AN Ada/CS COMPILER FOR THE
E-MACHINE

by
David Keith Poole

A thesis submitted in partial fulfillment
of the requirements for the degree

of
Master of Science
n

Computer Science

Montana State University
Bozeman, Montana

July 1994

junk

1

APPROVAL
of a thesis submitted by
David Keith Poole

This thesis has been read by each member of the thesis committee and has
been found to be satisfactory regarding content, English usage, format, citations,
bibliographic style, and consistency, and is ready for submission to the College of
Graduate Studies.

Date Chairperson, Graduate Committee

Approved for the Major Department

Date Head, Major Department

Approved for the College of Graduate Studies

Date Graduate Dean

11

STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a master’s
degree at Montana State University, | agree that the Library shall make it available
to borrowers under rules of the Library.

If T have indicated my intention to copyright this thesis by including a copyright
notice page, copying is allowable only for scholarly purposes, consistent with “fair
use” as prescribed in the U.S. Copyright Law. Requests for permission for extended
quotation from or reproduction of this thesis in whole or in parts may be granted

only by the copyright holder.

Signature

Date

v

ACKNOWLEDGMENTS

This thesis is part of a larger software development project, called
DYNALAB. The DYNALAB project evolved from an earlier pilot project called
DYNAMOD [Ross 91], a program animation system that has been used at Montana
State University in introductory Pascal programming classes. DYNAMOD was orig-
inally developed by Cheng Ng [Ng 82-1, Ng 82-2] and later extended and ported to
various computing environments by a number of students, including LLih-nah Meng,
Jim MclInerny, Larry Morris, and Dean Gehnert. DYNAMOD also provided exten-
sive insight into the facilities needed in a fully functional program animation system
and the inspiration for the subsequent DYNALAB project and this thesis.

Many people have contributed to the DYNALAB project.
Samuel Patton [Patton 89] and Michael Birch [Birch 90] laid the groundwork for
this thesis by designing and implementing the underlying virtual machine for DY-
NALAB. Francis Goosey developed the first compiler (Pascal) for the E-Machine
[Goosey 93]. As this thesis is being completed, Craig Pratt and Chris Boroni are
developing DYNALAB animators, and Tory Eneboe is implementing a C comppiler
for the project.

I would like to take this opportunity to thank my graduate committee members,
Dr. Rockford Ross, Dr. Gary Harkin, and Dr. Robert Cimikowski, and the rest of
the faculty members from the Department of Computer Science for their help and
guidance during my graduate program. I would also like to thank my thesis advisor,
Dr. Ross, and DYNALAB team members, Frances Goosey, Craig Pratt, and Chris
Boroni, for their help and suggestions for my thesis.

The original DYNAMOD project was supported by the National Science Foun-
dation, grant number SPE-8320677. Work on this thesis was also supported in part
by a grant from the National Science Foundation, grant number USE-9150298.

Contents
Page
LIST OF TABLES e e viii
LIST OF FIGURES e ix
ABSTRACT . . . o e X
1. INTRODUCTIONo 1
The DYNALAB System o L 1
Preview 3
2. THE E-MACHINE oo 5
E-machine Design Considerations 6
E-machine Architectureo 8
E-machine Emulator00 14
E-machine Object File Sections 15
The HEADERSECTION oo oo .. 16
The CODESECTIONo o . 16
The PACKETSECTION o o oo 16
The VARIABLESECTIONo o oo oo .. 17
The LABELSECTION o o .. 17
The SOURCESECTION o L. 17
The STATSCOPESECTIONo o .. 18
The STRINGSECTIONo oo oo 19
E-machine Compilation Considerations 19
Program Animation Units and E-code Packets 20
Identifying Program Animation Units 21
Translating Program Animation Units into E-code Packets 22
Generation of the Static Scope Table 26
The ProcNum Field00 o000 31
The Scopelndex L 35
Translating Enumerated Type Variables 37

Identifying Critical and Non-critical E-code Instructions 42

vi

Contents—Continued

Page

3. INTRODUCTION TO Ada/CS 43
Differences between Ada/CS and Ada. 43
Ada/CS Types o o o 44
Ada/CS Packageso 44
Ada/CS Exceptionso oL 45
Changes to Ada/CS for this Project. 46
Ada/CS Exceptionso oL 47
Currently Unimplemented Ada/CS Features 48
Overview of the Ada/CS Compiler 48
Error Detection and Recovery 50
Optimization L 50

4. PARSING Ada/CS 51
The PCCTS Scanner 0o 52
Lexclasses 53

The PCCTS Parsero o s 53
Grammar Actions and Token Attributes 54
Semantic Stack and Rule Parameters 55

5. THE Ada/CS SYMBOL TABLE 58
The Name Table0 0o L 59
Addinga New Name oL Lo 63
Findinga Nameo o o Lo 63
Creating a New Scope oL 64
Popping a Scope 64

The Type Table 65
Adding a New Type 68
Creating a New Scope L oL 68
Popping a Scope 68

The Symbol Table L 69
Adding a Variableo Lo 71
Adding a Type 73
Creating a New Scopeo 74
Popping a Scope 74

Subroutine Overloading oL L. 74

Vil

Contents—Continued

Page

6. THE Ada/CS TYPE SYSTEM 76
The Ada/CS Type Classes oottt 76
Base Class BasicType. oL 76
Ada/CS Subtypes 7

Array Types o o o 79
Enumerated Types oL 82

Record Types o 82

Access Types o o e 83
Procedures and Functions00 83

7. EEMACHINE CODE GENERATION 85
The Code Generation Classes 85
Base Class Section 85

Class StringSectiono Lo 86

Class SourceSection L 86

Class LabelSection o o 86

Class VariableSectiono 87

Class CodeSection 87

Class PacketSection Lo 87

Class StatScopeSection Lo 88

Special Ada/CS Code Generation Considerations 90
Out-Only Subroutine Parameters 90
Functions Returning Records or Arrays 91

The For Loop 91

8. CONCLUSIONS AND FUTURE ENHANCEMENTS 94
Conclusions L 94
Future Enhancements oo 95
REFERENCES 98
APPENDICES e 101
APPENDIX A—THE E-MACHINE INSTRUCTION SET 102

APPENDIX B—THE E-MACHINE ADDRESSING MODES 113

viil

List of Tables

Table

=1 O Ut = LW o —

Page
Packet Table Resulting from Compilation of Program Sampl 25
Static Scope Table Resulting from Compilation of Program Sampl . . 27
Static Scope Block for One Dimensional Array 29
Static Scope Block for Two Dimensional Array 30
Scope Block of Record Complex 31
Static Scope Table Resulting from Compilation of Program Ftrl . . . 33

Static Scope Table for a For Loop 93

X

List of Figures

Figure

O =1 O U = WD =

Page
The E-machine oL 9
Source Code for Program Sampl 21
Animation Units Identified in Program Sampl 22
E-code Instructions Resulting from Compilation of Program Sampl . 24
Source Code for Program Ftrl 0000 L. 32
Animation Display After Final Recursive Call of Function Fact 32
Procedure Count Array and Dynamic Scope Stack 34
Animation Display After Executionof X := 1; 36
Source Code for Program Payrolll 39
Animation Display After Execution of Program Payrolll 39
String Space’s Relationship with Variable Registers and Data Memory 40
Source Code for Program Payroll2. 41
E-code Instructions Translating N := K + IxJ 42
The Ada with Statement o000 45
The Ada wuse Statemento 45
Example PCCTS Reserved Word Scanner Specification 52
PCCTS Scanner Specification for the Ada/CS Integer 52
A General PCCTS parserrule 53
PCCTS Rule for Ada/CS Variable Declaration 54
PCCTS Grammar Rule with Actions 54
PCCTS Grammar Rule with Parameters 55
PCCTS Semantic Stack oo 56
PCCTS Rule for Variable Declaration with Semantic Stack Actions . 57
The nameEntry Structureo L 59
The nameTable Class 61
The AdacsType Structure L. 66
The Symbol Table Class 70
Example of a Forward Declaration 73
Ada/CS Run Time Subtype 7
Ada/CS Subtype Declarations 77
Ada/CS Array Declaration L 79
Ada/CS Unconstrained Array 80
For Loop o o o 92

C++ Stack Templateo 96

ABSTRACT

This thesis is part of the third phase in the development of a program animation
system called DYNALAB (DYNAmic LABoratory). DYNALAB is an interactive
software system that demonstrates programming and computer science concepts at
an introductory level. The first DYNALAB development phase was the design of
a virtual computer—the E-machine (Education Machine). The E-machine was de-
signed by Samuel D. Patton and is presented in his Master’s thesis, The F-machine:
Supporting the Teaching of Program Fxecution Dynamics. In order to facilitate the
support of program animation activities, the E-machine has many unique features,
notably the ability to execute in reverse. The second phase in the development of
DYNALAB was the design and implementation of an E-machine emulator, which
is presented in Michael L. Birch’s Master’s thesis, An Emulator for the E-machine.
The third, ongoing phase of the DYNALAB project is the development of compilers
generating E-Machine code, the first of which is the miniPascal compiler by Frances
Goosey, described in her Master’s thesis, A miniPascal Compiler for the F-Machine.
This thesis presents the design and implementation of the second compiler for the
E-machine. The compiler’s source language is Ada/CS, which is a slightly modified
subset of Ada.

The Ada/CS compiler was developed using C++ and the Purdue Compiler Con-
struction Tool Set (PCCTS) parser development tool. It has successfully generated
object files ready for execution on the E-machine. This thesis focuses on the com-
pilation aspects that are unique to Ada/CS, the E-machine architecture, and the
planned animation environment.

CHAPTER 1

INTRODUCTION

The DYNALAB System

This thesis is part of the third phase of the ongoing DYNALAB software de-
velopment project. DYNALAB is an acronym for DYNAmic LABoratory, and its
purpose is to support formal computer science laboratories at the introductory un-
dergraduate level. Students will use DYNALAB to experiment with and explore

programs and fundamental concepts of computer science. The current objectives of

DYNALARB include:

e providing students with facilities for studying the dynamics of programming
language constructs—such as iteration, selection, recursion, parameter passing
mechanisms, and so forth-—in an animated and interactive fashion;

e providing students with capabilities to validate or empirically determine the
run time complexities of algorithms interactively in the experimental setting
of a laboratory;

e extending to instructors the capability of incorporating animation into lectures

on programming and algorithm analysis.

In order to meet these immediate objectives, the DYNALAB project was di-

vided into four phases. The first phase was the design of a virtual computer, called

the Fducation Machine, or E-machine, that would support the animation activities
envisioned for DYNALARB. The two primary technical problems to overcome in the
design of the E-machine were the incorporation of features for reverse execution and
provisions for coordination with a program animator. Reverse execution was engi-
neered into the E-machine to allow students and instructors to repetitively animate
sections of a program that were unclear without requiring that the entire program
be restarted. Also, since the purpose of DYNALARB is to allow user interaction with
animated programs, the E-machine had to be designed to be driven by an animator
system that controls the execution of programs and displays pertinent information
dynamically in animated fashion. This first phase was completed by Samuel Pat-
ton in his Master’s thesis, The F-machine: Supporting the Teaching of Program
FEzecution Dynamics [Patton 89].

The second phase of the DYNALAB project was the implementation of an em-
ulator for the E-machine. This was accomplished by Michael Birch in his Master’s
thesis, An Emulator for the E-Machine, [Birch 90]. As the emulator was imple-
mented, Birch also included some modifications and extensions to the E-machine.

The third phase of the DYNALAB project is the design and implementation
of compilers for the E-machine. The first compiler—miniPascal, a subset of ISO
Pascal—was created by Frances Goosey and described in her Master’s thesis A
miniPascal Compiler for the E-Machine, [Goosey 93]. During the miniPascal com-
piler development, the F-machine and its emulator were again modified as practical
considerations uncovered new design issues.

Continuing DYNALARB’s third phase, the Ada/CS compiler and this thesis were
developed. Ada/CS is a modified subset of Ada, a large and complex programming
language designed for software engineering and reliability. The Ada/CS compiler
was developed using C++, and takes advantage of its object oriented features. As

with the previous development stages, during the course of the Ada/CS compiler de-

velopment, the E-Machine and its emulator were modified and updated as problems
were uncovered.

The fourth phase of the DYNALAB project, currently in progress, is the design
and implementation of program animators that will drive the E-machine and dis-
play programs in dynamic, animated fashion under control of the user. Once the
animators are complete, the first functional version of DYNALAB will be ready for
use in introductory computer science laboratory and lecture courses by students
and instructors alike. An animator for Unix using Motif and another for Microsoft
Windows are currently under development.

The DYNALAB project will not end at this point. Compilers for C and C++
are in the initial stages of development. Also, work will continue on the Ada/CS
compiler to make it suitable for use in teaching. Algorithm animation (as opposed to
program animation—-see for example, [Brown 88-1, Brown 88-2]) is also a planned
extension to DYNALAB. In fact, the DYNALAB project will likely never be fin-
ished, as new ideas and pedagogical conveniences are incorporated as they become

apparent.

Preview

The thesis consists of eight chapters and two appendices. Chapter 1 presents
an overview of the thesis and the DYNALARB project in general. Since a thorough
understanding of the target virtual computer’s architecture and instruction set is
required for compiler development, a summary of the E-machine and its emulator is
given in chapter 2. Much of the information in chapter 2 is taken from the Patton,
Birch, and Goosey theses. During the Ada/CS compiler development process, it be-

came apparent that some new E-machine features and modifications were necessary

or desirable. These changes have been made and are so noted in chapter 2. For a
more detailed explanation of the E-machine and its emulator, the reader is referred
to the above-mentioned theses.

Chapter 3 provides an introduction to the modified Ada subset Ada/CS, includ-
ing a description of the Ada features of Ada/CS and differences in common language
features. Chapter 4 is an introduction to the Purdue Compiler Construction Tool
Set (PCCTS), the parser/scanner tool used in the development of Ada/CS. Chap-
ter 5 describes the Ada/CS compiler symbol table, Chapter 6 describes the Ada/CS
type mechanisms, and Chapter 7 describes Ada/CS E-Machine code generation con-
siderations. The current status of the Ada/CS compiler is discussed in chapter 8.

Since there are many E-code examples used throughout the thesis, appendices
A and B are included for completeness. Appendix A describes the E-machine in-
struction set and appendix B describes the E-machine addressing modes. Both of

these appendices are adapted from chapter 2 of Birch’s thesis.

CHAPTER 2

THE E-MACHINE

This chapter is included to provide a description of the E-machine and is adapted
from chapter 5 of Patton’s thesis [Patton 89], chapters 1, 2, and 3 of Birch’s thesis
[Birch 90], and chapters 2 and 3 of Goosey’s thesis [Goosey 93]. This chapter is a
summary and update of information from those three theses (much of the material
is taken verbatim). New E-machine features that have been added as a result of
this thesis are noted by a leading asterisk (*).

The E-machine is a virtual computer with its own machine language, called
E-code. The E-code instructions are described in appendix A; these instructions may
reference various E-machine addressing modes, which are described in appendix B.
The E-machine’s task is to execute E-code translations of high level language pro-
grams. The miniPascal language was the first language to be translated into E-code;
Ada/CS is the second. The real purpose of the E-machine is to support the DY-
NALAB program animation system, as described more fully in [Ross 91], [Birch 90],
[Ross 93] and in Patton’s thesis [Patton 89], where it was called a “dynamic display

system.”

E-machine Design Considerations

The fact that the E-machine’s sole purpose is to support program animation
was central to its design. The E-machine operates as follows. After the E-machine
is loaded with a compiled E-code translation of a high level language program, it
awaits a call from a driver program (the animator). A call from the animator causes
a group of E-code instructions, called a packet, to be executed by the E-machine. A
packet contains the E-code translation of a single high level language construct, or
animation unit, that is to be highlighted by the animator. An animation unit could

be a complete high level language assignment statement, for example

A =X + 2%Y;

which is to be highlighted as a result of a single call from the animator; the cor-
responding packet would be the E-code instructions that translate this assignment
statement. Another animation unit could be just the conditional part of an if state-
ment; in this case the corresponding packet would be just the E-code instructions
translating the conditional expression. It is the compiler writer’s responsibility to
identify the animation units in the source program so that corresponding E-code
packets can be generated. After the E-machine executes a packet, control is re-
turned to the animator, which then performs the necessary animation activities
before repeating the process by again calling the E-machine to execute the packet
corresponding to the next animation unit. This process will be described in more
detail later in this chapter.

Since the E-machine’s purpose is to enable program execution dynamics of high
level programming languages to be displayed easily by a program animator, it had

to incorporate the following:

e structures for easy implementation of high level programming language
constructs;

e a simple method for implementing functions, procedures, and parameters;

e the ability to execute either forward or in reverse.

The driving force in the design of the E-machine was the requirement for reverse
execution. The approach taken by the E-machine to accomplish reverse execution
is to save the minimal amount of information necessary to recover just the previous
E-machine state from the current state in a given reversal step. The E-machine can
then be restored to an arbitrary prior state by doing the reversal one state at a time
until the desired prior state is obtained. This one-step-at-a-time reversal means that
it 1s necessary only to store successive differences between the previous state and
the current state, instead of storing the entire state of the E-machine for each step
of execution.

One other aspect of program animation substantially influenced the design of the
reversing mechanism of the E-machine. Since the animator is meant to animate high
level language programs, the E-machine actually has to be able to effect reversal
only through high level language animation units in one reversal step, not each low
level E-machine instruction in the packet that is the translation of an animation
unit. This observation led to further efficiencies in the design of the E-machine
and the incorporation of two classes of E-machine code instructions, critical and
non-critical. An E-machine instruction within a packet is classified as eritical if
it destroys information essential to reversing through the corresponding high level
language animation unit; it is classified as non-critical otherwise. For example, in
translating the animation unit corresponding to an arithmetic assignment statement,
a number of intermediate values are likely to be generated in the corresponding E-
code packet. These intermediate values are needed in computing the value on the

right-hand side of the assignment statement before this value can be assigned to the

variable on the left-hand side. However, the only value that needs to be restored
during reverse execution as far as the animation unit is concerned is the original value
of the variable on the left-hand side. The intermediate values computed by various
E-code instructions are of no consequence. Hence, E-code instructions generating
intermediate values can be classified as non-critical and their effects ignored during
reverse execution. It is the compiler writer’s responsibility to produce the correct E-
code (involving critical and non-critical instructions) for reverse execution. However,
it should also be noted that the E-machine has the flexibility to accurately execute
E-code in reverse, instruction by instruction (rather than a packet at a time), by

simply designating each E-code instruction as critical.

E-machine Architecture

Figure 1 shows the logical structure of the E-machine. A stack-based architecture
was chosen for the E-machine; however, a number of components that are not found
in real stack-based computers were included.

Program memory contains the E-code program currently being executed by the
E-machine. Program memory is loaded with the instruction stream found in the
CODESECTION of the E-machine object code file, which is described later in this
chapter. The program counter contains the address in program memory of the next
E-code instruction to be executed. The previous program counter, needed for reverse
execution, contains the address in program memory of the most recently executed
E-code instruction.

Packet memory contains information about the translated E-code packets and

their corresponding source language animation units. Packet memory, which is

Label Label Variable Variable
Registers Stacks Registers Stacks
Index
Register D
] .
| L T T
LA J R
L 1
Address M N
Register 1o G
] ik
] O S
R P
Y A
CPU C
E
Evaluation Dynamic
Stack Fvaluation Scope Dynamic
Register Stack Stack Scope
I:l Register Stack
I: STATIC
SCOPE
MEMORY
Return Save
Address Return Dynamic Save
Stack Address Scope Dynamic
Register Stack Stack Scope P
Register Stack Previous R
I:l Program 0
Counter G
e
A
Save Stack Save M
Register Stack SOURCE
MEMORY Program M
Packet Counter E
Register M
:IT 0
[PACKET i R
MEMORY Y

Figure 1: The E-machine

10

loaded with the information found in the PACKETSECTION of the E-machine ob-
ject code file, essentially effects the “packetization” of the E-code program found
in source memory. Packet information includes the starting and ending line and
column numbers of the original source program animation unit (e.g, an entire as-
signment statement, or just the conditional expression in an if statement) whose
translation is the packet of E-code instructions about to be executed. Other packet
information includes the starting and ending program memory addresses for the
E-code packet, which are used internally to determine when execution of the packet
is complete. The packet register contains the packet memory address of the packet
information corresponding to either the next packet to be executed, or the packet
that is currently being executed.

Source memory holds an array of strings, each of which is a copy of a line of
source code for the compiled program. Source memory is loaded from the E-machine
object file’s SOURCESECTION at run time and is referenced only by the animator
for display purposes.

The variable registers are an unbounded number of registers that are assigned
to source program variables, constants, and parameters during compilation of a
source program into E-code. Each identifier name representing memory in the source
program will be assigned its own unique variable register in the E-machine. For
example, in an Ada/CS program, a variable named Result might be declared in
the current program scope and another variable—also named Result—might be
declared in another enclosing procedure scope. The compiler will assign a unique
variable register to each of these two variables. Once a variable is assigned a variable
register, the register remains associated with the variable for the duration of the
program’s compilation and subsequent execution, regardless of whether the variable

is currently active or not.

11

The information held in a variable register consists of the corresponding vari-
able’s size (e.g., number of bytes) as well as a pointer to a corresponding variable
stack. Fach variable stack entry, in turn, holds a pointer into data memory, where
the actual variable values are stored. The variable stacks are necessary because a
particular variable may have multiple associated instances due to its being declared
in recursive procedures or functions. In such instances, the top of a particular
variable’s register stack points to the value of the current instance of the associ-
ated variable in data memory; the second stack element points to the value of the
previous instantiation of the variable, and so on. The E-machine’s data memory rep-
resents the usual random access memory found on real computers. The E-machine,
however, uses data memory only to hold data values (it does not hold any of the
program instructions).

The string space component of the E-machine’s architecture contains the values
of all string literals and enumerated constant names encountered during the compi-
lation of a program. The string space is loaded with the information contained in
the STRINGSECTION of the E-machine object file. Currently, this string space is
used only by the animator when displaying string constant and enumerated constant
values. A more detailed discussion of the interaction of the string space and variable
registers is found later in this chapter.

The label registers are another unique component of the E-machine required for
reverse execution. There are an unbounded number of these registers, and they are
used to keep track of labeled E-code instructions. Each E-code label instruction
is assigned a unique label register at compile time. The information held in a label
register consists of the program memory address of the corresponding FE-code label
instruction as well as a pointer to a label stack. A label stack essentially maintains
a history of previous instructions that caused a branch to the label represented by

the label register in question. During reverse execution, the top of the label stack

12

allows for correct determination of the instruction that previously caused the branch
to the label instruction.

The index register is found in real computers and serves the same purpose in
the E-machine. In many circumstances, the data in a variable is accessed directly
through the appropriate variable register. However, in the translation of a high level
language data structure, such as an array or record, the address of the beginning
of the structure is in a variable register; to access an individual data value in the
structure, an offset—stored in the index register—is used. When necessary, the
compiler can therefore utilize the index register so that the E-machine can access
the proper memory location via one of the indexed addressing modes.

The address register is provided to allow access to memory areas that are not
accessible through variable registers. For example, a pointer in Pascal is a variable
that contains a data address. Data at that address can be accessed using the address
register via the appropriate E-machine addressing mode. The address register can
be used in place of variable registers for any of the addressing modes.

As in many real computers, the results of all arithmetic and logical operations
are maintained on the evaluation stack; the evaluation stack register keeps track of
the top of this stack. For example, in an arithmetic operation, the operands are
pushed onto the evaluation stack and the appropriate operation is performed on
them. The operands are consumed by the operation and the result is pushed onto
the top of the stack. An assignment is performed by popping the top value of the
evaluation stack and placing it into the proper location in data memory.

The return address stack (or call stack) is the E-machine’s mechanism for imple-
menting procedure and function calls. When a subroutine call is made, the program
counter plus one is pushed onto the return address stack. Then, when the E-machine
executes a return from subroutine instruction, all it has to do is load the program

counter with the top of the return address stack. A pointer to the top of the return

13

address stack is kept in the return address stack register.

The save stack contains information necessary for reverse execution. Whenever
some critical information (as determined by the execution of a critical instruction) is
about to be destroyed, the required information is pushed onto the save stack. This
ensures that when backing up, the instruction that most recently destroyed some
critical information can be reversed by retrieving that critical information from the
save stack. The save stack register points to the top of the save stack.

The dynamic scope stack allows the animator to determine all currently active
scopes for memory display. The animator must be able to display variable values
associated with the execution of a packet both from within the current invocation of
a procedure (or function) and from within the calling scope(s). That is, the animator
must have the ability to illustrate a program’s run time stack during execution. The
Static Scope Table, which is loaded into static scope memory from the E-machine
object file’s STATSCOPESECTION, provides the animator with the information
relevant to the static nature of a program (e.g., information pertaining to variable
names local to a given procedure). However, the specific calling sequence resulting
in a particular invocation of a procedure (or function) is obviously not available in
the static scope memory.

To keep track of the set of active scopes at any point during program execution,
the dynamic scope stack provides the dynamic chain as found in the run time stack
of activation records generated by most conventional compilers. (Even though the
E-machine’s return address stack could have been used to hold this information, a
separate dynamic scope stack was included in the E-machine architecture for clarity.)
At any given point during program execution, the dynamic scope stack entries reflect
the currently active scopes. Each dynamic scope stack entry—corresponding to a
program name, a procedure name, or a function name—contains the index of the

Static Scope Table entry describing that name (i.e., a static scope name). Once these

14

indices are available, the animator can then use the Static Scope Table information
to determine the variables whose values must be displayed following the execution
of a packet. The animator needs access to the entire dynamic scope stack in order to
display all pertinent data memory information following the execution of any given
packet. The dynamic scope stack register points to the top of the dynamic scope
stack.

In order to handle reverse execution, a save dynamic scope stack was added to
the E-machine architecture. This stack records the history of procedures and/or
functions that have been called and subsequently returned from. The save dynamic
stack register points to the top of this stack.

Finally, the CPU is what executes E-Machine instructions. It is the E-Machine

emulator originally programmed by Birch and is described in the next section.

E-machine Emulator

The E-machine emulator was designed and written by Michael Birch and is
described in his thesis [Birch 90]. The emulator’s design essentially follows the design
of the E-machine presented the previous sections of this chapter. The emulator was
written in ANSI Standard C for portability and has been compiled on a variety
of hardware platforms from a MS-DOS based IBM PC with a variety of C/C++
compilers, to Silicon Graphics and DEC Alpha workstations using GNU C and the
system C compilers.

Within the complete DYNALAB environment, the emulator acts as a slave to
the program animator, executing a packet of E-code instructions upon each call.

During the course of Ada/CS development, a Unix Motif animator was also being

15

developed. A pre-release version of this animator was used to test compiled Ada/CS

programs.

E-machine Object File Sections

The E-machine emulator defines the object file format that must be generated
by a compiler. As a result of the Ada/CS compiler development, several changes
were made to the E-machine object file definition and are denoted with a leading as-
terisk (*) in the following discussion. A single E-code object file ready for execution
on the E-machine consists of eight sections, which may occur in any order. Each
section is preceded by an object file record containing the section’s name followed
by a record that contains a count of the number of records in that particular sec-
tion. Each of these eight sections (whose names are shown in capital letters) holds
information which is loaded into a corresponding E-machine component at run time
as follows:

e *the HEADERSECTION, which is loaded into animator memory;

the CODESECTION, which is loaded into program memory;
e *the PACKETSECTION, which is loaded into packet memory;
o the VARTABLESECTION, which is loaded into the size information associated

with the variable registers;

e the LABELSECTION, which is loaded into the label program address infor-

mation associated with the label registers;
e the SOURCESECTION, which is loaded into source memory;
e *the STATSCOPESECTION, which is loaded into static scope memory;
o the STRINGSECTION, which is loaded into the string space.

The file sections are described below.

16

*The HEADERSECTION

The HEADERSECTION was created during Ada/CS development and is a repos-
itory for specific information about the program, such as the E-Machine version
number and the compiler version number with which the program was compiled,
as well as general information about the program itself (e.g. a description of the
program such as “this program illustrates a linked list”). The HEADERSECTION
is not yet fully implemented and new things will find their way into this section as

time goes on.

The CODESECTION

The CODESECTION contains the translated program—the E-code instruction stream.
Even though the instruction stream can be thought of as a stream of pseudo as-
sembly language instructions, the instructions are actually contained in an array of
C structures, and are loaded from the CODESECTION into the E-machine’s pro-
gram memory at run time. Fach E-code instruction structure contains the following

information:
e an operation code (e.g., push or pop);
e the instruction mode (critical or non-critical);

e The data type of the operand (e.g., I indicates INTEGER);

e Either a numeric data value or an addressing mode.

*The PACKETSECTION

The PACKETSECTION consists of packet structures describing source program
animation units and their translated E-code packets. These structures are loaded
into the E-machine’s packet memory at run time. Each packet structure contains

the following information:

17

o the packet’s starting and ending E-code instruction addresses in program mem-
ory;

o the starting and ending line and column numbers in the original source file of
the program animation unit corresponding to the packet;

e an index into the current scope block of the Static Scope Table (discussed later
in this chapter);

*a variable describing how the animator should display information when the

packet is executed (discussed later in this chapter);
*a variable register number that will hold the result of the execution of a

conditional expression.

The VARIABLESECTION

The VARIABLESECTION consists of structures describing the variable registers
used by the compiled program. A variable register structure consists of a single
field that contains the size of the data represented by the register. For example, on
a DOS machine where the addressable unit is a byte, a variable representing a 32-bit
integer would have a size of 4. This information is used to initialize size information

held in the E-machine’s variable registers.

The LABELSECTION

The LABELSECTION consists of label structures describing the label numbers
generated by the compiled program. A label structure consists of a single field that
contains the program address at which the corresponding label is defined. This
information is used to initialize the label program address information held in the

E-machine’s label registers.

The SOURCESECTION

The SOURCESECTION contains a copy of the source program being executed.

Each record in this section corresponds to a line of original source code, and is loaded

18

into the E-machine’s source memory at run time. Source memory is referenced only
by the animator for display purposes. The animator references source memory
via packet memory information that describes correlations between the currently
executing E-code packet and the corresponding source program animation unit.
The animator references the packet structure fields that hold starting and ending

line and column numbers in source memory to determine the animation unit to

highlight.

*The STATSCOPESECTION

The STATSCOPESECTION was originally named the SYMBOLSECTION in Birch’s
thesis. It contains a complex structure—the Static Scope Table (called the symbol
table in Birch’s thesis)—which is used by the animator to determine the variable
values that should be displayed upon execution of a packet. The name was changed
to Static Scope Table in order to avoid confusion with the compiler’s symbol table.
The STATSCOPESECTION records are loaded into the E-machine’s static scope
memory at run time.

The Static Scope Table is logically divided into “scope blocks,” each of which
describes identifiers declared within a single static scope of the source program. A
more complete discussion of this section is found later in this chapter. Fach Static

Scope Table entry contains the following information:

e the name of the identifier being described (e.g., a variable name or a procedure
name);

e upper and lower bounds (for array variables);

e the index of the Static Scope Table entry containing the next array index
bounds (for multidimensional arrays);

o the offset value (for record fields);

e an enumerated value indicating the data type (e.g., INTEGER, RECORD, or
STRING);

19

o the record size (for arrays of records);
e a pointer to this entry’s parent Static Scope Entry;

e a pointer to the child of this entry (e.g., if this static scope entry describes a
procedure, this field would hold the index of the first entry in the static scope
block describing the variables declared local to the procedure);

e a variable register number (for variable names);

e a number statically assigned to procedure and functions entries; this number
is used in determining the dynamic scoping level at execution time;

*a value denoting whether a variable name is an array, and if so, whether it

is static or dynamic;

e *a value describing the index type of an array variable (e.g. integer, enumer-
ated, or character).

The STRINGSECTION

The STRINGSECTION contains the values of string literals and enumerated con-
stant names. The contents of the STRINGSECTION are loaded into the E-machine’s
string space at run time. The string space allows the animator to have dynamic ac-
cess to the names of an enumerated type as well as the internal numeric values
corresponding to the names. The animator can also retrieve the values of string

constants from the string space.

E-machine Compilation Considerations

Many of the compilation concerns confronting E-machine compiler writers are
the same as those faced by writers of compilers for conventional machines. There
are, however, several unique factors that must be addressed when compiling for the

E-machine’s animation environment, including:

20

identification and translation of program animation units into E-code packets;

generation of the Static Scope Table;

providing access to names associated with enumerated type variables;

identifying critical and non-critical E-code instructions.

Program Animation Units and E-code Packets

As briefly described earlier in this chapter, the animation of a high level language
program is accomplished by dividing its source code into program “chunks” called
animation units. The compiler is responsible for isolating a source program’s ani-
mation units. Each animation unit, in turn, must be translated into a group—or
packet—of E-code instructions along with corresponding descriptions of the anima-
tion unit and its translated E-code packet via a packet structure.

When a high level language program is animated, the animator begins execution
by displaying the first several lines of the source code and highlighting the first
animation unit in the program. The animator then awaits a response from the
user. When the user responds, the animator calls the F-machine to execute the
currently highlighted animation unit of the program. Actually, what the E-machine
executes is the packet of instructions corresponding to the animation unit. When
the E-machine has completed execution of the instructions contained in the packet,
control is returned to the animator. The animator then performs various animation
tasks (e.g., displaying pertinent data memory values) and then again awaits a user
response before repeating this process by highlighting the next animation unit and so
forth. Thus, two of the challenging tasks facing the compiler designer are identifying
animation units and properly translating them into E-code packets for successful
animation. The following two sections present an example program to illustrate

how the Ada/CS compiler accomplishes these two tasks.

21

Identifying Program Animation Units

Package Body Sampl Is
I,J,K : Integer;

N : Float;

0
1
2
3
4
5 Procedure Init(X,Y : in out Integer) Is
6 t : integer;

.

8

9

Begin
X :=1;
Y := 2;
10 End;
11
12 Begin

13 Init(I,J);
14 If T < 10 Then

15 K := 100;
16 else

17 K := 0;
18 end if;

19 N := K + I%*J;
20 end;

Figure 2: Source Code for Program Sampl

The compiler identifies individual animation units as it is parsing the high level
language source code. Consider the Ada/CS program in figure 2 (the numbers on
the left correspond to line numbers in the source program file). For this program,
the Ada/CS compiler identifies the twenty animation units shown in figure 3 (the
numbers on the left correspond to each animation unit’s associated packet struc-
ture, as discussed in the next section). These animation units will be successively
highlighted (in the original source program of figure 2) by the animator as it per-
forms the animation of the program. It should be noted that the determination

of animation units is arbitrary and can vary from one compiler to another based

22

0 Package Body Sampl Is
1 I,J,K : Integer;

2 N : Float;

3 Procedure Init(X,Y : in out Integer) Is
4 t : integer;

5 Begin

6 X :=1;

7 Y := 2;

8 End;

9 Begin

10 Init(I,J);

11 If

12 I < 10

13 Then

14 K := 100;

15 else

16 K := 0;

17 end if;

18 N := K + I%*J;

19 end;

Figure 3: Animation Units Identified in Program Sampl

on subjective esthetics of program animation. As can be seen from this example,
an animation unit can correspond to “chunks” of source code representing a single
keyword, an entire program statement, the conditional part of an if statement, and

so forth.

Translating Program Animation Units into E-code Packets

Once the compiler has identified an animation unit, it must then translate this
unit into a corresponding packet of F-code instructions along with an associated
descriptive packet structure. Thus, compilation of the example given in figure 2
would result in the generation of twenty-three E-code packets and twenty-three
corresponding packet structures. Three of these packets have no corresponding
source and are explained later so there are twenty packets with an associated source

“chunk”. Figure 4 shows the pseudo assembly language representation of the E-code

23

instructions generated for the Ada/CS program shown in figure 2.

The numbers shown on the left in figure 4 correspond to program memory ad-
dresses (instruction numbers). The individual packets, corresponding to the anima-
tion units of figure 3, are shown separated by blank lines in figure 4.

Table 1 shows the array of packet structures—called the Packet Table—describing
the individual packets resulting from the translation of the program of figure 2. The
PacketNumber field (column) is included for clarity—it is not part of the Packet
Table. The first two fields in the Packet Table (StartAddr and EndAddr) give the
starting and ending addresses in program memory of the E-code packet. The next
four fields (StartLine, StartCol, EndLine, and EndCol) demark the physical location
of the packet’s corresponding program animation unit in the source program array.
The Scopelndex field in the Packet Table is discussed in the next section of this
chapter. The final two fields (DisplayPacket and TestResultVar) provide additional
information necessary for animating an animation unit.

As might be guessed by the fact that there are twenty source “chunks” and
twenty-three packets, not every packet must correspond to a part of the source
code. There are several different ways of displaying packets, which the animator
determines by examining the DisplayPkt field of the current packet. The DisplayPkt
of the packet structure is an 8-bit field made up by combining the following several

flags together:

e Update variable display after execution when going forward;

e Pause before execution of this packet when going forward;

Highlight the source code for this packet when going forward;

Update variable display after execution when going backward;

Pause before execution of this packet when going backward;

Highlight the source code for this packet when going backward.

0 pushd c, I, C13 44 return c
1 inst ¢, VO
2 idinst c, Vi 45 1label ¢, LO
3 push ¢, I, C-2147483648
4 pop c, I,V0 46 push c, I,V6
5 push c, I, C2147483647 47 mnop ¢
6 popc, I,V1 48 push c, I,V7
7 inst c, V2 49 nop ¢
8 inst ¢, V3 50 call ¢, L1
9 push ¢, R, €C-100.000000 51 1label c, L8
10 pop c, R,V2 52 pop c, I,V7
11 push ¢, R, €100.000000 53 pop c, I,V6
12 pop c, R,V3
13 inst c, V4 54 nop c
14 push ¢, I, CO
15 pop c, I,V4 55 push c, I,V6
16 inst c, V5 56 push c, I, C10
17 push ¢, I, C65536 57 less c, 1
18 pop c, I,V5 58 brf c, L9
19 nop ¢
59 nop ¢
20 inst c, V6
21 inst c, V7 60 push c, I, C100
22 inst c, V8 61 pop c, I,V8
23 inst ¢, V9 62 br c, L10
24 br c, LO 63 label c, L9
25 label c¢, L1 64 push c, I, CO
26 pushd c, I, C10 65 pop c, I,V8
27 inst c, Vi1
28 pop c, I,Vi1l 66 label ¢, L10
29 inst ¢, V10
30 pop c, I,Vi0 67 push c, I,V8
68 push c, I,V6
31 inst ¢, V12 69 push c, I,V7
70 mult c, I
32 nop ¢ 71 add ¢, I
72 cast ¢, I,R
33 pushc, I, C1 73 pop ¢, R,V9

34 pop c, I,V10
74 uninst c, VO

35 push ¢, I, C2 75 uninst c, V6
36 pop c, I,Vil 76 uninst c, V8

77 uninst c, V7
37 1label ¢, L3 78 popd ¢

38 push c, I,V10
39 push c, I,Vil
40 uninst c, Vil
41 uninst c, V12
42 uninst ¢, V10
43 popd c

Figure 4: E-code Instructions Resulting from Compilation of Program Sampl

25

Packet | Start | End | Start | Start | End | End | Scope | Display Test
Number | Addr | Addr | Line | Col | Line | Col | Index | Packet | ResultVar
0 0 19 0 0 0 20 0 07 -1
1 20 22 2 0 2 15 3 07 -1
2 23 23 3 0 3 9 4 07 -1
3 24 24 -1 -1 -1 -1 4 00 -1
3 25 30 5 0 5 40 4 07 -1
4 31 31 6 0 6 11 3 07 -1
5 32 32 7 0 7 4 3 07 -1
6 33 34 8 2 8 8 3 07 -1
7 35 36 9 2 9 8 3 07 -1
8 37 43 10 0 10 3 3 07 -1
9 44 44 10 0 10 3 4 07 -1
10 45 45 12 0 12 4 4 01 -1
11 46 53 13 2 13 11 4 07 -1
12 54 54 14 2 14 3 4 07 -1
13 55 58 14 5 14 10 4 07 10
14 59 59 14 12 14 15 4 07 -1
15 60 61 15 4 15 12 4 07 -1
16 62 62 -1 -1 -1 -1 4 07 -1
17 63 63 16 2 16 5 4 00 -1
18 64 65 17 4 17 10 4 07 -1
19 66 66 18 2 18 8 4 07 -1
20 67 73 19 2 19 14 4 07 -1
21 74 78 20 0 20 3 4 07 -1

Table 1: Packet Table Resulting from Compilation of Program Sampl

26

The standard display packet would have all these flags set. Packets without
Highlight-Forward, Pause-Forward, Highlight-Backward, and Pause-Backward are
effectively “invisible” and are executed automatically by the animator. These “in-
visible” packets are very useful for situations in which there is no source code anima-
tion unit for the corresponding e-code being executed. For example, in the packets
in figure 4 for the source code in figure 2, packets 24 and 62 are invisible. Packet
24 branches from the variable instantiations over the subroutines to the start of the
program. Packet 62 is the branch over the “else” part of the if statement. Nei-
ther of these two packets has a corresponding animation unit in the source code.
Ada/CS uses invisible packets on occasions such as popping return parameters after
a subroutine call and copying function return values into their destinations.

TestResultVar was added during the development of the Ada/CS compiler to
further facilitate program animation. This field is the number of a variable register

that holds the result of a conditional expression for the animator to display. For
example, execution of the expression

1f j<5 and not k>5 or flag then
would be difficult for a user to follow. The compiler would generate code to store
the result of the conditional expression evaluation in a variable register and set the
TestResultVar to that register number. The animator may use this variable register

to display the result, making understanding the program simpler.

Generation of the Static Scope Table

The compiler writer must also provide information describing all of the data memory
variables that the animator must display. This information is provided in the Static
Scope Table, a linear array which is, in turn, logically divided into numerous scope
blocks. Each scope block describes the identifiers (e.g., variable names and procedure

names) declared in a single static scope in a program. Even though this information

27

is obtained from the compiler’s symbol table, the generation of the Static Scope
Table is not a straightforward task due to scope nesting characteristics of many
high level languages.

Table 2 shows the Static Scope Table that is generated as a result of compiling
the Ada/CS program given in figure 2. The Entry (entry number) column, or field,
is included for clarity—it is not part of the Static Scope Table. This Static Scope
Table consists of three scope blocks—a block describing the identifiers declared
within the scope of procedure Init (entries 0—4), a block describing the identifiers
declared within the scope of program Sampl (entries 5-11), and a “bootstrap” block

describing the main program entry (entries 12-14).

En Id Array | Upr | Lwr | Nxt | Off Type Rec | Par | Ch | Var | Proc | Index
try | Name | Type | Bnd | Bnd | Idx | set Siz | ent | ild | Reg | Num | Type
Scope block describing procedure Init

0 - - - - - HEADER - 5 - - - -

1 X - - - - - INTEGER - - - 5 - -

2 Y - - - - - INTEGER - - - 4 - -

3 t - - - - - INTEGER - - - 6 - -

4 - - - - - END - - - - - -
Scope block describing program Sampl

5 - - - - - HEADER - 12 - - - -

6 1 - - - - - INTEGER - - - 2 - -

7 J - - - - - INTEGER - - - 1 - -

8 K - - - - - INTEGER - - - 0 - -

9 N - - - - - REAL - - - 3 - -
10 Init - - - - - | PROCEDURE - - 0 - 1 -
11 - - - - - END - - - - - -
Bootstrap scope block

12 - - - - - HEADER - - - - - -
13 | Sampl - - - - - PROGRAM - - 5 - 0 -
14 - - - - - END - - - - - -

Table 2: Static Scope Table Resulting from Compilation of Program Sampl

28

The bootstrap block contains three entries: the HEADER and END entries that
delimit the scope block and a PROGRAM entry containing information about the
program itself. There are two fields of interest in the PROGRAM entry; these are the
child pointer field (Child) and the procedure number field (ProcNum). The Child
field contains the index of the first entry of the scope block describing the identifiers
declared in the program. The ProcNum field contains a compiler-generated number
that is used in conjunction with dynamic scoping.

The entries in the scope block describing the identifiers declared in the pro-
gram scope consist of the HEADER and END delimiter entries as well as entries
describing each of the scope’s identifiers. The Parent field of the HEADER entry in
this scope block contains the index of the first entry of the bootstrap scope block.
This scope block’s PROCEDURE entry—describing procedure Init—uses the Child
field, which contains the index of the first entry of the scope block describing the
identifiers declared in procedure Init. The ProcNum field is also used in the PRO-
CEDURE entry; it contains a compiler-generated number to be used in conjunction
with dynamic scoping.

The entries in the scope block describing the identifiers declared in procedure Init
consist of the HEADER and END delimiter entries as well as entries describing each
identifier declared in the scope, in this case the procedure’s parameters. The Parent
field of the HEADER entry of this scope block contains the index of the first entry
of the scope block containing the procedure’s declaration.

Simple variables such as integer, float, and boolean, may be simply described
in the static scope table by a name, type, and variable register. Aggregate types,
such as arrays and records, need more description. Consider, for example, the array
declaration

type matrix is array(1..10) of integer;
a : matrix;

In order for the animator to correctly display the elements of this array, it would

29

have to know about the element type of the array and its ranges. The same may be
said for records—the animator needs to know the names and types of the record’s
elements. Separate scope blocks are made to describe records and arrays greater
than one dimension.

A static scope block for the above array could be as shown in table 3.

En Id Array | Upr | Lwr | Nxt | Off | Type Rec | Par | Ch | Var | Proc Index
try Name Type | Bnd | Bnd | Idx | set Siz | ent | ild | Reg | Num Type
0 | ProcName - - - - - HEADER - - - - 1 -
1 a STATIC 10 1 - - INTEGER - - - 3 - INTEGER
2 - - - - - - END - - - - - -

Table 3: Static Scope Block for One Dimensional Array

The array variable “a” at position 1 defines the element type of the array (IN-
TEGER), its constant upper and lower bounds, and the index type of the array
(INTEGER).

The IndexType of the array uses the same type elements that appear in the
“type” field of the static scope structure. High level languages such as Pascal and
Ada allow arrays to be indexed by integers, enumerated names, characters, so the
IndexType may be INTEGER, ENUMINT, CHARACTER, or BOOLEAN.

A two-dimensional array is more complex. Because there is only one set of fields
for each dimension, further dimensions must be placed in their own scope blocks.
Suppose we had the following array declaration, whose static scope table is shown
in table 4.

type Matrix is array (1..10, FALSE..TRUE) of integer;
a : Matrix;

The first dimension is described by the variable “a” in position 4 and the second
dimension’s static scope position is the NextIndex field of the structure, which is 0.
The second dimension, which is indexed by a boolean type range, is described in
the static scope block from 0 to 2. The array bounds are the integer representation

of the boolean range.

En 1d Array | Upr | Lwr | Nxt | Off Type Rec | Par | Ch | Var | Proc Index
try Name Type | Bnd | Bnd | Idx | set Siz | ent | ild | Reg | Num Type
0 Matrix - - - - - HEADER - - - - - -
1 - STATIC 1 0 - - - - - - - - BOOLEAN
2 - - - - - - END - - - - - -
3 ProcName - - - - - HEADER - - - - 1 -
4 a STATIC 10 1 0 - INTEGER - - - 3 - INTEGER
5 - - - - - - END - - - - - -

Table 4: Static Scope Block for Two Dimensional Array

In the case of an array using an enumerated type as the index, the upper and
lower ranges will be the indices into the string section (described later in this chap-
ter).

As implemented, Ada/CS arrays are handled differently due to their dynamic
nature—array bounds may be specified by variables that cannot be determined until
run time. To this end, ArrayType would be DYNAMIC which causes the animator
to interpret the upper and lower bounds as registers that contain the ranges.

Record static scope blocks and their variables are handled a bit differently. Static
scope entries for record variables have their child field set to the static scope table
position of their type. By following these child indices, the animator can find all

necessary record type information. For example, suppose we have the record

type complex is record
real_part : float;
imag_part : float;
end record;
cl, c2 : complex;
The static scope table for the record and its variables is shown in table 5. The
record variables in entries 5 and 6 contain the record size and a child index set to
the static scope block that describes their record type. Entry 0 is the start of the

block describing record “Complex”. Fach record member has its offset set to the

byte offset from the start of the record.

En Id Array | Upr | Lwr | Nxt | Off Type Rec | Par | Ch | Var | Proc | Index
try Name Type | Bnd | Bnd | Idx | set Siz | ent | ild | Reg | Num | Type

0 Complex - - - - - | HEADER - - - - - N

1 real_part - - - - 0 REAL - - - _ _ _

2 imag_part - - - - 4 REAL - - - - _ _

3 - - - - - - END - - - - - N

4 | ProcName - - - - - | HEADER - - - - 1 -

5 cl - - - - - | RECORD | 8 - 0 7 - -

6 c2 - - - - - | RECORD | 8 - 0 8 - -

7 - - - - - - END - - - - - -

Table 5: Scope Block of Record Complex

The ProcNum Field

As each program, procedure, and function name identifier is encountered during
compilation, it is assigned a unique “procedure number.” The identifier names are
referred to as static scope names in the following discussion. The procedure number
is produced by a counter variable in the compiler’s semantic analysis module. Thus,
the procedure number assigned to an Ada/CS program name is always 0. The next
static scope name declaration encountered in the program would be assigned the
procedure number 1, and so on. A static scope name’s procedure number is stored
as one of its symbol table attributes. This number is then placed in the ProcNum
field of the Static Scope Table entry describing the static scope name.

The animator uses the ProcNum field in conjunction with the dynamic scope
stack when determining the dynamics of program execution. The use of this field is
best explained by an example. The program shown in figure 5 contains a recursively
called function (function Fact). That Fact is recursive implies that for any given
call to function Fact, the animator must be able to determine the “depth” of the
pertinent data memory values associated with the variables declared in function
Fact, as well as the depths of any variables in the calling (program) scope. These
values are retrieved by querying the appropriate variable stacks, as discussed earlier

in this chapter. Thus, upon the final recursive call to function Fact, the animator

32

should be able to display data memory values as shown in figure 6.

Package Body Ftrl Is
num, nfact : Integer;

Function Fact(n:Integer) Return Integer Is

Begin
If n = 0 Then
Return 1;
Else
Return n * Fact(n-1);
End If;
End;
Begin
num := 3;
nfact := Fact(n);
End;
Figure 5: Source Code for Program Ftrl
Package Body Ftrl Is Program Ftrl
num = 3
num, nfact : Integer; nfact is undefined
——————— Fact --—————-
Function Fact(n:Integer) Return Integer Is n =3
Begin
IFn=0Then | =—==———- Fact ---—————-
Return 1 n=2
Else
Return n * Fact(n-1) | ======- Fact --------
End If; n=1
Begin | —=====- Fact ---—-—-—-—-
num := 3; n=20
nfact := Fact(num);
End;

Figure 6: Animation Display After Final Recursive Call of Function Fact

After the E-machine has been loaded with the E-code translation of a source

program, the animator queries the E-machine to determine the total number of

33

static “procedure” scopes that are described in the Static Scope Table. The Static
Scope Table for the example in figure 5 is shown in table 6. The animator then
dynamically allocates a procedure count array that contains an entry corresponding
to each of these scopes. Thus, for the program shown in figure 5, this array has
two entries. Entry 0 corresponds to the program scope and entry 1 corresponds
to function Fact. During program animation, the animator sets the values of the
procedure count array entries to reflect the current number of active calls to the
corresponding procedure or function. (This means that the animator reinitializes
the values in the procedure count array every time control is passed to the animator.)
At the same time, the E-machine’s dynamic scope stack contains a history of active
scopes, with the Static Scope Table entry number of the most current scope being

the value at the top of this stack.

En Id Array | Upr | Lwr | Nxt | Off Type Rec | Par | Ch | Var | Proc | Index
try | Name | Type | Bnd | Bnd | Idx | set Siz | ent | ild | Reg | Num | Type
Scope block describing function Fact

0 - - - - - HEADER - 4 - - - -

1 n - - - - - INTEGER - - - 2 - -

2 Fact - - - - - INTEGER - - - 3 - -

3 - - - - - END - - - - - -
Scope block describing program Firl

4 - - - - - HEADER - 9 - - - -

5 num - - - - - INTEGER - - - 1 - -

6 nfact - - - - - INTEGER - - - 0 - -

7 Fact - - - - - | FUNCTION - - 0 - 1 -

8 - - - - - END - - - - - -
Bootstrap scope block

9 - - - - - HEADER - - - - - -
10 Ftrl - - - - - PROGRAM - - 4 - 0 -
11 - - - - - END - - - - - -

Table 6: Static Scope Table Resulting from Compilation of Program Ftrl

Now, consider the animation of the current example. Suppose the program has
executed to the point that it is in the third recursive call to function Fact. When the

animator begins displaying data memory variables after the execution of the packet

34

translating the animation unit Fact:=1, the procedure count array and the dynamic
scope stack are in the state shown in figure 7. The values in the procedure count
array indicate that the program Ftrl has one active “call” and that function Fact has
four active calls. In this example, the animator begins its retrieval of data memory
values by examining the value at the bottom of the dynamic scope stack. The bottom
stack value is 10, which means that the animator now examines the tenth entry in
the Static Scope Table. This entry is a PROGRAM entry describing Ftrl. The
ProcNum field in the PROGRAM entry has the value 0. Next, the animator will
examine entry 0 in the procedure count array to determine the depth of the variables
to be displayed for this invocation of the program scope. Since the program scope
cannot be called recursively, this value will always be 1. Thus, when the animator
retrieves the values of the variables described in the program’s child scope block, it
will instruct the E-machine to retrieve the data memory values associated with the
top of the appropriate variable stacks. After these values have been displayed, the

animator decrements the value in entry 0 of the procedure count array.

Procedure Dynamic
Count Scope
Array Stack
(Program Ftrl) 0 1 0 |10 (bottom)
(Function Fact) 1 4 1 7
2 | 7
3 1 7
4 |7 (top)

Figure 7: Procedure Count Array and Dynamic Scope Stack

35

Next, the animator examines the value in entry 1 in the dynamic scope stack.
This value is 7, corresponding to the seventh entry in the Static Scope Table. This
entry, whose ProcNum field has the value 1, describes function Fact. The animator
then examines entry 1 in the procedure count array. The current value in this entry
is 4, indicating that the animator should instruct the E-machine to retrieve data
memory values associated with the fourth level of the appropriate variable stacks
when displaying variable values described in the function’s child scope block. These
values reflect the function’s variable values resulting from its initial call from the
program scope. The animator then decrements the value in entry 1 of the procedure
count array so that the next iteration will result in displaying the values associated
with the first recursive call to function Fact. The animator continues this process

until the dynamic scope stack is exhausted, resulting in the display shown in figure 6.

The Scopelndex

There must also be some way to relate a high level language program’s dynamic
nature to the static information found in the Static Scope Table. That is, the
animator must be able to determine all of the active scopes at any given point during
execution of the program. The animator can then display the data memory values
pertinent to the most current scope as well as the data memory values associated
with the scopes in the calling sequence leading to the most current scope.

The animator retrieves dynamic scoping information from the E-machine’s dy-
namic scope stack. For instance, suppose that the animator has just highlighted the
animation unit

X :=1;
in procedure Init of figure 8. After receiving a response from the user, the animator
then calls the E-machine to execute the E-code packet corresponding to this ani-

mation unit. When the FE-machine returns control to the animator, the animator

36

must then determine the relevant data memory values to be displayed following
any changes that resulted from execution of the packet. This task is accomplished
by querying the E-machine’s dynamic scope stack, which contains a history of the
active scopes. In this example, the dynamic scope stack currently consists of two
entries, each containing an index into the Static Scope Table shown in Table 1.
The top entry contains the value 10 and the bottom entry contains the value 13.
These values indicate to the animator that procedure Init (Static Scope Table entry
number 10) is the most current active scope and that program Sampl (entry num-
ber 13) is the calling scope. By using the child pointers associated with these two
Static Scope Table entries, the animator can now determine the appropriate data
memory values to be displayed. Figure 8 shows a possible animation resulting from

the execution of this animation unit. The arrow (==>) pointing to the instruction

Y := 2; indicates where animation proceeds.
Package Body Sampl is Program Sampl
I is undefined
I,J,K : Integer; J is undefined
N : Integer; K is undefined
N is undefined
Procedure Init(X,Y:in out Integer) Is |-—--—=-=-—=-—-—----—-
Begin Procedure Init
X :=1; X=1
==>Y := 2; Y is undefined
End;
Begin
Init(I,J);
If T < 10 Then
K := 100;
Else
K := 0;
End If;
N :=K + I*xJ
End;

Figure 8: Animation Display After Execution of X := 1;

37

The Scopelndex field of the packet structure can now be explained. Suppose
that the E-machine has completed execution of the packet corresponding to the
animation unit

I,J,K:INTEGER;
and has returned control to the animator. The animator, via a query of the dynamic
scope stack, now determines that only the values of the variables contained in the
outer program scope should be displayed. The variables listed in the block describing
this scope’s variables are I, J, K, and N. However, at this point in the program’s
execution, variable N has not yet been declared, and thus should not be displayed.
The Scopelndex field of the packet structure associated with the above animation
unit contains the value 3. This value indicates to the animator that it should only
display data memory values for entries numbered 0, 1, 2, and 3 in the window
associated with the most current active scope block which in this case starts at
scope table index 5. Hence, the animator will display the values of the variables I,
J, and K (0 stands for the HEADER entry). In this case, all of these variables would
have the value “undefined,” as they have only just been declared and have not yet

had values assigned to them.

Translating Enumerated Type Variables

Ordinarily, only the internal numeric value of an enumerated type variable is re-
quired in translated object code. It is desirable, however, for program animation
purposes to have the animator display the enumerated constant name rather than
just the internal numeric value of a variable of an enumerated type. Thus, when
translating an enumerated type variable, the compiler must provide a way for the
animator to relate the variable’s internal numeric value to its corresponding constant
name. This task is facilitated by the string space component of the E-machine. The

string space holds the enumerated constant names (as well as string literals) defined

38

in an Ada/CS program.

The String Section consists of a statically allocated character array containing
all of the enumerated constant names defined in an Ada/CS program, as well as the
values of any string literals declared in the source program (which may also need
to be displayed by the animator). When the compiler encounters the definition of
a string literal or an enumerated constant name, it stores that name in the string
section.

When a program is animated, the String Section portion of the E-code file is
loaded into the E-machine’s string space. The string space is then accessed by
the animator for displaying string constants and enumerated variable values. For
example, upon completion of execution of the program in figure 9, the animator can
display the enumerated type variable values as shown in figure 10.

Figure 11 illustrates the relationship of the E-machine’s string space with the
variable registers and data memory. This illustration assumes that a variable register
associated with an enumerated type variable represents 32-bits of data memory. The
16 high-order bits of this data memory location contain the dynamically determined
internal numeric value of the enumerated constant associated with this variable;
the 16 low-order bits contain an index into the string space where the associated
enumerated constant name can be found. As can be seen in figure 11, the index
into the string space is always that of the first constant name of the enumerated
type. This is due to the fact that the compiler can statically generate code to
increment or decrement the numeric value of an enumerated type variable (e.g., for
an enumerated type control variable in a for loop). The compiler cannot, however,
statically determine in advance the absolute string space index of the enumerated
constant name associated with an enumerated type variable at any given time.
Instead, the animator has the capability to retrieve the variable’s numeric value and

the starting string space index. The animator can then step sequentially through

39

the string space until the name corresponding to the numeric value is found; the

names are null-terminated, thus allowing such a search.

Package Body Payroll Is

type Days = (MON,TUES,WED,THURS,FRI);
type Frequency = (WEEK,MONTH);

0ffDay, PayDay : Days;
PayFreq : Frequency;

Begin
0ffDay := WED;
PayDay := FRI;

PayFreq := WEEK;
End Payroll;

Figure 9: Source Code for Program Payrolll

Package Body Payroll Is Payroll
type Days is (MON,TUES,WED,THURS,FRI); Offday = WED
type Frequency is (WEEK,MONTH) ; PayDay = FRI

PayFreq = WEEK
0ffDay, PayDay : Days;
PayFreq : Frequency;

Begin
0ffDay := WED;
PayDay := FRI;

PayFreq := WEEK;
=>End Payroll;

Figure 10: Animation Display After Execution of Program Payrolll

40

Variable Variable Data String
Registers Stacks Memory Space
PayDay 0 0| 4
OffDay 1 41 2 I
PayFreq 2 — 8| 0

S =1 B P e e S Bl sl fee 1 B IS el el sl) 2 el e = e k) e =) P s e el) P)

Figure 11: String Space’s Relationship with Variable Registers and Data Memory

41

Package Body Payroll2 is

Type Days is (Mon,Tues,Wed,Thurs,Fri);
Type Daylist is Array (Mon..Fri) Of Integer;

DayCode : Daylist:

Day : Days;
Begin
For Day in Mon .. Fri loop
DayCode[Day] := 0;
End Loop;

End Payroll2;

Figure 12: Source Code for Program Payroll2

The animator also accesses the string space when displaying enumerated type
array indices. In this case, the animator retrieves the values of the enumerated type
indices through information stored in the Static Scope Table. In this example, the
Static Scope Table entry for the variable DayCode in figure 12 contains the following
information:

o I[dentifier Name: DayCode

e Upper array bound: 19

e Lower array bound: 0

e Type: INTEGER
Index type: ENUMINT
Variable Reg: 0

Type INTEGER and index type ENUMINT mean that the variable DayCode is
an array with integer elements and an enumerated index type. This indicates to
the animator that the array bounds are indices into the string space rather than

absolute numbers.

42

Identifying Critical and Non-critical E-code Instructions

The final major E-machine compilation concern is that of identifying the E-code
instructions that would destroy information that is needed (i.e., critical) for suc-
cessful reverse execution. Since the immediate concern for the Ada/CS compiler
was to produce a usable compiler, the current version of the compiler treats all
E-code instructions as critical. For example, the animation unit
N := K + I%7J;

in figure 2 corresponds to the packet of E-code instructions numbered 67 through
73 in figure 4. All of these instructions are marked critical via the “c” operand.
Only instruction number 73 is actually critical, however, as only it results in critical
information being destroyed. That is, the old value of N is being destroyed by
popping a new value into it in instruction 73; for reverse execution, this old value
of N must be saved. Thus, the packet of FE-code instructions corresponding to this
animation unit could be generated as shown in figure 13, where the operand “n”

indicates a non-critical instruction.

67 push n, I, V8
68 push n, I, V6
69 push n, I, V7
70 mult c, I

71 add ¢, I

72 cast c, I, R
73 pop c, R, V9

Figure 13: E-code Instructions Translating N := K + I*J

43

CHAPTER 3

INTRODUCTION TO Ada/CS

Ada/CS is a language originally described in [Fischer 88] as a modified Ada subset
used for compiler construction. The text’s code was written in Ada/CS to take
advantage of Ada’s high readability. In the text’s next edition, [Fischer 91], the
sample code was C, but the compiled language in the text was Ada/CS.

The E-Machine Ada/CS compiler is a one-pass compiler using a recursive descent
LL(1) parser. The compiler itself is written in C+4 and developed successively on
a Dos IBM PC with Borland’s Turbo C++ 3.0, a Silicon Graphics workstation with
GNU C++, and lastly, a PC running the FreeBSD Unix system, also with GNU
C++4. During the course of this compiler’s development, a Unix Motif animator
was also being developed by Craig Pratt, which was used for actual generated code

testing. This animator will be discussed in an upcoming thesis.

Differences between Ada/CS and Ada

Ada is such a vast and complicated language that describing all the Ada features
not included in Ada/CS would be a monumental task. There are a few of Ada’s

advanced features that Ada/CS does support, such as packages, that it defines in

44

different ways. For the purposes of this thesis, the Ada 83 standard is assumed as
defined in [USDOD 93], although certain restrictions of Ada 83 that Ada/CS does

not share have been loosened with the new Ada 9X draft standard.

Ada/CS Types

Ada/CS types are more like Pascal than Ada. Ada/CS has simple integer and
float built-in types and doesn’t support the extensive set of Ada types. Ada/CS
supports arrays (including unconstrained arrays and array subtypes), records (in-
cluding variant records), access types (i.e., pointers), and enumerated types and
subtypes. Ada/CS does not support derived types or type renaming. Enumerated

name overloading is not supported.

Ada/CS Packages

There are a few extensions to Ada used by Ada/CS, the greatest of which is in the
package mechanism. Ada/CS packages are like Ada packages with a few additional
features. While Ada packages require the package specification and package body to
be in separate files and further require only one specification or body per file, both
Ada 9X and Ada/CS allow specification and body within one file and even multiple
packages within a file.

Ada packages may be brought into scope by the with and use statements. The

with brings the package name into scope, as shown in figure 14.

45

with text_io;
begin

text_io.put_line("hello, world");
end;

Figure 14: The Ada with Statement

The use statement makes using the package name redundant, as shown in figure 15.

with text_io;
use text_io;

begin
put_line("hello, world");
end;

Figure 15: The Ada use Statement

Ada/CS only has the use statement, which performs both functions of Ada’s with
and wuse. Using the package name as part of a name expression, as in figure 14, is

allowed but not necessary.

Ada/CS Exceptions

Ada supports five predefined exceptions:
e CONSTRAINT_ERROR: Raised when array bounds or numeric ranges are

violated, or an invalid pointer is used.

e NUMERIC_ERROR: Raised when a numeric expression cannot deliver a cor-

rect value due to various conditions.

¢ PROGRAM_ERROR: Raised in a number of cases if the execution of the
program is in error (attempt to call an unelaborated subprogram, the end of
a function is reached with no return statement, etc.)

46

¢ TASKING_ERROR: Raised when exceptions arise during intertask communi-
cations.

e STORAGE_ERROR: Raised when dynamic storage available to the program

is exhausted.

These are predefined exceptions, meaning they are always part of every Ada pro-

gram. Other exceptions are defined within Ada packages, such as package Sequen-

tial 10’s STATUS_ERROR and NAME_ERROR, which are raised during I/O errors.

Ada/CS supports three of the above exceptions and three others. Of the standard
five, TASKING_ERROR is not supported (and would have no meaning in any case
since Ada/CS doesn’t support tasking). PROGRAM_ERROR also is not supported.

The three new exceptions are:
o TIME_LIMIT. Raised if an execution time limit is reached.
e EOF_ERROR. Raised by an attempt to read past end of file.

o INVALID_INPUT. Raised by an attempt to read an invalid input item.

Changes to Ada/CS for this Project

Certain parts of the Ada/CS language as described in [Fischer 91] are breaks
with Ada and as such are contrary to one of the goals of the E-Machine project:
to allow, with minimal modification, any simple Ada source to be compiled. The
differences in some areas are so great that extensions to Ada/CS are necessary to

make it closer to Ada.

e planned implementation of with /use as in Ada. The lack of the with statement
is an unnecessary impediment.

e planned addition of character type and implementation of the string type as
a standard array of characters.

47

e no multiple packages within a file. In the currently implemented Ada/CS
grammar, multiple packages within a file are not allowed simply as a conve-
nience.

Ada/CS has no predefined 1/0; therefore, I/O will be implemented as close to
the Ada standard as possible (without using generic packages).
Wherever there was an ambiguity or confusion in the definition of Ada/CS, the

definition of Ada was used.

Ada/CS Exceptions

As discussed previously, there are six predefined exceptions in Ada/CS. Of those six,
only CONSTRAINT_ERROR has been partially implemented. EOF_ERROR and
INVALID_INPUT would more properly be defined in the IO packages. TIME_LIMIT
is not supported. NUMERIC_ERROR is only partially supported due to limitations
with the E-Machine which intercepts numeric problems such as divide by zero and
has no way for a program to assume control in the event of such an error.

STORAGE_ERROR is supported in the case of dynamic memory, but other
cases, such as recursion consuming all available E-Machine variable memory, are
handled by the E-Machine. As with numeric errors, there is no way for a program
to assume control in such cases.

Forcing the Ada/CS program to clean up the E-Machine run-time environment
would be a monumental task and unnecessary for the scope of this project. Ada is
a language designed for reliability and needs to be able to recover from such run-
time disasters. On the other hand, the E-Machine is designed for education. If a
catastrophic error occurs, all it must do is inform the user about the error then

cleanly die.

48

Currently Unimplemented Ada/CS Features

The following features of Ada/CS have not been implemented in this compiler.

e separate compilation (packages), including:

— private package members;

— a “bind” program.
e input/output through standard packages text_io, integer_io, and float_io;
e arrays;
e exceptions;
o default /named subroutine arguments;

e function return type overloading. Currently, overloading is allowed for sub-
routines that differ by type and number of parameters only. Function return
type overloading is nontrivial in a one-pass compiler.

e case statement;
e local blocks;

e unnamed types. Variable declarations such as “vector : array(1..10)” are not
yet supported

e access types and dynamic memory.

Overview of the Ada/CS Compiler

As this compiler was written in C++4, it makes sense to discuss its overall
structure in terms of the C++ classes used. There are currently twenty-three classes
within the compiler: three for symbol table management (described in Chapter 5),

ten for the type management (described in Chapter 6), eight for code generation

49

(described in Chapter 7), and two miscellaneous classes: id list management and an
error message builder.

The parser and scanner were created using a tool called the Purdue Compiler
Construction Tool Set (PCCTS), which is described in detail in Chapter 4. The
parser and scanner are not classes themselves, being generated C code. However, a
new version (1.20) of PCCTS does create C++ parser/scanner classes. This project
was done using version 1.10 of PCCTS.

The symbol table is managed by three classes:

e class NameTable which manages all names in each scope;

e class TypeTable which manages the Ada/CS and user types;

e class SymbolTable which manages and provides a program interface to the

first two.

Ada/CS type management is done by a set of classes, one for each intrinsic type
in the language. When the user defines a record, for example, a RecordType class
is instantiated and all information about that record type stored within it. If the
parser needs information concerning that record type, it queries the type class. Each
type in the system is represented by an instantiation of one of the following classes:

o IntegerType which manages integer types and subtypes;

o FloatType which manages float types (float types cannot have subtypes so
there is only one instantiation of the FloatType class);

o ArrayType which manages array types and subtypes;

e EnumeratedType which manages enumerated types and subtypes (boolean is
implemented as an enumerated type);

e RecordType which manages records;
o AccessType which manages access (pointer) types;

e ProcedureType and FunctionType, which manages procedures and functions,
are not truly types, but are part of the type system.

50

Code generation functions are done by the seven classes named for the E-code

sections they create. These classes are:

o LabelSection;

e SourceSection;

VariableSection;

StatScopeSection;
e PacketSection;

CodeSection.

Control of compilation is centered in the C routines of the parser which controls

the various C++ classes throughout the compiler.

Error Detection and Recovery

Like the miniPascal compiler, there are no provisions for error recovery in the
Ada/CS compiler. When the compiler detects an error, a descriptive message is
displayed, and the compiler is halted. However, unlike Yacc, the PCCTS parser
generates very descriptive error messages and has excellent error recovery. There

are provisions in the symbol table for error recovery, but no use is yet made of them.

Optimization

Originally, it was felt that there was no real need for E-Code optimization. However,
new developments in the FE-Machine, such as an input/output system, generate
tremendous amounts of code. While Ada/CS exceptions are not fully implemented,
compiling exceptions will produce large code files due to the need to generate E-code
to perform exception tests. Such executable files will have such large and complex
packets that their run-time speed will suffer. An intelligent optimizer would reduce

that burden.

51

CHAPTER 4

PARSING Ada/CS

Ada/CS was developed using a fairly new tool called the Purdue Compiler Con-
struction Tool Set (PCCTS), which was developed by Terrence Parr and Gary Cohen
[Parr 93]. PCCTS generates an integrated scanner and parser from an Extended
BNF specification describing the Ada/CS tokens and grammar. Unlike other con-
temporary bottom up compiler tools, such as yacc [Mason 90], the PCCTS parser
is an LL(k) recursive descent parser, which allows increased flexibility in the devel-
opment of Ada/CS.

Unlike yace, PCCTS isn’t yet a standard tool under an operating system, but is
freely available with no restrictions. It is written in ANSI C and has been used under
numerous platforms, such as BSD and SysV Unix, Dos, and OS/2. The generated
code is compilable as C++4 (Ada/CS was written entirely in C++4).

Since PCCTS is a fairly new tool and doesn’t yet have the assumed familiarity
of yacc, the next few sections will describe in part using PCCTS to scan and parse
Ada/CS. A few items of note: PCCTS doesn’t use two specification files—one for
scanner and one for parser—as does lex/yacc. Both specifications are within one
file, although PCCTS does use two separate programs to generate the scanner and

the parser. Because the parser generated is recursive descent, for a large grammar

52

(such as for Ada/CS), the resulting code will be large, much larger than an LR

parser generated by yacc, for example.

The PCCTS Scanner

Unlike lex, a popular scanner tool, the PCCTS scanner specification is an integrated
part of the parser specification. Further unlike lex, if a case insensitive scanner is
needed, PCCTS will do the work, which reduces the size of the scanner specification.

To describe a lexical element, C preprocessor-like definitions are used, as shown

in figure 16.

#token Package '"package"
#token Procedure "procedure"

Figure 16: Example PCCTS Reserved Word Scanner Specification

Both Packet and Procedure will act as terminals within the parser’s grammar.
More complex lexical elements are described using regular expressions, such as the
definition for Ada’s integer numbers described in figure 17. (Ada integer constants
are just like Pascal and C integers except that, for readability, underscores may
be placed between the digits; no leading or trailing underscores and no adjacent

underscores are allowed.)

#token Uint "(Lo-91{_})* [0-9]"

Figure 17: PCCTS Scanner Specification for the Ada/CS Integer

53

rule_1 : rule_2 Terminal ;

Figure 18: A General PCCTS parser rule

Lexclasses

An interesting feature of the PCCTS scanner are the lexclasses. With separate
lexclasses, under different circumstances the scanner will have entirely different be-
havior, as if there were multiple scanners that trade control.

Two lexclasses are used in Ada/CS-—one for scanning all parts of a program
except for comments and another for scanning comments. Ada uses line comments—
everything from a —— token to the end of line is ignored. When the language lexclass
finds a start of comment token, it switches control to the comment lexclass, which
ignores all input characters until it encounters an end of line token, whereupon it
switches back to the scanner lexclass. In this manner, instead of a parser handling

the comments, they may be eliminated directly in the scanner.

The PCCTS Parser

PCCTS uses extended BNF rules to generate a parser to recognize a language. A
general form of a PCCTS rule is shown in figure 18. By convention, terminals are
capitalized, nonterminals are all lowercase. Tokens can be directly inserted into the
parser specification without having to create a separate named scanner token.

As an example, the rule specifications to recognize a variable declaration and an
identifier list are shown in figure 19.
In figure 19, characters in double quotes are unnamed tokens. Being able to place

tokens directly into the parser specification makes the specification more readable.

54

variable_dec : id_list "\:"
Id { { Constant } "\:\=" expression } "\;" ;

id_list : Id ("\," Id)* ;

Figure 19: PCCTS Rule for Ada/CS Variable Declaration

id_list : << printf("just entered rule id_list\n"); >>
Id
<< printf("found an id!\n"); >>
(", 1d

<< printf("found another id!'\n"); >>
) *

<< printf("leaving rule id_list\n"); >>

Figure 20: PCCTS Grammar Rule with Actions

Id and Constant are named tokens, and expression is a nonterminal that is described

in an excruciating set of rules later in the specification.

Grammar Actions and Token Attributes

What use would a parser be if there was no way to perform a rule action? Just
as yacc uses {} to denote actions, PCCTS uses <<>>. Some simple actions are
shown in figure 20, which involves generating actions during the parse of id_list of

figure 19.

55

variable_dec : << IdList var_list;
>>
id_list[var_list] "\:" Id
<< symbol_table.add_variable(var_list, $3.text);
>>
{ { Constant } "\:\=" expression } "\;"

3

id_list[IdList& new_list] : Id << new_list.add($1.text); >>
>>
¢ "\," Id
<< new_list.add($2.text); >>
) *

Figure 21: PCCTS Grammar Rule with Parameters

Actions may appear anywhere within a rule (even before the first rule element).
An action may even appear outside a rule, where it is inserted directly into the
generated source code. In that case, the action’s code would be at the mercy of the

compiler.

Semantic Stack and Rule Parameters

Communication between rules is performed in two ways—a traditional semantic
stack and a new method: rule parameters. Because PCCTS generates recursive
descent compilers, each rule is a C subroutine, and PCCTS allows the user to add
C/C++ parameters to the rules, as shown in figure 21. Processing of the variable_dec
rule in turn requires processing of the id_list rule, which has a C4++ pass-by-reference
parameter of var_list, which is an instantiation of a class that manages a list of Ids.

PCCTS also maintains a semantic stack, which behaves as yacc’s does. However,

because of the EBNF rules of PCCTS, there are a few more complicated stack access

56

simple_expression : { ("\-" | "\+") } << {} expression is $1 >>
term << this is $2 >>
(
C"\+" | "\=-" | "\&") << this is $1 or $3.1 >>

term << this is $2 or $3.2 >>
) * << inside the ()’s is $3 >>

Figure 22: PCCTS Semantic Stack

expressions. Consider, for example, the grammar fragment shown in figure 22. The
unary operators within the {} expression are represented by $1; the first “term”
nonterminal by $2, and the ()* expression by $3. However, inside the ()* expression,
$1 would be the binary additive operator expression. Suppose access to the first
term expression is desired inside that expression. In that case, $1.2 would be the
semantic attribute of that nonterminal; the $1 is the first semantic stack block (the
very outermost), and the .2 represents the second element. The grammar expressions
thus act like scopes, with the outermost visible scope being $1, the next inner visible
scope being $2, etc. Continuing this idea further, if the grammar is complex enough,
expressions such as $1.3.5 and $1.2.1.3 are possible.

The elements of the semantic stack are a user defined structure called Attrib.
The Ada/CS Attrib structure contains information about the element name, type
position, variable, whether or not it is a constant, and (most useful of all), the start
and end line and column of the token, which is used to create packets.

For example, the variable_dec rule in figure 23 has an action that creates a new
packet from the attributes of its rules. $l.start_line and $1.start_col refer to the
starting line and column of the id_list rule and $5.end_line, $5.end_col refer to the

ending line and column of the “;” token.

57

variable_dec :
<< IdList var_list; >>
id_list[var_list] "\:" Id
<< symbol_table.add_variable(var_list, $3.text);>>
{ { Constant } "\:\=" expression } "\;"
<< PacketS.new_packet(startAddress, endAddress,
$1.start_line, $5.end_line,
$1.start_col, $5.end_col);
>>

id_list[IdList& new_list]
Id << new_list.add($1.text); >>
¢ "\," 1d
<< new_list.add($2.text); >>
) *
<< $0.start_line
$0.start_col
$0.end_line
$0.end_col
>>

$1.start_line;
$1.start_col;
$2.end_line;
$2.end_col;

Figure 23: PCCTS Rule for Variable Declaration with Semantic Stack Actions

The id_list rule also has an action that demonstrates setting the semantic stack
structure members. $0, like yacc, is the semantic structure that will be returned
on the stack. Nonterminals must have their $0 members set by terminals’ semantic

structures.

58

CHAPTER 5

THE Ada/CS SYMBOL TABLE

Ada/CS, as a subset of Ada, shares some of its parent’s complex symbol
structures—subtypes, subroutine and operator overloading, unconstrained arrays,
and packages, to name a few. The symbol table of Ada/CS thus had to be flexible
enough to allow for these structures and yet strong enough to support Ada’s firm
type checking.

All the structures of the the symbol table were built around the desire to sim-
plify the Ada/CS separate compilation package mechanism. As such, almost all
the structures used are arrays whose size can grow through the C library routine
realloc(). The overall structure of the symbol table contains three elements—the
name table, the type table, and the symbol table itself, which contains and manages
the first two.

The name table contains all the active names currently in a particular scope
(variables, types, subroutines, etc.). The names are held as a chained hash table.
The symbol table maintains a linked list of name tables, one table for each scope.
Since the symbol table needs so much control over how scopes are searched, it was
decided that instead of making one name table that would manage all scopes, the
symbol table would manage a scope list of name tables. The type table contains

information describing all active types. There is only one type table during the run of

59

the compiler. Type information is stored in a linear array so that type comparisons

are simply a check to see if type table positions match.

The Name Table

At its heart, the name table is a chained hash table of nameEntry structures

(shown in figure 24), one node per name.

struct nameEntry {
id_name name;
int entryType;
int typePointer;
int varreg;
int ssChild;
int ssPushd;
int position;
int passMode;
boolean constant;

struct nameEntry *next;

¥

Figure 24: The nameEntry Structure

The elements of the nameEntry are as follows:

e name: An array of characters storing the name of the symbol.

e entryType: The “type” of the name. The name may be one of

— VARTABLE_NAME: The name of a variable.

— TYPE_NAME: The name of a type.

— ENUMERATED_NAME: The name of an enumerated type’s element.
— SUBPROG_NAME: A procedure or function name.

60

— PACKAGE_NAME: A package name brought into scope by the “with”

statement.

typePointer: Index into the type table array of the type of this name.

varreg: The variable register that holds the data for that name. This field
isn’t used for package or type names. For subroutines, the field holds the label
register of the subroutine.

ssChild: Used only with subroutines as part of the building of the static scope
table entry for the subroutine. The static scope table contains an entry for
the subroutine name whose child is set to this field so that the information on
the internals of the subroutine may be found.

ssPushd: Used only with subroutines. When a subroutine is entered, it must
inform the E-Machine of the starting position of the static scope table block
that contains the subroutine’s variables (which is done through the pushd
instruction). After the subroutine is completely parsed and its scope is col-
lapsed, the starting position of its static scope table entry is obtained (through
a StatScopeSection method—described later) and stored in this field. When
the scope containing the subroutine name is collapsed, as part of saving the
subroutine the “pushd” for the subroutine is modified to push this field.

position: For animation purposes, variables must be added to the static scope
table in the order in which they were declared. When a scope is collapsed and
before the name table information is saved to the static scope table, all the
nameEntry structures are stored in a linear array and sorted by this field.

passMode: This field is only used for subroutine parameter name entries indi-
cating the mode of the parameter (in only, out only, or in out). Certain rules
apply to the use of Ada subroutine parameters. In-only parameters may not
appear on the left hand side of an expression; out-only parameters may not
appear on the right. Further, special code generation considerations must be
taken for each of the three Ada parameter modes.

constant: Ada constants may not appear on the left hand side of an expression
nor may they be passed in-out or out-only to a subroutine. This boolean field
indicates whether or not the variable name is a constant.

next: If a hash collision has occurred during the adding of a new name, chained
resolution is used. This is a pointer to the next element in the chain, if any.

Access to the name data is managed by the nameTable class shown in figure 25.

61

class nameTable {
protected:
id_name scope_name;

int num_symbols;
int name_count;
nameEntry *table;

void save_sscope_type(nameEntry save_me);

void save_sscope_var(nameEntry save_me);
public:

int Scopelndex;

nameTable();
nameTable(int size);
~“nameTable();

void add(nameEntry *new_entry, int hash_pos);
void add(nameEntry *new_entry) {...}

nameEntry& find(char *name,

int hash_pos, boolean *found)
nameEntry& find(char *name, boolean *found) {...}
int size(void) { return num_symbols; }
void Print(TypeTable *ttable);

void pop_scope(void);

void set_ss_data(AdacsType atype,
int child_pos, int pushd_pos)

void save(FILE *i_file);

Figure 25: The nameTable Class

62

The members of the nameTable class are as follows:

scope_name: Name of this scope.

num _symbols: Size of the hash table. Unlike other data structures in this
compiler, this size is fixed so the hash function has a constant modulus for
each scope.

name_count: Number of names in the current scope.
table: Array of nameEntry structures as a chained hash table.

Scopelndex: A special consideration for E-Machine animation. During the
course of animation, the animator needs to know how deep into the current
scope table to display variables (since all variables are not declared at once).

save_sscope_type, save_sscope_var: These methods save the name table types
and variables to the static scope table and are fully explained in the section
on collapsing a name table scope.

nameTable: There are two constructors, one of which (the parameterless one)
is not used and is only included because, as the default constructor, it is
required by some compilers. The constructor is responsible for creating its

hash table.

~nameTable: The nameTable destructor. This is not used during the run of
the compiler since no nameTable is ever deleted. After a new nameTable is
created (by a stack overflow) and a scope is collapsed, the nameTable persists
and is reused. The destructor is called upon program termination.

add: There are two methods for adding names to the nameTable. This routine
is responsible for maintaining the hash chains (if necessary).

find: Finds a method in the nameTable, returning a reference to a nameFEntry
structure. A boolean parameter is set to indicate whether the name is found
or not.

size: Returns the current number of names within the table.

Print: This is a debugging routine that prints the nameEntry contents of the
name table.

pop_scope: Because nameTables are not deleted when a scope is collapsed,
they must be cleared and their allocated chain memory deleted. When the
symbol table pops a scope, this method is called to perform the clean up.

63

e set_ss_data: This is an unusual method created to help build the static scope
table. The method is called by the parser after a subroutine call has been
completely parsed and its scope collapsed to set the ssPushd and ssChild
nameEntry members.

e save: For future compiler development. This method will save the contents of
the name table to a package file.

Adding a New Name

Adding a name to the table is done through one method, even though there are two
“add” methods. The second add method, add(nameFntry *new_entry) is a C++
class inline call to the first, add(nameFntry *new_entry, int hash_pos) with a call to
the hashing routine to get the hash_pos parameter.

Two methods are used to avoid hashing a name as much as possible. During the
add process, the name is first hashed and then looked up in the table. If the search
is successful, a duplicate name exits and an error is reported. If the search is not
successful, the add routine is called with the hash value, thus avoiding rehashing
the name. The inline routine is used as a convenience (it doesn’t require the explicit
calling of the hash function) and is used on the rare occasion when an added name
is guaranteed not to encounter a collision. One such occasion is during the parse of
a subroutine; the parameter names have already been checked for uniqueness and
must be added to the new scope’s symbol table.

The add method checks the table position at the hash location, and if the slot
is currently filled, adds the new name at the end of the chain. At this time, the

position field of the nameEntry structure is filled with the name_count counter.

Finding a Name

Like the methods for adding a name, there are two methods for finding names. The

second of these two functions is simply an inline call to the first, with a call to the

64

hash routine to get the hash value of the name.

Calling the first find method is only done when adding a new symbol to the
table. First the name is hashed and that value is used both with the find and the
subsequent add. If the name is found, the “found” parameter is set to TRUE and
the nameEntry data is returned; otherwise, “found” is set to FALSE and the return

value is undefined.

Creating a New Scope

The name table is essentially a scope-ignorant data structure—it knows nothing of
other scopes. When a new scope is being created, the name of the new scope is
set through the call to the method new_scope(char *name); no further actions are

taken.

Popping a Scope

Unlike creating a new scope, the process of collapsing a scope has a large number
of responsibilities. The routine to collapse a name table scope is pop_scope(void).
In spite of its name, the pop_scope() routine doesn’t pop anything—the name was
used to maintain name similarity across the symbol management classes (both the
symbol table and type table classes also use pop_scope() to collapse scopes and both
actually pop something).

When a variable is declared, an inst instruction is generated to instantiate it.
Inside pop_scope(), an uninst instruction is generated to destroy the variable. As the
hash table is traversed to generate the uninst instructions, each nameEntry structure
is saved in a linear array for later sorting. Also, the hash table is traversed, chains
are deleted, and each slot of the hash table is set to empty. The table itself is never
actually deleted. If the scope again increases, the hash table will be empty and
ready to be filled.

65

After the traversal of the hash table, the nameEntry array is sorted by the order
in which the names were added to the table. The animator must display variable
values only after the declaration has been animated. By using an offset from the
start of the current static scope block, the animator will only display those variables
that have already been instantiated. So, the compiler is responsible to put the
variables into the static scope table in the order in which they were declared; this
ordering is saved in the “position” field of the nameEntry structure.

Next, the variable and type elements of the name table are saved to the static
scope table. The types are added first through the method save_sscope_type(nameFn-
try save_me). The types are saved first because certain static scope members
(records, arrays, and subroutines) will need to know the location of their types in the
static scope table. The variables are added next through the method save_sscope_var(
nameFEntry save_me). The responsibility of creating the static scope entries rests
with the StatScopeSection code generation class (described in Chapter 7). The
save_sscope_type() and save_sscope_var() routines call methods of the StatScope-

Section class.

The Type Table

The type table is a stack of Ada/CS type descriptor structures called AdacsType.
Like the name table, the type table is hidden from the rest of the program and is
accessed through methods in the symbol table. Unlike the name table, there is only
one type table per compilation.

Ada/CS is a strongly typed language, so much attention must be paid towards
good, fast, type checks. Since each type currently in scope has a unique position
in the type table, it was natural to use that position as the basis for the type

comparison.

66

The type table stack manages the C++ classes that describe all the Ada/CS

types—integer, float, record, array, and so forth. Fach type has its own particular

class. The type table actually stacks AdacsType structures, as shown in figure 26.

struct AdacsType {

id_name type_name;
int typeOf;

int flags;

void *element;

Figure 26: The AdacsType Structure

The structure members of AdacsType are as follows:

e type_name: The name of the type.

o typeOf: In order to allow ALL possible type Classes to be held in the type stack

even though they are of different types, the AdacsType uses a void pointer,
which of course introduces the problem of how to tell what the pointer actually
points to.

ADACS_DUMMY: Originally planned as a type for use with error recov-
ery. If a variable was declared of a nonexistent type, the type would be
set to ADACS_DUMMY and compilation would continue. As yet unused.

ADACS_INTEGER: Built in integer type or subtype. Type Class is Aln-
tegerType.

ADACS_FLOAT: Built in float type or subtype. Type Class is AFloat-
Type.

ADACS_ENUMERATED: Enumerated type or subtype. Type class is
EnumeratedType.

ADACS_BOOLEAN: Built in boolean type or subtype. Type class is

implemented as an instantiation of EnumeratedType.
ADACS_ARRAY: Array type or subtype. Type class is ArrayType.
ADACS_ACCESS: Pointer type whose type class is AccessType.

67

— ADACS_PROCEDURE, ADACS_FUNCTION: class is ProcedureType
and FunctionType. Technically, procedures and functions are not types
and in Ada/CS cannot be used as such (unlike Pascal), their information
(type and number of parameters, location, etc.) is stored in the type
class.

— ADACS_RECORD: Record type whose type class is Record Type.

— ADACS_INCOMPLETE: Incomplete type declaration (also known as for-
ward declarations). The type is added to the table as an incomplete type
and the details filled in later during the compile. No variables may be
declared of this type.

— ADACS_PRIVATE: Both Ada and Ada/CS support private package mem-
bers, type declarations whose name is known but whose structure is hid-
den. Since packages are as yet unimplemented, this is unused.

— ADACS_PACKAGE: When a package is brought into scope with the
“with” statement, information about the package (file system location,
etc.) would have been stored within this type class. Packages are cur-
rently unimplemented.

o flags: There are a few certain special cases in the Ada/CS type system that
require slightly different symbol table behavior. The type flags indicate when
such a situation is in effect. The flags are as follows:

— FORWARD_DEC: Indicates this type entry is a forward declaration and
the type descriptor has no real type information. No variables may be
declared of this type.

— PRIVATE_DEC: This flag is for future development of Ada/CS packages.
Private types are types whose internal description are not known outside
the package in which the type is declared. Variables can be declared of
private types but, since the type’s internal structure is not known, no
access to part of the type can be performed.

e clement. A void pointer which points to the type class for the particular type
indicated by the typeOf member.
The type table is essentially a container class. It does no actual work upon the

AdacsType structures it contains. The type management responsibility is part of

the Symbol Table class.

68

Adding a New Type

Adding a new type is very easy and is done through the method
add(AdacsType Enew_type). When a type declaration is found, the parser builds
an AdacsType structure describing the new type, including creating a class instan-
tiation for that type (RecordType for records, ArrayType for arrays, and so forth).
The type classes are described in Chapter 7. The structure is passed to the symbol
table routine, which performs some checking described later in this chapter, then
passes it to the type table. The type structure is put onto the stack (which is

enlarged if necessary) and the top of stack index is increased.

Creating a New Scope

The method used to track scopes in the type table is completely different than the
separate data structure per scope method used with the type table. The TypeTable
class contains a stack of integer indices into the table. When a new scope is created,
the type stack top is pushed onto this stack. When the scope is popped, the type

table elements from the top of the type stack are popped down to this marker.

Popping a Scope

As described in the previous section, popping a scope is simply a matter of running
from the top of the type stack down to the highest saved marker. One of the
functions performed during this method is the destruction of the type classes. The
type stack is a structure that contains pointers to the type classes; when a type is no
longer needed, the memory must be freed. On occasion, the type classes’ destructors
have certain necessary functionality. For example, the RecordType class must set
its variables’ static scope table structure child indices to its own static scope table

entry. (The animator needs to know the type description of record variables to

69

display them correctly. The child index of a record variable’s static scope table
entry is a scope block describing the record type. The RecordType class knows its

scope block position and that of its variables.)

The Symbol Table

The symbol table class is the most complex class in the Ada/CS compiler and is
shown in figure 27.

The members of the symbol table class are as follows:

e curr_scope: Top of the name table stack. All operations upon the symbol table
start at this name table array position and work downward toward zero.

e num_scopes: Maximum size of the array of name tables.

e scope: Array of pointers to nameTable classes, one element per scope, created
during SymbolTable class construction.

e types: Pointer to the type table class instantiation, created during Symbol-
Table class construction.

e SymbolTable: Symbol table constructor which allocates memory for the name
table stack and creates a type table instantiation. Because the symbol table
remains for the entirety of the compiler’s run, no destructor is necessary.

e Scopelndex: Inline method that returns the current scope’s name table’s scope
index and used by the parser as it builds packets.

e add_object, add_objects: Adds variables to the symbol table. These are fully
discussed later in this section.

e add_nameless_type: Adds a nameless type to the type table. If, for example,
the parser encounters “a : array(1..10) of integer”, the array definition will be
added to the type table, even though the definition can be used in no other
place in the source.

e add_type: Add as type to the symbol table. First, the routine checks whether
the name is already defined in the current scope. If not, it adds the name to
the current scope’s name table, then adds the AdacsType structure describing
the type to the type table.

70

class SymbolTable {
private:
int curr_scope, num_scopes;
nameTable **scope;
TypeTable *types;
public:
SymbolTable();
int ScopeIndex(void);
void add_objects(IdList *name_list, char *type_name, boolean is_const,
boolean expr, Attrib expr_attrib);
void add_objects(IdList *name_list, int ttable_pos);
void add_object(nameEntry *new_name, int inc_by);

int add_type(AdacsType& new_type);
void replace_type(AdacsType new_type, int type_pos) {...}
int add_nameless_type(AdacsType& new_type);

int add_procedure(AdacsType& new_type);

nameEntry& find_procedure(char *name, int num_params, Attrib *params);

nameEntry& find_function(char *name, int num_params, Attrib *params,
int return_type);

boolean match_procedure(AdacsType find_me, AdacsType& atype);

boolean match_procedure(AdacsType find_me, int num_params, Attrib *params);
boolean match_function(AdacsType find_me, AdacsType& atype);

boolean match_function(AdacsType find_me, int num_params,

Attrib #params, int return_type);

void new_scope(char *scope_name) ;
void pop_scope(void);

nameEntry& find_name(char *name, boolean *found);
AdacsType& get_type(int pos) { return types->get(pos); }

void set_ss_data(AdacsType atype, int child_pos, int pushd_pos) {...}
void save(char *pack_name, int source_type, FILE *i_file);

void Print(void);
void print_ttable(void) { types->Print(); }

Figure 27: The Symbol Table Class

71

e replace_type: This method replaces a type table element with a new descriptor.
This is necessary for filling out the details of forward types when they are fully
described.

e add_procedure: Adds a subroutine to the symbol table. Since the functionality
of adding a procedure and adding a function is so close, it made sense to con-
solidate both into one method. The full details, including overload resolution,
are discussed further in this section.

e find_procedure, find_function: Attempt to resolve a subroutine name and pa-
rameter list into a subroutine reference. These methods handle Ada/CS’s
overloading by calling the match_procedure and match _function methods.

e match _procedure, match _function: Compare two symbol table descriptions of
a procedure or function and return a boolean value denoting whether the two
represent an overload match.

e new_scope: Creates a new scope (discussed in detail later in this section).

e pop_scope: Collapses a scope (also discussed in further detail later in this
section).

e find_name: Finds a name in the symbol table (discussed later in this section).

o get_type: Variables reference their type by an integer index into the type
table. If it becomes necessary to perform some function based upon detailed
information about the type, get_type is an inline call to the type table that
returns the type descriptor at that table position.

e set_ss_data: This method is simply an inline call to the current scope’s name
table’s set_ss_data method. See the section on the Name Table for further
detail.

e save: Method to save the current symbol table to a package file. This method
has not been completely implemented.

e Print: Debugging routine that prints the contents of the symbol table.

e print_ttable: Debugging routine that asks the type table to print itself.

Adding a Variable

There are a number of methods for adding variables to the symbol table. The symbol

table add routine is responsible for confirming name uniqueness within the current

72

scope, confirming that a variable’s type exists, adding a variable to the name table,
and generating code to instantiate and, if necessary, initialize the variable.

There are several forms of Ada/CS variable declaration, the simplest of which
are the standard, Pascal-like declarations, such as “a, b, ¢ : integer”. The parser
adds the variable names to an instantiation of the IdentifierList class and passes
that list and the type name to the symbol table variable add routine add_objects.

Initialization of variables at declaration time is a feature of Ada/CS that allows
code such as “a, b, ¢ : integer := 0”. The symbol table add_objects is passed a
parser Attrib structure that describes the expression on the right hand side of the
assignment. The add routine confirms that the expression result and the variable
declaration are of compatible types and generates initialization code as well as the
variable instantiation code, so that when the corresponding declaration packet is
animated, a, b, and ¢ will not be undefined, but zero.

Ada/CS allows variables to be declared of an unnamed type description such as
“a, b, ¢ : array(1..10) of integer”. The array type has no formal type declaration so
the compiler has a dual responsibility. It first builds an identifier list of a, b, and
¢, and then builds a type descriptor describing the array. A different add method,
add_nameless_type, is used to add the type to the symbol table. This method accepts
an id_list and a type descriptor. The type descriptor is added to the type table and
its type table position is saved to the name table structures of its variables. Because
such a type descriptor has no name in the name table, it can not be directly found
by any means other than through its variables’s type position.

The final variable adding method is a result of the development of the for loop.
The loop variable need not be declared, and in such an event, it will be implicitly
declared as the type of the loop’s range. As the parser goes through a for loop, it
builds a nameEntry structure for the loop variable. The add_object method will

accept that structure and add it to the name table.

73

Adding a Type

Adding a type to the symbol table is a simple matter. The parser builds an
AdacsType structure and an instantiation of a type class fully describing the new
type. The symbol table type add routine checks whether the name is unique within
the scope and if so, adds the name to the name table and the type to the type table
(through the methods of the type table).

Ada/CS supports forward type references. For example, the type declaration

shown in figure 28 sets up a record and record pointer suitable for a linked list.

type data_rec;
type rec_ptr is access data_rec;
type data_rec is record

0

1

2

3 name : string(10);
4 next_rec : rec_ptr;
5

end record;

Figure 28: Example of a Forward Declaration

Line 0 is a forward declaration, which is necessary due to the circular reference
of the access type rec_ptr (which points to the record type data_rec) and the record
declaration (which contains a variable of type rec_ptr).

Forward declarations are added to the symbol table with the same method as
full type declarations. The difference is that the type descriptor for the forward
type has its type field set to FORWARD_TYPE. When the record declaration on
line 2 is parsed and type data_rec is ready to be added, the symbol table checks
to make sure the name is unique and finds the previously added name. A further
check is done to find that data_rec is a forward type and already has a descriptor in
the type table. A new descriptor cannot be added to the top of the type table since

the current type descriptor’s table position might already be used as a reference (as

74

in figure 28 where rec_ptr on line 1 uses the type table position of forward declared
data_rec). So, the type descriptor in the table is replaced by a full description of
the type with the symbol table method replace_type, which is simply an inline call
to the type table’s own replace_type method.

Unnamed types are added to the symbol table through the variable declaration

methods, as was described earlier.

Creating a New Scope

When the parser detects a new scope (starts parsing a subroutine or a local block), it
informs the symbol table. The symbol table increases the current name table scope
index and creates a new NameTable class if necessary. The type table is informed
of the new scope so it can place the marker enabling it to return to the state it was

during the previous scope.

Popping a Scope

The symbol table is informed about the end of a scope by the parser. The type table
is informed and the disappearing scope’s name table is also informed. The symbol
table does not delete the top name table when it pops a scope; instead, the table is
saved for possible future use. The name table pop_scope method reinitializes itself

to an empty scope.

Subroutine Overloading

Ada/CS supports Ada’s subroutine name overloading. When a procedure or func-
tion call is discovered, the parser builds a complete description of the call with the
name of the subroutine and type and number of parameters. (The return type of a

function should also be part of this information, but is currently unimplemented.)

75

The parser then calls upon the symbol table to return it a reference to the subroutine
that matches the description.

The symbol table first searches by name. When it discovers the sought after
name, it calls the match_procedure or match_function method to confirm the type
and number of parameters. If this check fails, the name search will continue until

the end of the outermost scope.

76

CHAPTER 6

THE Ada/CS TYPE SYSTEM

Like its parent language, Ada/CS has a rich type system, repleat with subtypes,
variant records, unconstrained arrays, and enumerated types. Because of the com-
plexity of Ada/CS types, a simple symbol table management routine did not suffice

and the type system was instead implemented as its own C++ class hierarchy.

The Ada/CS Type Classes

Every Ada/CS type is represented by an instantiation of a C++ class which
describes the type and its basic operations. Whenever a new type or subtype is
defined, a new type class is created with information about the type and the class

added to the type stack.

Base Class BasicType

BasicType is the base class of the hierarchy; all type classes used descend directly
from it. Common functionality among all the types was put into this base type.
Data such as type size, subtype ancestors, and methods to access them, are part of

BasicType since all the types share (at least most of) this basic functionality.

7

Ada/CS Subtypes

Like Ada, Ada/CS supports subtypes upon ordinal types (integer, enumerated, and
array types). Also like Ada, these subtypes might have to be determined at run
time. Consider the code fragment in figure 29. The compiler can not assume it

knows the size of “x”

, since “x”7 could be a value input from the user at some
point. Since Ada/CS also shares Ada’s strong type checking, the full range of the
x_integer subtype would have to be known so that code for a range check could

be created to cause evaluation of an expression such as num:=x+1 to generate a

CONSTRAINT_ERROR exception.

procedure something(x : integer) is

0
1
2 subtype x_integer is integer range -x..Xx;
3 num : x_integer;

Figure 29: Ada/CS Run Time Subtype

Another interesting problem with Ada/CS subtypes concerns their range expres-

sions. For example, refer to figure 30.

subtype short is integer range 1..1000;
subtype short is range 1..1000;

subtype shorter is short range 100..200;
subtype shorterer is shorter range 150..175;
subtype shortest is shorter range 160..170;

~N o O W N = O

subtype regetni is integer;

Figure 30: Ada/CS Subtype Declarations

78

The first two declarations are equivalent. The compiler must determine the base
type of the subtype from the type of the range elements, which in this case is integer.
Line 7 is an unranged subtype, which is a simple renaming of a type.

Lines 3, 4, and 5 illustrate a symbol table challenge. Because the range of a
subtype must be less than or equal to that of the parent type, run-time range checks
must be generated by the compiler. For this reason, subtype information not only
needs to contain the range of the subtype, but also the range of its immediate parent
(transitivity will assure that the ranges of all children are no greater that the ranges
of their ancestors). Another consideration is type compatibility. All subtypes are
assignment compatible with their parent types. The compiler must therefore have
some way of checking for compatibility beyond the usual method of comparing type
table positions.

The BasicType base class has two integer fields, parent and root. Parent is the
type table position of a subtype’s immediate parent; root is the root of the subtype
hierarchy (which may get extremely complex) and is used for compile time type
compatibility checks. For example, again using the subtypes in figure 30, the parent
and root of subtype “short” would be the type table position of integer; the parent
of subtype “shorter” would be the position of subtype “short” and its root would
be integer; the parent of “shorterer” would be “shorter” and its root would again
be integer.

Even though only integer, enumerated, and array types can be subtyped, all
types share the parent/root data elements because they are members of BasicType.
A better object oriented method would be to make another descendant of BasicType
with the parent/root elements and descend the Integer, Enumerated, and Array

classes from that type. This will probably become part of a future version of the

Ada/CS compiler.

79

Array Types

Arrays have been handled earlier in the Pascal compiler for the E-Machine. However,
Ada/CS arrays are much more flexible than Pascal arrays and therefore required
changes to the E-Machine and special compilation considerations. Pascal arrays
are created at compile time since all information concerning the array is known
at compile time. Ada/CS array types are similar to Ada arrays in that they can
be dynamically sized. For example, suppose we had the code fragment shown in

figure 31.

0 procedure something(x : integer) is

1 type vector is array(1..x) of integer;
2 wv1l, v2, v3 : vector;

3

4 for 1 in 1..x loop

5 vi(i) := 1i;

6 end loop;

Figure 31: Ada/CS Array Declaration

Until Ada/CS, the E-Machine required that all information about arrays be
generated at compile time. For arrays such as in figure 31, the Ada/CS compiler
has no idea how much space to set aside for v1, v2, and v3 since the variable x will
not have a value assigned to it until run time. For this reason, the ArrayType field
was added to the static scope table for the E-Machine object code file.. This field
can be NONARRAY, DYNAMIC_ARRAY, or STATIC_ARRAY. A variable of type
STATIC_ARRAY is the traditional E-Machine array in which the variable size is
known at compile time and is listed in the variable section of the E-Machine object
code file. Variables of type DYNAMIC_ARRAY are those whose size is unknown

and is created at run-time. In this case, the array is translated into an E-Machine

80

variable that is merely a pointer to a block of memory. The third type, NONARRAY,
is used in those special cases where the upper and lower bounds of the array are
equal (i.e., for arrays of just one element). E-Machine considerations aside, the
compiler must still generate run time array offset calculations for references similar
to those on line 5 of figure 31, instead of being able to calculate them at compile
time.

Things get even more complicated. Like Ada, Ada/CS generates run-time ar-
ray bounds checking. If the for loop in figure 31 attempted to access v1(x+1), a
CONSTRAINT_ERROR exception would have to be raised. So all the ranges of the
array must be known in order that bounds checks be performed.

Unconstrained arrays are another concern. Consider the program fragment in
figure 32. Unconstrained arrays have no size until a variable of that type is actually

declared. The Ada/CS compiler must take this into account.

type vector is array(integer range <>) of integer;

procedure something(x : integer) is
vl : vector(x);

v2 : vector(x+10);

v3 : vector(x+20);

for i in 1..x loop
vi(i) := 1i;
end loop;

~N o O WD O

Figure 32: Ada/CS Unconstrained Array

As a result of these aspects of Ada/CS, there are now several pieces of array
information that must be determined at run time. For offset calculations, the total

size of each dimension of an array must be known since it is possible to declare an

81

array as complex as “array(1..x. -x..x. -2*x..x+1).”
y p y s s

The upper and lower range
values of each array dimension must also be computed and stored so run time bounds
checking can be performed. In the F-Machine, these values are stored in separate
integer registers that can be initialized to the proper values at run time. When
the parser needs to generate code to allocate space or generate code to do an offset
calculation, it can query the type class for the appropriate registers.

An Ada/CS E-Machine array is actually a pointer to a block of memory created
with the e-code instruction alloc. Ada/CS array entries in the Static Scope table look
much like Pascal array entries except that the ArrayType is DYNAMIC_ARRAY,
and the array ranges do not represent actual bounds, but registers that contain the
bounds.

Having the ArrayType class manage a set of registers for dynamic dimension
bounds is fine for regular arrays, but unconstrained arrays present a further problem.
With regular arrays, the class instantiation for some array type can know and use the
registers that will contain the ranges and array size. Notice, however, the situation
presented in figure 32. There are three variables of array type “vector”, each of a
different size. The “set of registers” technique fails in this case since each variable
of that type may be of a different size.

The solution is to allow the ArrayType class to know its variables, something no
other type class may do. Whenever an array variable is added to the symbol table,
the variable is also added to its particular type class. The responsibility of offset
calculations and memory allocation and freeing then falls on the ArrayType class.
For example, when the parser encounters something like line 6 of figure 32, it finds
the type of vl and asks that type class to generate an offset calculation of i into

that array.

82

Enumerated Types

Ada/CS enumerated types are exactly like Pascal enumerated types. However they
are slightly different than Ada subtypes, which allow name overloading (a name may
be used in more than one enumerated type in which case the type name must be used
to resolve conflicts). Except for subroutines, Ada/CS allows no name overloading.
The EnumeratedType class receives a list of identifiers and is responsible for
adding those identifiers to the StringSection of the object code file and the current
scope’s name table. It is further responsible to return the StringSection location of
any of its members, as would be necessary for the code generation of the Ada/CS

successor and predecessor type attributes.

Record Types

Ada/CS records are just like Pascal records and also include provisions for variant
records (although these are not yet implemented in the current compiler). When the
parser encounters a record declaration, it creates an instantiation of a RecordType
class. As the parse continues, each set of variable declarations is bundled up and
sent to the type class where it is checked for validity (name uniqueness, existence of
the type, etc.) and added to a list. The members of a record type are stored in an
array of structures that holds each element’s name, its type’s type table position,
and its offset position in the record. As the static scope table element for the record
is built, the offset position is stored in the “offset” field. The animator uses this
field to find record members.

There is a special consideration for compiling records for the E-Machine. The
static scope table requires that each variable have an associated description of its
type. Integers, floats, and booleans are all base types and need no further descrip-

tion. Record and array variables, however, need to have some description of their

83

type for the animator. For this purpose, records and arrays use the child field of
the static scope table structure as an integer index into the static scope table where
their descriptive types are stored. The name table section of Chapter 5 describes in

detail how this field is managed.

Access Types

Ada/CS access types (pointers) have not yet been implemented. The AccessType

class therefore has no functionality as of yet.

Procedures and Functions

Even though procedures and functions are not types, per se, their data class is
part of the type table simply because placing them there works well in practice.
Procedure and Function type classes manage the parameter lists and, in the case of
functions, the return type.

When a subroutine is encountered, the parser builds a list of parameter names,
types, and pass modes, and passes this list to the type class, which checks the list
for validity (variable name uniqueness, whether the type name actually exists, etc.).
When the subroutine code is generated, the ProcedureType class directly adds its
variables to the name table. Because the variable list has already be verified to be
correct (no duplicate names, types exist, etc.), bypassing the checks done by the
symbol table saves time. Since the procedure/function type class is a C++ friend of
the symbol table class, it has direct access to the symbol table data elements (i.e.,
the name table).

As far as the symbol table is concerned, procedures and functions share many of
the same properties. In fact, the only difference between the two is that functions
return a value and so the return type must be known. Taking advantage of C++,

FunctionType is actually a descendant of ProcedureType, adding one method for the

84

return type, and inheriting the parameter list management from the ProcedureType

class.

85

CHAPTER 7

E-MACHINE CODE GENERATION

The Code Generation Classes

Translation of a source program for the E-machine requires the generation of the
eight components of the E-machine object code file—the header section, the source
section, the static scope section, the label section, the variable section, the packet
section, the code section, and the string section. In the Ada/CS compiler, code
generation is handled by seven classes, one for each code file section (with the
exception of the Header Section). Fach class is responsible to save the structures
it generates in the proper section of the E-code object file. Beyond that, there are
very few similarities between the classes. Part of the E-machine is a set of support
routines that write the various E-code sections. These routines are used by the
section classes to save their data to the E-code file. Like the symbol table and type

table classes, there is only one instantiation of each of these section classes.

Base Class Section

All the code generation classes descend from the base class Section. The Section

class currently has no responsibilities and only serves as an abstract base class.

86

Class StringSection

The StringSection class manages the list of strings that are encountered in the
source program by the compiler: enumerated names, string literals, run-time error
messages (like “unhandled exception”), and so forth. This is a very simple class

whose only responsibility is to accept and store string literals.

Class SourceSection

The SourceSection class has no responsibility beyond reading the program source
file and saving it to the source section of the E-machine object file. Unlike the
other section classes, the SourceSection instantiation lies dormant until the end of
program compilation when the “save” methods of all the section classes are called.
At that point, this class reads the source file into a string array and calls upon the

E-machine library to write the source program into the source section.

Class LabelSection

The LabelSection class manages program labels and their addresses. When the
compiler needs to generate a label during compilation, it must request one from
the LabelSection in one of two ways. The first label allocation method accepts
an address, associates a label with that address, and returns the new label. The
second method is a little more complex. On occasion, the compiler needs a label, but
doesn’t yet know the associated address of the label. For example, in parsing an “if”
statement the compiler needs to generate a destination label for creating a branch
around the else part to the end of the if. However, the destination address cannot be
determined until later, when the else part is completely parsed. The parser requests
a label through the method alloc_label and when it eventually determines the address

of the destination (when it has finished parsing the else part, for example), it tells

87

the LabelSection to set that label number to that known address.

Class VariableSection

The VariableSection class manages the list of variable registers used by the compiler.
Whenever the compiler needs a new register, it tells the VariableSection the size
and type of the variable it needs. The size becomes part of the E-code file variable
section. The type, however, is an extension used by the CodeSection’s methods.
Most E-machine instructions require a type (integer, real, boolean, etc.). By making
the type a part of each variable, the CodeSection need only query the type from the

VariableSection when necessary.

Class CodeSection

The CodeSection class generates the E-machine instructions and has a method for
each instruction of the E-machine, as well as a few general purpose methods. The
CodeSection class is responsible for the “bootstrap” code, the pushd instruction
at the start of the executable code that pushes onto the dynamic scope stack the
location in static scope table of the outermost scope. The CodeSection class is also
responsible for adjusting out-only subroutine parameters (discussed in detail later

in this chapter).

Class PacketSection

The PacketSection class is responsible for the executable packets defined by the
compiler. This class has one workhorse method called new_packet. The new_packet
method is straightforward. It accepts as parameters the starting and ending line
and column numbers of the new packet, the scope index, and the flags telling how
the packet should be displayed. It then generates the proper packet information for

the packet section.

88

Class StatScopeSection

The StatScopeSection class, which creates the E-machine Static Scope section, is
probably the most complex of the code generation classes because of the parent /child
relationships. Record variables must have their child index set to the static scope
block of their record type. Like record variables, the child index of a subroutine static
scope structure would point to a static scope block describing all the variables and
types in that subroutine. One-dimensional arrays are described in the variable’s
own static scope structure, but two or more dimensions require a static scope block
for each dimension. These new scope blocks are indexed by the child of the previous
dimension. For instance, consider a three dimensional array variable. The first array
dimension would be described by the variable’s own static scope structure and the
child index of that structure would point to a static scope block that describes the
second dimension. The second dimension’s child index would point to a static scope
block that describes the third dimension.

When a scope is collapsed, the name table method pop_scope first saves all the
user defined types to the static scope table through calls to its method
save_sscope_type. There are two types that require special static scope table consid-
eration: records and arrays. Arrays are not yet fully implemented and save_sscope_type
has no array functionality. However, records are fully implemented.

A record static scope block contains its members and looks much like a sub-
routine static scope block with one exception. The “offset” static scope structure
member is used to indicate the byte offset of each record member from the start of
the record. Because of this difference, the StatScopeSection class has separate meth-
ods to save record members rather than use the methods which save variables. The
save_sscope_type loops through the members of a record type and calls the appro-

priate static scope table member to save the variable. Srecinteger creates an integer

89

record member static scope structure, Srecfloat creates a float record, Srechoolean
creates a boolean record, and so forth.

After saving the user defined types, the name table saves all the variables in the
collapsing scope through calls to StatScopeSection methods named for the types

they save. The methods are as follows:

e Sinteger, Sfloat, Sboolean: These methods save variables of the built in E-
machine types.

e Senumerated: This method saves a variable of an enumerated type to the
static scope table.

e Sprocedure, Sfunction: Saves a procedure or function name to a static scope
entry. The name of the subroutine is stored in its enclosing scope. For exam-
ple, if procedure print_data is defined within function test_record, print_data’s
name will be in test_record’s static scope block. The child index of print_data’s
static scope structure will point to a scope block describing the variables, types,
and subroutines in print_data.

e Srecord, Sarray: Creates a record and array variable static scope entry, re-
spectively. Both of these methods return the table location where the record
or array was added. This value is stored in the type class for later use when
the variable’s child indices are set to their type’s static scope block.

e Sprogram: Creates the “bootstrap” block at the end of the static scope table.
The bootstrap static scope block contains one entry, the program name.

Another responsibility of the StatScopeSection class concerns the pushd instruc-
tion. When the compiler encounters a subroutine, it generates a pushd instruction
which pushes the static scope table position of a new subroutine onto the static
scope stack. However, this index is not known until the subroutine is saved to the
static scope table so the pushd instruction cannot be completed yet. After the parser
completes the subroutine and the scope is collapsed (so that the subroutine is now
in the static scope table), the parser queries the StatScopeSection class to get the
location of the newly added subroutine. This position is saved to the symbol table
entry of the subroutine in the enclosing scope and is used by the StatScopeSection

methods Sprocedure and Sfunction to complete their pushd instructions.

90

Special Ada/CS Code Generation Considerations

Ada/CS, even though a small subset of Ada, shares some of its parent’s complex
code generation challenges. Other challenges arise in the code generation because

of the special needs of the E-machine.

Out-Only Subroutine Parameters

Out-only subroutine parameters are an interesting feature of Ada and are sup-
ported by Ada/CS. Out-only subroutine parameters are only allowed on the left
hand side of an assignment statement and cannot be used in an expression. An
implementation difficulty comes from the fact that the E-machine doesn’t appre-
ciate an attempt to push an undefined variable onto the stack and sets an UN-
DEFINED_DATA fault if a program attempts to do so. However, it is entirely
valid to pass an undefined variable to an out only parameter (passing an unde-
fined variable through an in-only or in-out parameter would correctly cause an
UNDEFINED_DATA fault). The compiler would only know a parameter is out-
only after it has been parsed and a push instruction has already been generated.
A clean solution to this problem would have required that a complex set of special
cases be handled through the expression grammar; therefore, a dirty solution was
implemented. When the compiler discovers it has pushed a value is shouldn’t have,
it looks back at the instructions generated (which are saved in an array until the
entire source program is compiled) and modifies the instructions in such a way that
a constant is pushed instead. Since a number of push instructions could have been
generated (such as in passing 3+5), a marker instruction (a nop) is placed after each

subroutine parameter. The compiler then searches for the appropriate instruction

91

by counting nop instructions and replaces the instruction as necessary. To avoid
stack corruption, upon subroutine entry the bogus value that has been pushed is

popped into a garbage variable and forgotten.

Functions Returning Records or Arrays

The usual way to return a value from a function is to push the return value onto
the stack. The E-machine has eight addressing modes, none of which allow the pro-
gram to access elements on the stack. Further, since only E-machine base elements
(integer, float, etc.) may be pushed onto the stack, records cannot be pushed onto
the stack anyway. This poses a problem in parsing Ada/CS functions, which can
return records or arrays.

As per the Ada definition, passing records and arrays as parameters is done by
pointer (and copied to a local if an in-only parameter). However, functions returning
aggregate data structures are a little more complex to implement. The solution was
to allocate a record or array for the return value in the function and return a single
pointer to this value. The code that uses the returned record or array (perhaps an
assignment statement or a record reference such as funct(10).a) is responsible for

retrieving what it needs from the returned structure and then freeing the memory.

The For Loop

The for loop, while a simple construct, presented some difficulty with respect to
the E-machine. In both Ada and Ada/CS, the loop variable need not be explicitly
declared and, in such a case, must be implicitly declared to be the same type as the
loop’s range. But variables must be in the static scope table for animation purposes.

How can a loop variable be placed into the static scope table?

92

Since the loop variable is only valid within the scope of the loop body, it can not
be added to the end of the current static scope table. Consider the code shown in

figure 33.

package body prog is

begin
for i in 1..10 loop
null;
end loop;

for j in true..false loop
null;
end loop;
end

Figure 33: For Loop

The animator determines which variables of the static scope table to display
through two indices. The first index tells the position in the static scope table of the
subroutine information currently in scope and is set through the E-code instruction
pushd. The second index is an offset from the first index and is one of the members
of the packet table structure (scope index). The animator will start at the top of
static scope block set by the pushd instruction and display the number of variables
indicated by the scope index. The animator only knows an offset. If the scope index
is 5, the animator cannot ignore the 3rd variable in the list; it must display all five.

To display a certain variable in the static scope table, the animator must display
all the variables before that variable in the static scope block. Now, assume that
i is added to the end of the current static scope table entry. This means that the
loop variable’s scope index must be incremented by one so the animator will reach

deep enough into the static scope entry to display it. However, when the compiler

93

reaches the second loop, j would be need to be added in a similar fashion after i
at the end of the static scope table entry. In order for the animator to display j’s
values, the scope index will have to be increased by one again, thus also displaying
i’s values, even though it is no longer in scope.

A solution to this problem was to create an entire new static scope entry for each
loop, making the loops look like small one variable subroutines. A pushd would push
the static scope entry position of the loop onto the dynamic scope stack, and a popd
pops this entry after the completions of the loop. A static scope entry for figure 33

is shown in figure 7.

En Id Array | Upr | Lwr | Nxt | Off Type Rec | Par | Ch | Var | Proc | Index
try | Name | Type | Bnd | Bnd | Idx | set Siz | ent | ild | Reg | Num | Type
Scope block describing loop 1

0 | loop1 - - - - - HEADER - 6 - - - -

1 i - - - - - INTEGER - - - 2 6 -

2 - - - - - END - - - -
Scope block describing loop j

3 | loop] - - - - - HEADER - 6 - - - -

4] - - - - - INTEGER - - - 2 10 -

5 - - - - - END - - - - - -
Scope block describing program Prog

6 Prog - - - - - HEADER - 10 - - - -

7 | loop1 - - - - - FUNCTION - - 0 - - -

8 | loop j - - - - - FUNCTION - - 3 - - -

9 - - - - - END - - - - - -
Bootstrap scope block

10 - - - - - HEADER - - - - - -
11 | Prog - - - - - PROGRAM - - 6 - 0 -
12 - - - - - END - - - - - -

Table 7: Static Scope Table for a For Loop

94

CHAPTER 8

CONCLUSIONS AND FUTURE
ENHANCEMENTS

Conclusions

An Ada/CS compiler for the E-machine has been designed and partially imple-
mented. The Ada/CS compiler is a one-pass compiler written in C++ and was de-
veloped using the parser development tool PCCTS 1.10 (Purdue Compiler Construc-
tion Tool Set) [Parr 93]. PCCTS generates an integrated recursive descent LL(k)
parser and DFSA based scanner. Development started under MS-DOS, moved to
0S/2 when the compiler became too large for 16-bit DOS, then to a Silicon Graphics
workstation, and was finally completed on an IBM-PC clone running the FreeBSD
Unix. A number of Ada/CS programs have been successfully compiled and animated

with the preliminary Unix Motif animator.

95

Future Enhancements

There are several standard Ada/CS features that are not yet finished. Imple-
mentation of arrays, pointers, and exceptions (reversal through exceptions will be
an interesting challenge) is necessary to make this compiler meet the needs of the
Dynalab project. The Ada/CS compiler must match as closely as possible the fun-
damental features of Ada so that simple Ada programs will be readily compilable
by Ada/CS and students using Ada/CS will have no difficulty making a transition
to full Ada.

In order to emphasize the advantages of Ada, the Ada/CS compiler will need to
support separate compilation (packages), which has yet never been attempted in an
E-Machine compiler. The “bind” program would have to take into account the E-
Machine code file sections and be able to correctly merge those sections. Further, the
“bind” would have to take into account that the source for certain library packages
should not be animated (1/0O will be implemented as a package; animating through
put_line would be unnecessary).

Additional features beyond those of Ada/CS are needed to make the language
more closely match Ada. For instance, the addition of a character type (strangely
left out of Ada/CS) and implementation of a with statement would make Ada/CS
more closely match Ada.

This compiler was written in C++ and takes advantage of several object oriented
features. By the time the compiler development was moved to the Unix based
platforms, it had grown complex enough that another C+4 feature, templates,
would have been extremely useful. However, as of this writing, the GNU C++

compiler used on those platforms does not fully support templates. Templates are a

96

feature of C++ much like generics in Ada. They allow the programmer to describe a
general set of code to perform on an unknown data type. For instance, the template

declaration in figure 34 defines a generic stack class.

template <class Type>
class Stack {

private:
Type *stk; // array
int max_size; // current maximum size of stack array
int top; // top of stack

// next push location is top+1

public:
Stack(int size);

Type& pop(void);
void push(const Type& elem);
Type& operator [](int pos);

Figure 34: C++ Stack Template

Wherever “Type” appears in the definition, a real type is substituted when
the template class is instantiated. A class declaration would look something like
Stack<int>, Stack<struct AdacsType>, or Stack<NameTable> for a stack of in-
tegers, AdacsType structures, and NameTables, respectively. This template was
created using Borland C++ under OS/2, but was never made a full part of Ada/CS
because of GNU C++’s lack of template support (although full template support is
expected shortly).

PCCTS is still under development and periodically has updates and new features.
The newest version (1.20) released during the final stages of this project, generates

C++ parser classes which would fit in well with the object oriented nature of this

97

compiler. Another feature of PCCTS is its ability to generate Abstract Syntax
Trees (ASTs), which would be useful if this compiler were converted to a two-pass
compiler. In that case, the Ada/CS source program would be compiled into an AST
and a second pass could resolve certain difficult problems (such as function return
type overloading).

The PCCTS parser has very good error reporting and recovery. However, the
compiler does not take advantage of the parser’s recovery features although pre-
liminary steps are included. A future improvement would be better error recovery
so that the student will receive more than one error message before the compiler

terminates.

98

REFERENCES

99

References

[Birch 90]

[Brown 88-1]

[Brown 88-2]

[Fischer 88]

[Fischer 91]

[Goosey 93]

[Mason 90]

[Ng 82-1]

[Ng 82-2]

[Parr 93]

[Patton 89]

[Ross 91]

[Ross 93]

M. L. Birch. An Emulator for the F-machine. Master’s thesis. Com-
puter Science Department, Montana State University. June 1990.

M. Brown. Algorithm Animation. The MIT Press, Cambridge, Mas-
sachusetts. 1988.

M. Brown. ‘Exploring Algorithms Using Balsa-I1", Computer
Volume 21, Number 5. May 1988.

C. N. Fischer and R. J. LeBlanc, Jr. Crafting a Compiler. Ben-
jamin/Cummings Publishing Company, Menlo Park, California. 1988.

C. N. Fischer and R. J. LeBlanc, Jr. Crafting a Compiler in C. Ben-
jamin/Cummings Publishing Company, Menlo Park, California. 1991.

F. W. Goosey. A miniPascal Compiler for the E-Machine. Master’s
thesis. Computer Science Department, Montana State University.

April, 1993.

T. Mason and D. Brown. lex & yacc. O’Reilly and Associates,
Sebastopol, California. 1990.

C. Ng. Ling User’s Guide. Unpublished Master’s project. Computer
Science Department, Washington State University. 1982.

C. Ng. Ling Programmer’s Guide. Unpublished Master’s project.
Computer Science Department, Washington State University. 1982.

T. Parr, W. Cohen, and H. Dietz. PCCTS Reference Manual. On-line

reference manual.

S. D. Patton. The E-machine: Supporting the Teaching of Program
FExecution Dynamics. Master’s thesis. Computer Science Department,
Montana State University. June 1989.

R. J. Ross. “Experience with the DYNAMOD Program Animator”,
Proceedings of the Twenty-second Symposium on Computer Science

FEducation, SIGCSE Bulletin, 23(1):35-42. 1991.

R. J. Ross. “Visualizing Computer Science”, Invited chapter to appear
in the AACE monograph, Scientific Visualization in Mathematics and
Science Fducation. 1993.

100

[USDOD 93] United States Department of Defense. Reference Manual for the Ada
Programming Language. Springer-Verlag, New York Berling Heidel-
berg. 1993.

101

APPENDICES

102

APPENDIX A

THE E-MACHINE INSTRUCTION SET

This appendix, which is adapted from chapter 2 of Birch’s thesis and appendix
A of Goosey’s thesis, lists all of the instructions in the instruction set of the E-
machine. A pseudo assembly language format is used to describe the instructions,
however the instruction stream itself is actually an array of structures loaded from
the CODESECTION portion of the E-machine object file at run time. The object
file is described in detail in chapter 2 of this thesis.

FEach instruction is composed of four fields (or arguments):

e an opcode mnemonic (e.g., push, pop, add);
e a flag marking the instruction critical or noncritical (CFLAG);
e a field denoting the data type to be used in the instruction (TYPE);

e a field containing either a number (#) or an addressing mode (ADDR);
Addressing modes and their formats are described in appendix B.

The mnemonic field is separated from the others by one or more spaces, and the
remaining fields are separated by commas. The CFLAG field must be either ¢ or n
to designate whether the instruction is to be treated as critical (¢) or noncritical (n).
The TYPE field holds a single capital letter, I, R, B, C, or A, referring to the data

types integer, real, boolean, character, or address, respectively. The # refers to a

103

constant specifying the number of an E-code label, a constant numeric value, or an
E-machine variable register number. If the ADDR argument is used for the fourth
field, it refers to any of the addressing modes described in appendix B.

In the following description of the instruction set, the effects of executing an
instruction both forward and in reverse are given. The actions taken in each case
will be different, depending on whether the instruction has been designated critical
or noncritical. Some instructions have no critical/noncritical flag, because their
execution (either forward or in reverse) would be the same in either case. Reversing
through a noncritical instruction sometimes requires that something be pushed onto

the evaluation stack to keep the stack of the proper size; in such cases an arbitrary

value, called DUMMY is used.

add CFLAG, TYPE

Adds the top two values on the evaluation stack and places the result onto the evaluation
stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes them onto the
save stack, and then pushes their sum onto the evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack and pushes their
sum onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards the value. Pops
the top two elements of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

alloc CFLAG, ADDR

Allocates a block of memory of positive integer size.

Forward: Attempts to allocate the amount of computer words of storage referenced by
ADDR. If successful, the address of the first word of data memory that was allocated
is pushed onto the evaluation stack. Otherwise, a NULL address is pushed onto the
evaluation stack.

Reverse: Pops the top value off the evaluation stack, which should be a data address, and
frees # words of data memory starting at that address.

and CFLAG, TYPE

Bitwise and’s the top two values of the evaluation stack and places the result onto the
evaluation stack.

104

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two values
onto the save stack, and then pushes the bottom value bitwise and’ed with the top
value onto the evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack and pushes the
bottom value bitwise and’ed with the top value onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops the top
two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

br CFLAG, #
Unconditionally branches to label #.

Forward: Loads the program counter with the address of the label # instruction.

Reverse: No operation.

brt, brf CFLAG, #

Conditionally branches depending on whether the top of the evaluation stack is TRUE or
FALSE.

Forward-Critical: Pops the top value off the evaluation stack and pushes it onto the save
stack. Tf the value satisfies the conditional on the branch (TRUE for brt, FALSE for
brf), the program counter is loaded with the address of the label # instruction.

Forward-Noneritical: Pops the top value off the evaluation stack. If the value agrees with
the conditional branch (TRUE for brt, FALSE for brf), the program counter is loaded
with the address of the label # instruction.

Reverse-Critical: Pops the top value of the save stack and pushes it onto the evaluation
stack.

Reverse-Noncritical: Arbitrarily pushes DUMMY onto the evaluation stack.

call CFLAG, #

Branches to label # saving the program address which follows the call instruction so that
execution will continue there upon execution of a return instruction.

Forward: Pushes the current program counter onto the return address stack, then loads
the address of the label # instruction into the program counter.

Reverse: Pops the top value from the return address stack.

cast CFLAG, TYPE, TYPE
Changes the top value of the evaluation stack from the first TYPE to the second.

Forward-Critical: Pops the top value of the evaluation stack and pushes it onto the save
stack, then transforms the value from the first TYPE to the second. The result is
pushed onto the evaluation stack.

105

Forward-Noncritical: Pops the top value of the evaluation stack, then transforms the value
from the first TYPE to the second. The result 1s pushed onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack. The pops the top value of
the save stack and pushes 1t onto the evaluation stack.

Reverse-Noncritical Nothing happens.

div CFLAG, TYPE

Divides the second value from the top of the evaluation stack by the first and places the
result onto the evaluation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two values
onto the save stack, and pushes the bottom value divided by the top value onto the
evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack and pushes the
bottom value divided by the top value onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops the top
two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

eql, neql, less, leql, gtr, geql CFLAG, TYPE
If the second value from the top of the evaluation stack compares favorably with the first,

then TRUE is pushed onto the evaluation stack. Otherwise FALSE is pushed onto the
evaluation stack.

Forward-Critical: Pops the top two values off the evaluation stack, pushes the two values
onto the save stack, compares the bottom value with the top. If the result of the
comparison matches the comparison operation performed, a boolean TRUE is pushed
onto the evaluation stack, otherwise, a boolean FALSE is pushed onto the evaluation
stack.

Forward-Noncritical: Pops the top two values off the evaluation stack and compares the
bottom value with the top value. If the result matches the comparison operation
performed, a boolean TRUE is pushed onto the evaluation stack, otherwise, a boolean
FALSE 1s pushed onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it, then pops the
top two values off the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

inst CFLAG, #

Creates an instance of the variable register 7.

Forward-Critical: Allocates enough data memory for the variable represented by the vari-
able register #. The address of the allocated memory is then pushed onto the variable
register’s stack.

106

Forward-Noneritical: Allocates enough data memory for the variable represented by the
variable register #. The size of the variable is stored in the variable register. The
address of the allocated memory is then pushed onto the variable register’s stack.

Reverse-Critical: The data memory occupied by the variable register is freed and the top
value is popped off the variable register’s stack.

Reverse-Noncritical: Frees the space taken up by the variable in data memory and pops
the top value off the variable register’s stack.

label CFLAG, #

Marks the location to which a branch may be made.

Forward: Pushes the previous program counter onto the stack pointed to by label register
#.

Reverse: Pops the top value of the stack pointed to by label register # and places it in
the program counter.

link CFLAG, #

Associates one variable register with the value of another.
Forward: Pops the top value of the evaluation stack and pushes it onto the variable stack
pointed to by variable register #.

Reverse: Pops the top value of the variable stack pointed to by variable register # and
pushes it onto the evaluation stack.

loadar CFLAG, ADDR
Places the address ADDR in the address register.

Forward-Critical: The contents of the address register are pushed onto the save stack.
Then the address computed for the addressing mode is placed in the address register.
Important note: it is the address that is computed by the addressing mode that is
used, not the contents of that address.

Forward-Noneritical: The address computed for the addressing mode is placed in the
address register. Same note for Forward-Critical applies here.

Reverse-Critical: The address on top of the save stack 1s popped off and placed in the
address register.

Reverse-Noncritical: Nothing happens.

loadir CFLAG, #
Places the # into the index register.

Forward-Critical: The contents of the index register are pushed onto the save stack. Then
1s placed in the address register.

Forward-Noneritical: # is placed in the index register.

107

Reverse-Critical: The value on top of the save stack is popped off and placed in the index
register.

Reverse-Noncritical: Nothing happens.

mod CFLAG, TYPE

Finds the remainder of the division of the second value from the top of the evaluation stack
by the first and places the result onto the evaluation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two values
onto the save stack, and then pushes the bottom value modulo the top value onto the
evaluation stack.

Forward-Noncritical Pops the top two values of the evaluation stack and pushes the bottom
value modulo the top value onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops the top
two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

mult CFLAG, TYPE

Multiplies the top two values on the evaluation stack and places the result onto the evalu-
ation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two values
onto the save stack, and then pushes their product onto the evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack and pushes their
product onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops the top
two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

neg CFLAG, TYPE

Negates the top value on the evaluation stack.

Forward: Pops the top of the evaluation stack and pushes the negation of that value onto
the evaluation stack.

Reverse: Pops the top of the evaluation stack and pushes the negation of that value onto
the evaluation stack.

nop CFLAG

This instruction is the standard no-operation instruction. It can be used to create packets
for high level program text for which no E-machine instructions are generated but which
nonetheless need to be highlighted for animation purposes. An example of this is the begin
keyword in Pascal. In illustrating the flow of control during program animation, a begin
keyword may need to be highlighted (and thus have its own underlying E-machine packet
of instructions). The nop instruction can be used in these cases.

108

not CFLAG, TYPE

Bitwise complements the top value of the evaluation stack.
Forward: Pops the top of the evaluation stack and pushes the bitwise not of that value
onto the evaluation stack.

Reverse: Pops the top of the evaluation stack and pushes the bitwise not of that value
onto the evaluation stack.

or CFLAG, TYPE

Bitwise or’s the top two values of the evaluation stack and places the result onto the evalu-
ation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two values
onto the save stack, and then pushes the bottom value bitwise or’ed with the top value
onto the evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack and pushes the
bottom value bitwise or’ed with the top value onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops the top
two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

pop CFLAG, TYPE, ADDR
Pops the top value of the evaluation stack and places it in ADDR.

Forward-Critical: Pushes the value in ADDR onto the save stack and then pops the top
value of the evaluation stack and stores it in ADDR.
Forward-Noneritical: Pops the top value of the evaluation stack and stores it in ADDR.

Reverse-Critical: Pushes the value in ADDR onto the evaluation stack and then pops the
top value of the save stack and places it in ADDR.

Reverse-Noncritical: Pushes the value in ADDR onto the evaluation stack.

popar CFLAG

Pops the address on top of the evaluation stack and places it in the address register.

Forward-Critical: The contents of the address register are pushed onto the save stack. The
address on top of the evaluation stack is popped and placed in the address register.

Forward-Noncritical: The address on top of the evaluation stack is popped off and placed
in the address register.

Reverse-Critical: The contents of the address register are pushed onto the evaluation stack.
Then the address on top of the save stack is popped off and placed in the address
register.

Reverse-Noneritical: The contents of the address register are pushed onto the evaluation
stack.

109

popd CFLAG

Pops the top value from the dynamic scope stack.
Forward: Pops the top value from the dynamic scope stack and pushes it onto the save
dynamic scope stack.

Reverse: Pops the top value from the save dynamic scope stack and pushes it onto the
dynamic scope stack.

popir CFLAG
Pops the integer on top of the evaluation stack and places it in the index register.
Forward-Critical: The contents of the index register are pushed onto the save stack. Then
the integer on top of the evaluation stack is popped off and placed in the index register.

Forward-Noneritical: The integer on top of the evaluation stack is popped off and placed
in the index register.

Reverse-Critical: The contents of the index register are pushed onto the evaluation stack.
Then the integer on top of the save stack is popped off and placed in the index register.

Reverse-Noneritical: The contents of the index register are pushed onto the evaluation

stack.

push CFLAG, TYPE, ADDR
Pushes the value in ADDR onto the evaluation stack.

Forward: Pushes the value in ADDR onto the evaluation stack.

Reverse: Pops the top value of the evaluation stack and stores it in ADDR.

pusha CFLAG, ADDR

Pushes the calculated address of ADDR onto the evaluation stack. This instruction is
intended to be used for pushing the addresses of parameters passed by reference.
Forward: Pushes the calculated address of ADDR onto the evaluation stack.

Reverse: Pops and discards the address on top of the evaluation stack.

pushd CFLAG, #

Pushes the # onto the dynamic scope stack (where # is the index of a program, procedure,
or function entry in the Static Scope Table)
Forward: Pushes # onto the dynamic scope stack.

Reverse: Pops the top value from the dynamic scope stack.

read CFLAG, TYPE, ADDR

Reads a value from the user. The first TYPE is the type of the data to read. The ADDR
field is the integer file handle to read from.

110

Forward: A user interface function is called to get input from the user. The input is
converted from a string to the appropriate type and pushed onto the evaluation stack.

Reverse: The top value is popped off the evaluation stack.

return CFLAG

Returns to the appropriate program address following a call instruction.

Forward: Pops the top value of the return address stack and loads it into the program
counter.

Reverse: Pushes the previous program counter onto the return address stack.

shl CFLAG, TYPE, #
Shifts the value on top of the evaluation stack # bits to the left filling on the right with 0’s.

Forward-Critical: Pops the top value of the evaluation stack, pushes it onto the save stack,
then shift it # bits to the left and pushes the result back onto the evaluation stack.

Forward-Noncritical: Pops the top value of the evaluation stack, shifts it left # bits, then
pushes the result back onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack. Then pops the top value of
the save stack and pushes 1t onto the evaluation stack.

Reverse-Noncritical: Nothing happens.

shr CFLAG, TYPE, #
Shifts the value on top of the evaluation stack # bits to the right filling on the left with 0’s.

Forward-Critical: Pops the top value of the evaluation stack, pushes it onto the save stack,
then shift it # bits to the right and pushes the result back onto the evaluation stack.

Forward-Noneritical: Pops the top value of the evaluation stack, shifts it right # bits,
then pushes the result back onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack. Then pops the top value of
the save stack and pushes 1t onto the evaluation stack.

Reverse-Noncritical: Nothing happens.

sub CFLAG, TYPE

Subtracts the value on the top of the evaluation stack from the second value from the top
and places the result onto the evaluation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two values
onto the save stack, and then pushes the bottom value minus the top value onto the
evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack, and pushes the
bottom value minus the top value onto the evaluation stack.

111

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops the top
two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

unalloc CFLAG, #

Deallocates a block of memory of # size beginning at the data address atop the evaluation
stack.

Forward-Critical: Pops the top value off the evaluation stack, which should be a data
address, copies # words of data memory starting at that address to the save stack,
then frees the data memory.

Forward-Noncritical: Pops the top value off the evaluation stack, which should be a data
address, and frees # words of data memory starting at that address.

Reverse-Critical: Pops the top value off the save stack, which should be a data address,
pushes it onto the evaluation stack and allocates # words of data memory starting at
that location. # words are then moved from the save stack to this data memory.

Reverse-Noncritical: Allocates # words of data memory and pushes the address of the
first word of allocated memory onto the evaluation stack.

uninst CFLAG, #

Dispose of an instance of variable register #.

Forward-Critical: Frees the memory occupied by the variable then pops the top data
memory address off the variable register’s stack and pushes it onto the save stack.

Forward-Noncritical: Frees the memory occupied by the variable then pops the top address
off the variable register’s stack.

Reverse-Critical: Pops the address off the save stack and pushes it onto the variable
register’s stack then reallocates enough data memory for the variable # starting at
that address.

Reverse-Noncritical: Reallocates enough data memory for the variable # and pushes the
address of the data memory allocated onto the variable register’s stack.

unlink CFLAG, #

Disassociates a variable register from another.

Forward: Pops the top value of the variable stack pointed to by variable register # and
pushes it onto the save stack.

Reverse: Pops the top value of the save stack and pushes it onto the variable stack pointed
to by variable register #.

write CFLAG, TYPE, ADDR

Displays a value for the user. The first TYPE is the type of data to write. The ADDR field
is an integer file handle to write to.

112

Forward-Critical: The top of the evaluation stack 1s popped and the value pushed onto the
save stack. This value is then converted into a string and passed to a user interface
function which takes appropriate action to display the value.

Forward-Noncritical: The top of the evaluation stack is popped and is converted into a
string and passed to a user interface function to be displayed.

Reverse-Critical: The value on top of the save stack is popped and pushed onto the
evaluation stack. Then a user interface function is called to handle undisplaying of
the last value displayed.

Reverse-Noncritical: DUMMY is pushed onto the evaluation stack and then a user inter-
face function is called to handle undisplaying of the last value displayed.

xor CFLAG, TYPE

Bitwise exclusive-or’s the top two values of the evaluation stack and places the result onto
the evaluation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two values
onto the save stack, and then pushes the bottom value bitwise exclusive or’ed with
the top value onto the evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack and pushes the
bottom value bitwise exclusive or’ed with the top value onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops the top
two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

113

APPENDIX B

THE E-MACHINE ADDRESSING MODES

This appendix, which is adapted from chapter 2 of Birch’s thesis and appendix B
of Goosey’s thesis, describes the various addressing modes allowed in E-machine
instructions. Quite a few modes are defined in order to accommodate standard high
level language data structures more conveniently. Note that each addressing mode
refers to either the data at the computed address or the computed address itself,
depending on the instruction. That is, for those instructions that need a data value,
such as push, the data value at the address computed from the addressing mode
is used. For instructions that need an address, such as pop, the address that was
computed from the addressing mode is used.

For each addressing mode listed below, an example of its intended use is given.
Each example is given in pseudo assembly language form for clarity; it is important
to remember that no assembler (and hence no assembly language) has yet been
developed for the E-machine. However, the pseudo assembly language examples

should be easily understood.

114

constant mode - C#

This mode is often called the immediate mode in other architectures; # is itself the integer,
real, boolean, character, or address constant operand required in the instruction.

FErample:
A = 1.5;
could be translated into:

push R,C1.5 ;push 1.5
pop ¢,R,V1 ; assign to A

variable mode - V#:
variable register # — top of variable stack — data memory

This mode accesses the data memory location given in the top element of the variable stack
that is pointed to by variable register #. This mode is intended to address source program
variables that are of one of the basic E-machine types.

FErample:

B:=1;

)

could be translated into:

push I1,C1 ; push 1
pop c,I,V3 ; assign to B

variable indirect - (V#):
variable register # — top of variable stack — data memory — data memory

This mode accesses the data in data memory whose location is stored at another data
memory location, which is pointed to by the top of the variable stack pointed to by variable
register #. This mode is intended for accessing the contents of a high level language pointer
variables. It would be particularly useful for handling parameters in C which are passed as
pointers for the intention of passing by reference.

FErample:

int foo(C))
int *C

{
}

*C =1

115

could be translated into:

label ¢,5 ; procedure entry

inst c,V3 ; create new instance of C
pop c,AV3 ; assign argument passed to *c
push I1C1 ; push 1

pop c,1,(V3) ; assign to *c

uninst ¢,V3 ; destroy instance of C
return ; return from call

variable offset mode - V#{offset}:
variable reqister # — top of variable stack + IR — data memory
This mode accesses the data pointed to by the top of the variable register # stack plus
a byte offset which was previously loaded into the index register. This mode is useful for

accessing fields in a structured data type such as a Pascal record or C struct.

FErample:

A = D.Field2

could be translated into:

push 12 ; D 1s at offset of 2 in structure
popir ¢ ; put offset into index register
push R/ V4{IR} ; push D.Field2

pop R, V1 ; assign to A

address indirect - (A):

address register — data memory

This mode provides access to data located at the data address in the address register. The
address register must be loaded with a data memory address which points to data memory.
This mode is useful for multiple indirection.

FErample:

¢ =*("g);

could be translated into:

loadar ¢, V7 ; load addr reg with addr of g
loadar c,(A) ; load addr reg with addr of *g
push T/(A) ; push *(*g)

pop c,I,V3 ; assign to ¢

116

address offset mode - A{offset}:
address register + IR — data memory

This mode provides access to structured data through the address register. The index
register is added to the address register to provide an address to the data to be accessed.
This mode is useful for indirection with structured data, such as pointers to records in
Pascal.

FErample:
I := Ht.Data

could be translated into:

push A VS ; push HY (address value of H)
popar c ; load ar with Ht

push 1.C2 ; Data has offset of 2 in record
popir ¢ ; load ir with offset

push T A{IR} ; push Hf.Data

pop c,I,V9 ; assign to |

variable indexed mode - V#[index]:

variable register # — top of variable stack + IR * data size — data memory

This address mode uses the top of the variable register # stack as a base address and adds
the index register, which must be previously loaded, multiplied by the number of bytes
occupied by the data type, which is a basic E-machine data type. The resulting address
points to the data item. This mode is useful for accessing an array whose elements are of a
basic E-machine data type.

FErample:
B :=L[3];

could be translated into:

push nJI3 ; put index of 3 into
popir ¢ ; the index register
push T VI2[IR] ; push L[3]

pop c,I,V2 ; assign to B

address indexed mode - Afindex]:

address register + IR * data size — data memory

This mode provides the same function as variable indexed mode, except instead of a variable
register providing the base address, the address register 1s loaded with the base address.
This mode could be used for accessing elements of an array which is pointed to by a variable.

FErample:

B = St[4];

could be translated into:

push
popar
push
popir
push
pop

A V19
C

1.4

C
LA[IR]
e, V2

117

; put address of array into
; address register

; put index of 4 into

; the index register

. push ST[4]

; assign to B

