable stacks to be popped for
each affected variable. IT a variable is totally deactivated as a
result, its variable register will simply point to an empty variable
stack.

variable variable data
registers stack memory
. o il 14 .
. . N .
. - = .
. . — "4
A A’s A’s
stack data
Figure 10

E-machine Recursive Variable Implementation

36

Notice that arrays and records can be handled in the usual fashion,
using offsets (in the index register) from the first location for the
variable in data memory to arrive at individual elements.

The Save Stack

To see how backing up is accomplished with this method of repre-
senting variables, the role of the save stack must be explained. The
first thing to consider is the kinds of information associated with a
variable. There are two kinds: the location of the variable’s memory
and the data in the variable’s memory location. Both are subject to
destruction or loss during normal program execution. It is easier to
see how the second type of information, the data, can be destroyed.
Whenever an assignment is made into a variable, the old data in the
variable’s memory location is destroyed. Therefore, in order to restore
the E-machine’s state to the state prior to the assignment, it is neces-
sary to save the old data. This is done on the save stack. Upon backing
up, the old variable value can then be restored by retrieving it from
the save stack.

Now consider the case of a memory |ocation. Recall that the data
memory location of a variable is kept in the stack corresponding to that
variable. In the case, say, of a Pascal global variable, the single
stack element for that variable continues to point to the proper data
memory location for that variable throughout the execution of the pro-
gram. In the case of a variable (again, this refers to both local vari-
ables and parameters) in a procedure or function, however, the data mem-
ory location, and hence the pointer to this location on the variable
stack, may change with each call. That is, each time a call to the pro-
cedure or function is made, a different data memory location may be
allocated for the value of the variable and pushed onto the top of that
variable’s stack; upon return from the procedure or function, that
address will be popped off the variable’s stack as the variable is deal-
located. At this point, information critical to backup would be lost if
the address popped off were not saved in some way.

This is where the save stack comes in. Whenever any information is
about to be lost in one of the above fashions, the information instead
is pushed onto the save stack. Figure 11 shows the initial variable
register, variable stack, and data memory location for a variable X.
Also included is the save stack.

variable variable data save
registers stack memory stack

37

X X’s X’s
stack data

Figure 11
Variable and Save Stack for a Variable X

ce that the save stack is empty now. (Technically, this situation
d not arise since X has a value at this point, and therefore at some
t in the past must have had an assignment statement performed upon
vhich would have required the old value to be pushed onto the save
k. For purposes of this example, we will ignore this fact.) Now,
s perform an assignment operation:

X =27

effect this will have upon the E-machine’s structures is shown in
re 12. Notice that the top of the save stack now contains the old
e of X and that the new value of X is stored in the old memory loca-
. In this case, the information which would have been destroyed was

data, not the memory location.

variable variable data save
registers stack memory stack
B e Y ’ T 14
X X’s X’s
stack data
Figure 12

Variable and Save Stack After Assignment to X

38

In order to back up at this point, all that would be necessary
would be to pop the top of the save stack and place the popped value
into the memory location pointed to by the top of X’s variable stack.
This procedure allows any assignment to be reversed.

Preparing for the reverse execution of statements that lose loca-
tion information is somewhat more involved. To understand this task
better, recall from the previous section how the E-machine architecture
provides for the implementation of high level language variables (remem-
ber, too, that the term variable is used here to stand for any high
level language identifier requiring memory, such as actual variables,
parameters, and constants). Each variable has a permanently assigned
variable register. Each variable register points to a unique, associ-
ated variable stack.

39

Each elenment of the variable stack is a pointer to an instance of the
variable value in data nenory; the top of the variable stack points to
the current, active instance of the variable.

Thus, since the location of a variable s assigned variable register
remai ns constant throughout program execution, and this variable regis-
ter always points to the current top elenent of the associated variable
stack, the only location information that can be | ost during normal for-
ward execution is the location of a variable's value in data nenory as a
procedure or function is exited (i.e., the value on top of the variable
stack for the variable). Thus, upon exit of a procedure or function,
when the values of |ocal variables (including paraneters and constants)
and their locations in data nenory are nornmally lost, the locations of
these variables, nust be saved on the save stack. When backing up
t hrough a procedure or function call, (i.e. executing the procedure or
function in reverse), the original locations of the local variables in
data nmenory can be restored to the top of their respective variable
stacks fromthe save stack.

How can one be certain that the original variable values will be in
the restored |ocations upon backing up? Consider how a value in data
nmenory is changed. The only way this can happen is through an assign-
nment operation. But earlier in this chapter, a nechani smwas introduced
that all owed an assignnent instruction to be reversed. Therefore, even
t hough a nmenory | ocation may have been assigned nunerous different val-
ues since the procedure exited, as backing up occurs, that nenory | oca-

tion will have been reset to the required value by the time the proce-
dure is encountered in reverse.
Consi der the exanple Pascal program fragnent in Figure 13. It con-

sists of a header definition for procedure something with one value
paranmeter; there are three calls to that procedure from another routine.
The lines labeled 0,1,2, and 3 have correspondi ng sections in Figure 14.
Figure 14 contains the variable structures and the save stack that cor-
respond to each of the procedure calls in Figure 13. The section
labeled O in Figure 14 refers to the state of the structures before any
procedure call has been executed. Notice that the save stack is enpty,
and notice too that the variable stack for Pis also enpty.

Procedure sonething(P : integer);

somnet hing(7);
sonet hi ng(5);
somnet hi ng(-16);

WNEFEO

Fi gure 13
A Pascal Procedure Fragment sonet hing

40

Now let’'s examine line 1 in Figure 13. This is the first call to
procedure sonmething. Notice that during the call, P's stack in section
1 of Figure 14 now has a value, 1, which is a location in data menory.
Notice also that the data nmenory location which this points to (data
nmenory | ocation 1) contains the value of the paraneter which was passed
to something. During this call, any references to P are referring to
the data nmenory location that is pointed by the top of P's variable
st ack.

41

Variable structures Save stack after
During Procedure Call Procedure call
variable variable data save
registers stack memory stack
0 .7 . . T
1 T) 1 - 7 1)
> T) 7 —-———— 5 7)
3 mm———-) 4 - -16) 4
P P’s P’s save
stack data stack
Figure 14

Variable and Save Stack During Successive Calls to Procedure sonet hi ng

The save stack in section 1 of Figure 14 shows the state of the
stack after procedure sonething finishes executing for the first time.
Notice that it now has the value 1 on top. This is because when the
procedure exited, the data memory location to which P was pointing would
have been lost, so it was saved by the E-machine on the top of the save
stack. Consider now the second call to sonething in line 2 of Figure 13
and compare it with section 2 in Figure 14.

42

The top of P’s variable stack now contains the value 7, which
points to data memory location 7, which contains a 5. Now any refer-
ences to P will refer to memory location 7 (i.e., to the value 5). When
procedure sonething is exited this time, the top of the variable stack
would again be lost if it were not saved. Thus, the 7 on top of the
variable stack for P is pushed onto the save stack by the E-machine,
resulting in the save stack configuration of section 2 in Figure 14.

The third call to procedure sonething follows in exactly the same
manner. When the procedure is executing, the variable P refers to the
data memory location contained on the top of P’s variable stack, and
when the procedure ends, that data memory address is pushed onto the
save stack.

Reversing through these procedure calls simply consists of popping
the addresses off the save stack and pushing them onto P’s variable
stack when reversing through the procedure’s exit, and popping the top
of P’s variable stack when reversing through the procedure’s entrance.

The Label Registers

Execution In a program is not a simple, linear affair. There are
branches, calls to subroutines, returns from subroutines, and other non-
sequential types of instructions that add complexity to the problem of
backing up. We have seen how to reverse many E-machine instructions by
utilizing the save stack. What we haven’t yet determined is how to
reset the current program counter so that it points to the proper previ-
ous instruction. If the current instruction was arrived at from some
instruction other than the immediately preceding instruction (e.g., via
a branch instruction) there must be some method available for recovering
the line number of the instruction branched from.

For example, Figure 15 gives a simple E-code program (for clarity,
variables are referred to by name rather than their variable registers,
and addressing modes, data types, and critical and noncritical desigha-
tors have been omitted). The program does the following: 1’s value is
pushed onto the evaluation stack followed by J’s value. The cnp
instruction of line 3 then compares the top two stack values, consuming
these values, and pushing the result of the comparison onto the stack.
Notice line 4; if the top of stack value denotes "equal', a branch must
be made to the |abel 1 instruction, which is in line 7 (that is, the
current program counter must be set to 7). Otherwise execution proceeds
sequentially through lines 5 and 6 until line 7 is reached.

The | abel instruction of line 7 is the interesting instruction in
this case. As seen, depending on the values of 1 and J, the instruction
executed just previous to line 7 could have been either line 4 or 6.
How can it be determined for backing up which one really did precede
line 7?

43

The brute force method of solving this problem is simple but very
inefficient. |If, at each step, the current program counter is stored on
a stack, all that is needed to restore the current program counter upon
backing up is to replace its value with the top of stack value. This
method

push
push J
cmp

breq 1
push |
pop J
label 1
halt

O~NO U WNE

Figure 15
Simple E-code Program With a Branch

will work, but it is inefficient for the following reason. Most
instructions in a program have only one possible previous instruction,
the one that directly precedes it in the program. In the example of
Figure 15, only line 7 has more than one possible previous instruction.
All of the other instructions have only one. A more elegant and effi-
cient method to solving this problem, then, is to identify the instruc-
tions with more than one possible previous instruction (referred to
hereinafter as "branch points') and only save the previous program
counter when one of these instructions is executed in the forward direc-
tion. In order to do this, branch point instructions must be identifi-
able.

How can branch points be identified by the E-machine as it executes
an E-code program? The characteristics of a branch point are easy to
categorize. A branch point is any instruction that can be executed in
some order other than sequentially from the instruction immediately pre-
ceding it. Most such instructions can be readily identified: since
both branch and call instructions require a label as one of their argu-
ments, any instruction that is a branch point because of a branch or
call must be an E-code |abel instruction. This leaves one class of
branch points still unidentified, those arrived at by a return from a
procedure or function. The return instruction does not--and indeed can-
not--have a label as an argument; instead, control must be returned to
the instruction immediately following the call that invoked the proce-
dure or function (the utility of a procedure or function lies in the
fact that it can be called from anywhere and, after execution, will
return to the instruction immediately after the call).

From the above discussion, it is clear that each E-code instruction
that immediately follows a procedure or function call is a branch point.
However, examining an arbitrary E-code instruction in isolation does not

44

allow one to determine whether the previous instruction was a call.
Thus, some sort of mechanism must be employed to mark such an instruc-
tion as a branch point at compile time. Since all branch points except
those arrived at by a return are E-code label instructions in any case,
the same technique can be employed to branch points arrived at by a
return. The compiler can simply be designed to generate an E-code | abe

instruction immediately following each procedure or function call.

This technique ensures that all branch points are E-code | abe
instructions. Thus, for successful backup, when the E-machine executes
a | abel 1instruction in the forward direction, it must save the previous
program counter value in some fashion. Recall that in the E-machine,
the previous program counter is always maintained in the register by
that name. Every time the current program counter is changed, its old
value is first placed into the previous program counter. (Notice that
this structure is not a stack. Only one value is stored at any one time
in the previous program counter.)

45

In order to save the previous program counter for successful
backup, then, whenever an E-code |abel 1instruction is executed, the
E-machine employs its label stacks and label registers (see Figure 8).
Each label instruction is to be assigned a label register at compile
time, where each label register is a pointer to a unique label stack
(the reason for the stack is given later). Thus whenever a | abe
instruction is encountered by the E-machine, the value in the previous
program counter is pushed onto the stack referenced by that label’s reg-
ister.

Now, look at the example program given in Figure 16. There are two
branch points in this program: line 1 and line 11. This program con-
tains a loop in which lines 1 through 10 are executed until I and J are
equal. Obviously, this loop could iterate a large number of times, and
each time the | abel instruction of line 1 is executed, it appears that
the previous program counter should be pushed onto the label stack of
label 1. However, except for the very first time line 1 is executed,
the previous program counter will always contain 10. There should be a
way to take advantage of this repetition and save some space.

The E-machine does this in the following way. Each element of the
label stack associated with each branch point has two parts, one for
holding the value of the previous program counter and one for holding a
count, as shown in Figure 17. Rather than just pushing the previous
program counter onto the label stack when a label instruction is exe-
cuted by the E-machine, the E-machine first compares the previous pro-
gram counter to the number stored in the top element of the label stack.
IT these two values are equal, the associated counter on the stack is
simply incremented, thus recording the number of times this label
instruction was reached from the same previous instruction. Thus,
rather than storing n identical previous program counter values, where n
is the number of times the loop is iterated, only one copy of the
repeated previous program counter value is saved along with n, a tremen-
dous savings.

label 1
push |
push J
cmp

breq 2
push
push 1
add

pop

10 br 1
11 label 2
12 halt

©Coo~NOOOP~WNEO

Figure 16
Simple E-code Program with a Loop

46

Address | Counter
Address | Counter
Address | Counter
Address | Counter

Figure 17
General Label Stack

Look again at Figure 16 and consider what will happen to
the label stack for the branch point instruction at line 1 as

the E-machine executes the instructions. Assume that 1 equals
3 and J equals 5. The E-machine will step sequentially
through the instructions starting at O. When the | abel 1

instruction at line 1 is executed for the first time, the
address of the the iInstruction executed Jjust prior to it (at
this point, instruction 0) is pushed onto label 1°’s label
stack, resulting in the label stack of Figure 18.

Figure 18
Label Stack After O Loop Ilterations

As the E-machine continues executing, 1 and J will be compared,
they will be found to be not equal and so the E-machine will continue
executing sequentially, incrementing I in the process, until line 10 is
reached. At that point, a branch to the |abel 1 iInstruction is exe-
cuted, which loads 1 into the program counter. When the label 1
instruction is executed, the address of the instruction that was exe-
cuted just prior to this is pushed onto label 1°s stack. Since that
instruction was the branch instruction at line 10, a 10 must be pushed
as shown in Figure 19.

47

At this point in the execution, the loop has executed once, |1
equals 4, J equals 5, and the E-machine has just executed line 1. Pro-
ceeding sequentially with the execution of the program results in 1 and
J being compared. Once again, | does not equal J and the E-machine exe-
cutes sequentially, again incrementing 1, until line 10 is reached. At
this point, the branch to | abel 1 is executed. The execution of |abel 1
causes the address of the instruction executed just prior to the | abel
1, 10, to be pushed onto label 1°’s stack. This results in the label
stack of Figure 20. Notice that no new address was actually pushed onto
the stack. Since the top of the stack had the same value as the value
that was to be pushed, the counter of the top of the stack was simply
incremented (from 1 to 2). If the address had been different than the
value of the top of the stack, a new value and counter would have been
pushed onto the top of the stack.

10 1
0 1
Figure 19

Label Stack After 1 Loop lteration

10 2
0 1
Figure 20

Label Stack After 2 Loop Ilterations

How to reverse through a |abel instruction should now be clear.
The address on top of that label’s stack is simply placed in the program
counter. |If the corresponding count is one, the label stack is also
popped, otherwise the count is just decremented.

48

Critical vs. Noncritical Instructions

Early on in the chapter, it was mentioned that a machine running
backwards and a high level language program executing backwards repre-
sented similar but not identical processes. The reason this is so is
that one high level language statement will, in general, correspond to
many machine language instructions. For example, the Pascal assignment
statement

Y :=X+Y -17 * Z * Z;

will be translated into at least ten machine language instructions, as
shown in Figure 21, only one of which has any effect on the values of
the variables in this statement (the final pop instruction). Since the
intent of the proposed system is to display the execution dynamics of
high level language programs, it §s unnecessary to be concerned about
precisely backing up the E-code instructions that only calculate inter-
mediate values. This observation led naturally to a classification sys-
tem for E-machine instructions that reflects this situation. IT an
E-machine instruction destroys information necessary for backup in the
high level language program, it is classified as critical by the com-

piler; if it does not, it is classified as noncritical.

This 1identification of E-code instructions as either critical or
noncritical allows the E-machine to save for backup purposes only that
information necessary to reverse statements in the high level language
program. Since the vast majority of compiled E-code instructions will
be noncritical, a large savings in storage space and time is realized.
However, it should be noted that the flexibility is present to accu-
rately back up E-machine code line by line by simply designating each
instruction as critical.

push X
push Y
push 17

push Z

mul t
push 4
mul t
sub
add
pop Y
Fi gure 21
Translation of X := X + Y -

17 * 2 * Z,

49

50

CHAPTER 6

COWPI LI NG TO E- CODE

The actual design of a conpiler for translating some high |evel
progranmm ng | anguage (e.g., Pascal) into E-code; as well as other appli-
cations for the E-nmachine, is left for others. However, this chapter is
i ncluded as a starting point to assist those who will be devel opi ng com
pilers for the E-machine. The followi ng description is only a guide to
the nost inportant considerations facing a conpiler witer and is not
neant to be conpl ete.

Recall that the purpose of the E-nmachine is to allow high |eve
progranm ng | anguage execution dynamics to be displayed dynamically as
an aid to teaching and |earning progranm ng. Therefore, when the
dynam c display interface is to show a high |evel |anguage program exe-
cuting, both the high Ievel |anguage source program and the conpiled E-
code program nust both be available. Only the E-code program will be
executing. However, to the user it nust appear as if the high leve
| anguage program were executing. This can be acconplished using two E-
machi ne conponents: the |ine nunber register and the variable registers.

Recall from Chapter 5 that the line nunber register contains the
i ne nunber of the source program statenent that was translated into the
E-code instruction group that is currently executing. The dynanic dis-
play interface will use the information in this register to indicate to
t he user which source program statement in his or her programis execut-
ing. Cenerating E-code instructions that correctly update the line num
ber register is one of the nost inportant parts of an E-code conpil er

The variable registers are the second conmponent of the E-nachine
that will be used by the dynamic display interface in show ng source
program execution. Recall that each variable (that is, each variable,
paranmeter, and constant) of the source programw || be assigned a unique
variable register at conpile tinme. Since it will be necessary for the
dynam c display interface to update the values of any variables that
have changed with each statement execution in the source program it is
essential that the dynamic display interface have access to a synbol
table that associates each variable in the source program with its
uni que variable register. The synbol will allow the dynanmic display
interface to ascertain the value of each variable and update the display
of variable values. The creation of this synbol table is another inpor-
tant task of an E-code conpiler.

Recal |l from Chapter 5 that many E-code instructions have tw nodes:
critical and noncritical. An E-code conpiler nust decide during trans-
| ati on whether a given E-code instruction should be used in critical or
in noncritical nmode. This decision will perhaps be the nost conpiles

51

part of designing an E-code conpiler. Later in this chapter, an ad hoc
nmet hod for doing this is presented.

First, let's look at one possible nmethod of building the synbol
table, a straightforward task. Consider the Pascal program in Figure
22. A sinple way to generate a synbol table for this programis just to
start at the beginning of the programand scan one Iine at a tine. Each
time a variable declaration is encountered (again, this is the extended
definition of wvariable), assign the next available E-nmachine variable
register to that variable. Wien the last line of the program is
reached, each programvariable will have been assigned a variable regis-
ter. This would take only a single pass through the source program
The synbol table in Figure 23 was generated in this way fromthe Pasca
programin Figure 22. Notice in Figure 23 the nethod used for tagging
paraneters with the procedure or function to which they belong. This
same method could be used to tag | ocal variables.

program recurse (input,output);

var
ct,n,sum : integer;

function factorial(n : integer) : integer;

O©CoOoO~NOUTDWNPE

begin

if n = 0
10 t hen
11 factori al
12 el se
13 factorial := n * factorial(n-1)
14 end;

1
|

16 procedure increnment(var X : integer);

18 begin
19 X = x + 1
20 end;

22 begin

23 sum = O0;

24 n = 1;

25 while n < 4 do

26 if sum < 10

27 then begin

28 sum := sum + factorial(n);
29 i ncrement (n)

30 end

31 end.

Figure 22

52

Exanpl e Pascal Program

Cenerating E-code instructions to wupdate the line nunber reg-
ister and deciding whether an instruction 1is critical or not
can both be handled wth the same technique. This technique
is called packetizing. Packetizing is a method for dividing

the source program into a set of packets, where each packet
represents the snallest wunit of a source program to be high-
lighted by the dynamic display interface as execution progresses.

Until now, it has been assuned that the dynanmic display inter-
face would sinmply highlight the current source program statenment
bei ng execut ed. However , in typical high |evel | anguages, a
st at errent can be quite conplex (e.g., an if statenent). A
packet will represent snaller conponents of the source program
that will need to be highlighted by the dynamic display inter-
face. The conpiler witer nmust wuse his or her know edge of

the high level programming I|anguage to decide how to packetize
that |anguage. Then it nust be determined in the E-code where

critical instructions are to occur in translation of packets and
the types of «critical instructions to enploy. Figure 24 is a
diagram showing how Pascal can be packetized. Followi ng the

exanple of Figure 24, a packet is defined as the smallest ele-
nent a wuser of the dynamic display interface would find inter-
esting. This is a very ad hoc definition, but it should help
direct the efforts of a conpiler witer, who obviously nust
work in <close collaboration wth the designer of the dynanic
di splay interface.

53

Narme Regi ster
ct
n
sum
factorial:n
i ncrenment: x

QW N

Figure 23
Synmbol Table For Pascal Program

The packetizing nethod illustrated in Figure 24 can be used
in conpilation as follows. Take each packet in the diagram
and wite out if and where critical instructions may occur in
the translation of the packet. Figure 25 shows the result of
this process applied to the diagram in Figure 24. Noti ce that
the only critical E-code instructions are alloc, 1link, pop, and
| abel . Since this is the case, a usable heuristic for identi-
fying critical instructions is to make every instance of those
instructions critical. This wll ensure that proper backup wll
occur, but not necessarily in the nost efficient fashion. | f
some of these instructions were designated critical, when, in
fact, they could have been designated noncritical, this would
nean sone information that is unnecessary for backing up is
being stored. Finding an optinmal way to generate code for

backing up is beyond the scope of this thesis, however, and
will be left for others.

54
[program name(input,output,files);]

[const]
[const declaration]

[type]
[type declaration]

[var]
[variabl e declaration]

[assi gnnent statenent]
[begi n]
[end]
[procedure call]
[if (boolean expression)]
[then]
then cl ause
[el se]

el se cl ause

[case (expression) of]

[const :] case body;
[end]
[repeat]

| oop body
[until (bool ean expression)]

[while (boolean expression) do]

| oop body
[for VAR := EXPR to|downto EXPR do]
| oop body

[procedure nane]
[(paranmeter declaration);]
procedure body

[function name]
[(paranmeter declaration):type;]
function body

Fi gure 24
Ad Hoc Packetizing Met hod for Pascal

55

There is still one unusual area of code generation that should be
nmentioned: how to generate the E-code instructions necessary to update
the (source progran) line nunber register. This can be done easily once
the source program has been packetized. Wenever the conpiler encoun-
ters a left packet symbol, in this case, [, it can generate the conmrand

line #

where # is the line nunber in the source program of the line that con-
tains this packet. The line command generated by the | eft packet synbo

can be considered to be an E-machine interrupt: it can have the effect
of causing control to be returned to the dynanic display interface just
followi ng the execution of the E-nmachine code corresponding to the cur-
rent source program packet being executed, and just prior to the execu-
tion of the next packet. Wen the dynamic display interface sends a
signal to the E-machine to resune, the E-code corresponding to the next

packet of instructions can be executed by the E-machine, and so.

A packetized version of the programof Figure 22 is given in Figure
26. Figure 27 presents a possible in-line translation of the program of
Figure 26. The node designator c is used for critical instructions and
n for noncritical instructions. Conments are included to help explain
the translation. |In the comrents, PC refers to program counter and PPC
to previous program counter. Figure 27 should also be viewed in con-
junction with Figure 23, the associated synbol table for the dynamc
di splay interface.

56

Program Packet

Critical Instructions

[program name(input,output,files);]

[const]

[const decl arati on]

[type] _
[type declaration]

[var]
[variabl e declaration]

[assignment statement]
[begi n]

[end]

[procedure

cal I]

[if

[case

[end]

(bool ean

expression)]

[then]

t hen
[el se]

el se

(expression)

[const :]

[repeat]

[until

[whil e

[for

| oop body
(bool ean

(bool ean
| oop body

VAR EX
| oop body

cl ause

cl ause

of]

case body;

expressi on)]

expressi on) do]

PR to downto EXPR

[procedure

nane]

[(paramnet er

decl aration);]

procedure body

[function

[(paramet er

nane |
decl aration):type;]

function

body

none

none
none

none
none

none

alloc #

pop V#
none
none
none

none
none

| abel
| abel

none
| abel #
| abel #

| abel #
none
| abel

| abel #

| abel

| abel #

| abel

none

alloc #/link #

alloc #/link #

Fi gure 25

Packetizing and Determination of Critical Instructions

© 00 N O ol A WDN P

W WRNMNNMNRNNNMNNNNRRRRRRRR R R
P O © 0 N0 0 N~WNEREROI®OO®NOOOMWNDNRO

[program r

57

ecurse (input,output);]

[var]
[ct],[n],[sum [integer;]
[function factorial]([n i nteger]) [integer;]
[begi n]
[if n = 0]
[then]
[factorial = 1]
[el se]
[factorial := n * factorial(n-1)]
[end;]
[procedure increment]([var X i nteger]);
[begi n]
[x = x + 1]
[end;]
[begi n]
[sum := 0;]
[n = 1;]
[while n < 4 do]
[if sum < 10]
[then begin]
[sum := sum + factorial(n);]
[increnment(n)]
[end]
[end.]
Fi gure 26

Exanpl e Packeti zed Pascal

Program

58

1 [program recurse (input,output);]
l'ine 1 {display should highlight Iline 1}
2 {no E-code generated}
3 [var]
line 3 {display should highlight Iline 3}
4 [ct],[n],[sumM : integer;]
l'ine 4 {display should highlight line 4}
push | NTECGER, i nteger {push INTEGER onto evaluation stack}
alloc c,1 {allocate top-of-stack bytes to variable 1}
l'ine 4 {display should highlight line 4}
push | NTECGER, i nteger {push INTEGER onto evaluation stack}
alloc ¢c,2 {allocate top-of-stack bytes to variable 2}
l'ine 4 {display should highlight line 4}
push | NTECGER, i nteger {push INTEGER onto evaluation stack}
alloc ¢c,3 {allocate top-of-stack bytes to variable 3}
5
6 [function factorial([n : integer]) : integer;]
| abel ¢c,1 {push PPC onto label 1's stack}
l'ine 6 {display should highlight Iline 6}
l'ine 6 {display should highlight Iline 6}
push | NTECGER, i nteger {push INTEGER onto evaluation stack}
alloc c,4 {allocate top-of-stack bytes to variable 4}
pop c, V4 {pop the top of the stack into variable 4}
7
8 [begi n]
l'ine 8 {display should highlight Iline 8}
9 [if n = 0]
l'ine 9 {display should highlight Iline 9}
push V4, i nt eger {push value in V4 onto the evaluation stack]}
push 0, i nt eger {push 0 onto the evaluation stack}
cnp n, i nt eger {conpare top of stack to next |[|owest,}
{push result}
bneq n, 2 {branch to label 2 if the condition is net}
10 [then]
l'ine 10 {display should highlight line 10}
11 [factorial := 1]
l'ine 11 {display should highlight line 11}
push 1,integer {push 1 onto the evaluation stack}
br 3 {branch to Ilabel 3}
12 [el se]
| abel ¢, 2 {push PPC onto label 2's stack}
l'ine 12 {display should highlight line 12}
Figure 27

Exanple In-Line E-code Translation of a Packetized Pascal Program

13

14

15
16

17
18

19

20

21
22

23

59

[factorial := n * factorial(n-1)]
l'ine 13 {display should highlight 1line
| abel ¢,3 {push PPC onto label 3 s stack}
push V4, i nt eger {push v4 onto the evaluation stack}
push V4, i nt eger {push v4 onto the evaluation stack}
push 1, integer {push 1 onto the evaluation stack}
sub n, i nt eger {subtract top of stack from next down,}
{push result}
cal | 1 {call label associated with factorial}
| abel ¢c,4 {push PPC onto label 4's stack}
nmul t n, i nt eger {multiply the top two values of the stack}
{push result}
[end;]
l'ine 14 {display should highlight line 14}
unlink 4 {pop the top of 4's variable stack}
{deactivate 4}
return {pop top of the return address stack into tl
{program counter}
[procedure increment([var x : integer]);]
| abel ¢,5 {push PPC onto label 5 s stack}
l'ine 16 {display should highlight line 16}
l'ine 16 {display should highlight line 16}
I'ink c,5 {pop address from top of stack}
{push onto label 5 s stack}
[begi n]
l'ine 18 {display should highlight line 18}
[x = x + 1]
line 19 {display should highlight line 19}
push V5, i nt eger {push V5 onto the evaluation stack}
push 1, integer {push 1 onto the evaluation stack}
add n, i nt eger {add top two values of stack}
{push the result}
pop c,V5,integer{pop the top the the evaluation stack into \
[end;]
l'ine 20 {display should highlight line 20}
unlink 5 {pop address off 5's |abel stack}
return {pop top of the return address into the PC
[begi n]
l'ine 22 {display should highlight line 22}
[sum := 0;]
line 23 {display should highlight line 23}
push 0, i nt eger {push 0 onto the evaluation stack}
pop c,V3,integer{pop the top of the stack into V3}

Figure 27 (continued)

60

24 [n = 1;]
line 24 {display should highlight line 24}
push 1,integer{push 1 onto the evaluation stack}
pop c,V2,integer {pop the top of the stack into V2}
25 [while n < 4 do]
| abel 6 {push PPC onto |abel 6's stack}
l'ine 25 {display should highlight line 25}
push V2, i nt eger {push V2 onto the evaluation stack}
push 4,1 nt eger {push 4 onto the evaluation stack}
cnp n, i nt eger {conpare the top two values of the stack}
bgeq n, 7 {if the top of the stack matches the}
{condition, branch to |I|abel 7}
26 [if sum < 10]
l'ine 26 {display should highlight 1line
push V3, i nt eger {push V3 onto the evaluation stack}
push 10, i nt eger {push 10 onto the evaluation stack}
cnp n, i nt eger {conpare top of stack to next down}
bgeq n, 8 {branch if the top of stack nmatches}
{the condition}
27 [then begin]
l'ine 27 {display should highlight 1line
28 [sum := sum + factorial(n);]
l'ine 28 {display should highlight line 27}
push V3,integer {push V3 onto the evaluation stack}
push V2,integer {push V2 onto the evaluation stack}
cal | 1 {call subroutine at Iabel 1}
| abel ¢c¢,9 {push PPC onto label 9 s stack}
add n, i nt eger {add top two values of the evaluation stack}
29 [increment(n);]
l'ine 29 {display should highlight line 29}
push R2, address {push V2's address onto the stack}
call 5 {call procedure increnment}
30 [end]
| abel ¢c,8 {push PPC onto label 8 s stack}
l'ine 30 {display should highlight line 30}
br 6 {branch to Iabel 6}
| abel ©c¢,7 {push address of PPC onto |abel 7's stack}
31 [end.]
l'ine 31 {display should highlight line 31}
hal t {stop executing}
Fi gure 27 (continued)
The translation in Figure 27 provides the intuition for the way
that conpiling a Pascal programto E-code should proceed. A nore rigor-
ous definition is beyond the scope of this thesis. The next chapter

contains a recap of some of the main points of this thesis and sonme new
directions that this project could take.

61

CHAPTER 7

CONCLUSI ONS AND NEW DI RECTI ONS

The goal of this thesis was the design of a virtual machine archi-
tecture to support research and developnent in the realm of dynanic
teaching aids for introductory conputer science courses, primarily
begi nni ng progranmi ng courses. Thus this virtual nachine architecture
was to support the execution of high |evel |anguage prograns in a fash-
ion that nade the display of all facets of program execution dynam cs
feasible and flexible. The nost inportant specification for the virtua
machi ne architecture was the requirenent for reverse execution. This
specification arose from experience with DYNAMOD, a common request from
students viewi ng DYNAMOD exanples in the classroomwas for the instruc-
tor to back up and repeat certain statenents. Thus was born the E-
machi ne, a virtual nachine that appears to neet the goals of the thesis
quite well.

Mich renains to be done to realize the ultinmate goal of a conpre-
hensi ve teaching and learning tool for introductory conputer science
An enul ator for the E-machine nmust be witten, a dynanic display inter-
face nmust be designed and inplenented, and a user interface nust be
devel oped. Furthernore, at |east one conpiler, for exanple, a Pascal to
E-code compiler, must be witten. It is proposed that the emul ator, al
conpilers, and both interfaces be inplemented in C in order to ensure
the systenis portability to virtually all conputer types likely to be

62

used by students. Once this has been acconplished, the entire package
can be incorporated into a hypertext environnent built around an online
t ext book.

If this looks like a never-ending project, it is! Unlike a conmer-
cial systemthat nust support the production people who devel op appli ca-
tions with that system and therefore cannot l|ater incorporate radica
changes without disrupting the continued effective use of the system
the project envisioned here wll suffer no such constraints. As a
purely academ ¢ system it can be changed at will to incorporate peda-
gogi cal innovations that support the m ssion

Consider the E-machine itself. As it stands, it should support the
execution of Pascal prograns quite well, with one exception: no provi-
sion has been made for handling input and output. This was a conscious
omi ssion that leaves this portion of the design to those inplenmenting
the dynanmic display interface. |If it turns out that input and output is
best handled by the display interface, that will be fine. However, if
it becones clear that new instructions need to be added to the E-machine
instruction set to support input and output, that will be fine, too.
O her high level programing |anguages, if incorporated into this sys-
tem nmay also require that new instructions be added to the instruction
set of the E-nachine. A good exanple of this would be the bit-Ievel
operations of C. The E-machine was intended to be an open-ended project
fromthe start

In conclusion, it is hoped that the E-nachine will not just sit on
a shelf and gather dust, but that it will soon be inplenented and becone
a part of the envisioned dynam c teaching and | earning system There is
every reason to believe that this will be the case.

63

REFERENCES CI TED

ALI CE: The Personal Pascal. Looking dass Software Limted, 124 King St.
N. Waterl oo, ON, N2J2X8

Brown, M H 1988. Exploring Al gorithnms Using Balsa-11. COWUTER vol.
21, no. 5, May 88, ppl4-36

Communi cations of the ACM 1988. Special issue on hypertext. vol. 31, no.
7, Jul 88

Elsworth E. F. 1978. Conpilation via an internedi ate | anguage. The Com
puter Journal. vol. 22, no.3, Aug 79, pp226-233

Hlle R F. and Hi gginbottomT. F. 1983. A System for Visible Execution
of Pascal Prograns. The Australian Computer Journal. vol. 15, no.
2, May 83, pp76-77

Kornerup P., Kristensen B. B., and Madsen O L. 1980. Interpretation
and Code Generation Based on Internediate Languages. Sof t war e-
Practice and Experience. vol. 10, no. 8, Aug 80, pp635-658

Meng- Kawal ek L. 1983. A Pascal Pedagogi cal System for the Conversati onal
Monitor System Unpublished MsS project. Conputer Science Depart-
nment, WAshington State University.

Ng C. 1982. Ling Users Guide. Unpublished M5 project. Conputer Science
Department, WAshington State University.

1982. Ling Programers Guide. Unpublished MS project. Computer
Sci ence Departnent, Washington State University.

Nori K. V. et al. 1974. The Pascal <P> Conpiler-Inplenentation Notes.
Berichte des Instituts fur Informatik 10, Eidgenossiche Techni sche
Hochschul e, Zuri ch.

Pountain D. 1989. The X Wndow System BYTE, Jan. 89, 353-360.

Rezvani S. 1981. A Dynamic Library of Interactive Language Exanpl es.
Unpublished Ms project. Conputer Science Departnent, Washington
Uni versity.

64

Ross R J. 1980. A Mcroprocessor Systemfor the Dynamic Presentation of
Programm ng Language Concepts. Grant from the Apple Education Foun-
dation (Foundation for the Advancenent of Conputer Aided Educa-
tion), no. 441, 1980-1982.

1981. LOPLE: A Dynanic Library of Programmi ng Language Exam
ples. ACM SIGCUE Bulletin, 1981

1982. Teaching Progranming to the Deaf. ACM SI GCAPH Newsl et -
ter, no. 30, Autumm 82, ppl8-24

1983. A Dynamic Library of Programm ng Language Exanpl es.
Gr ant from the Nat i onal Sci ence Foundati on, SPE- 8263156,
SPE- 832- 0677.

1988. DYNAMOD USER' S GUI DE Version 2.0 Release 1.1. Techni cal
Report 88-1, Conputer Science Departnent, Mntana State University.

Scheftic C. and Goldenson D. R 1986. Teaching Progranm ng Method and
Problem Solving: The Role of Programming Environnments Based on
Structure Editors. Proceedings of the National Educational Comput-
i ng Conference, Jun. 1986.

SHARE Ad-hoc Conmittee on Universal Languages 1958. The Probl em of Pro-
gramm ng Communi cation with Changi ng Machi nes: A Proposed Sol ution.
Communi cati ons of the ACM vol. 1, no. 8.

Turbo Debugger 1988. 1800 G een Hills Road, Scotts Valley, CA: Borland
I nternational.

User Manual for Dr. Pascal 1989. P. O Box 7788, Princeton, NJ: Visible
Sof t war e.

