A OSF/MOTIF PROGRAM ANIMATOR FOR THE DYNALAB
SYSTEM

by
Craig Matthew Pratt

A thesis submitted in partial fulfillment
of the requirements for the degree

of
Master of Science
in

Computer Science

Montana State University
Bozeman, Montana

May 1995

i

APPROVAL
of a thesis submitted by
Craig Matthew Pratt

This thesis has been read by each member of the thesis committee and
has been found to be satisfactory regarding content, English usage, format,
citations, bibliographic style, and consistency, and is ready for submission to
the College of Graduate Studies.

Date Chairperson, Graduate Committee

Approved for the Major Department

Date Head, Major Department

Approved for the College of Graduate Studies

Date Graduate Dean

Statement of Permission to Use

In presenting this thesis in partial fulfillment of the requirements for a master’s
degree at Montana State University, | agree that the Library shall make it
available to borrowers under rules of the Library.

If T have indicated my intention to copyright this thesis by including a
copyright notice page, copying is allowable only for scholarly purposes, con-
sistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for
permission for extended quotation from or reproduction of this thesis in whole

or in parts may be granted only by the copyright holder.

Signature

Date

Acknowledgements

This thesis is part of a larger software development project, called DYNATLAB.
The DYNALAB project evolved from an earlier pilot project called DYNAMOD
[Ross 91], a program animation system that has been used at Montana State
University in introductory Pascal programming classes. DYNAMOD was origi-
nally developed by Cheng Ng [Ng 82-1, Ng 82-2] and later extended and ported
to various computing environments by a number of students, including Lih-nah
Meng, Jim McInerny, Larry Morris, and Dean Gehnert. DYNAMOD also pro-
vided extensive insight into the facilities needed in a fully functional program
animation system and the inspiration for the subsequent DYNALAB project
and this thesis.

Many people have contributed to the DYNALARB project. Samuel Patton
[Patton 89] and Michael Birch [Birch 90] laid the groundwork for this the-
sis by designing and implementing the underlying virtual machine for DY-
NALAB. Francis Goosey developed the first compiler (Pascal) for the E-
Machine [Goosey 93]. David Poole developed the second compiler (Ada/CS)
for the E-Machine [Poole 94]. As this thesis is being completed, Chris Boroni is
developing the second DYNALAB animator, and Tory Eneboe is implementing
a C compiler for the project.

I would like to take this opportunity to thank my graduate committee
members, Dr. Rockford Ross, Dr. Gary Harkin, and Ray Babcock, and the
rest of the Computer Science faculty for their knowledge, guidance, and care
during my seven years at Montana State University. I would also like to thank
especially my thesis advisor, Dr. Ross, and DYNALAB team members and
friends, Frances Goosey, David Poole, Chris Boroni, and Tory Eneboe for
making our group a team.

The original DYNAMOD project was supported by the National Science
Foundation, grant number SPE-8320677. Work on this thesis was also sup-
ported in part by a grant from the National Science Foundation, grant number

USE-9150298.

Contents

Table of Contents

List of Tables

List of Figures

Abstract

1 Introduction

1.1
1.2

2 The
2.1
2.2
2.3

2.4

3 The
3.1

3.2
3.3

The DYNALAB System

Preview

E-Machine

E-Machine Design Considerations
E-Machine Architectureo
E-Machine Emulator 0000
2.3.1 The E-Machine Emulator APT
2.3.2 Relevant E-Machine Emulator Data Types
The E-Machine Object File
24.1 The HEADERSECTION
2.4.2 The CODESECTION
2.4.3 The PACKETSECTION
2.4.4 The VARIABLESECTION
2.4.5 The LABELSECTION
2.4.6 The SOURCESECTION
2.4.7 The STATSCOPESECTION
2.4.8 The STRINGSECTION
2.4.9 The E-Machine Object File APT
2.4.10 Relevant Object File Data Types

OSF /Motif DYNALAB Animator

The Animation Controls
3.1.1 The Execution Controls
3.1.2 The Mode Selection Controls
The File Menu
The Animator Displays
3.3.1 The Source Area
3.3.2 The Variable Display Area
3.3.3 The Input/Output Area
3.3.4 The Execution Cost Display

vil
viii

ix

e e el

vi

3.4 Animator Input Dialogs
3.4.1 The Object File Selection Dialog
3.4.2 The Input Selection Dialog
3.4.3 The Input Request Dialog

4 Program Animation Logistics
4.1 Simple Animation oo
4.2 Animation in Nopause Mode
4.3 Animation in Pause Modeo
4.3.1 Advancing Without Executing
4.3.2 Reversing from the Forward State
4.4 An Algorithm for Animation Control

5 The VarList Package
5.1 The VarList Structure
5.2 The VarList API

6 Animator Design
6.1 The Animation Window
6.2 The Control Area
6.3 The Source Area
6.4 The Variable Display Area
6.5 The Input/Output Area,
6.6 The Instruction Counter

Bibliography
Appendix A The E-Machine Instruction Set

Appendix B The E-Machine Addressing Modes

45
46
52
57
59
63
66

70
71
74

75
76
76
78
79
79
82

84

87

98

List of Tables

4.1 Packet Information for Example 1
4.2 Packet Information for Example 2

Vviii

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2

The E-Machine 0o 10
Typical Motif DYNALAB Animator Display 33
A Source Packet Before Execution 35
A Source Packet During Execution 36
A Source Packet After Execution 37
A Source Packet After Reverse Execution 38
The File Menu oo 39
The Object File Selection Dialog 40
The Input Selection Dialog 43
The Input Request Dialog 43
Pascal Source Code for Example 1. 48
E-Machine Assembly Code for Example 1. 49
Forward Execution Through Procedure Call 50
Reverse Execution Through Procedure Exit 51
Execution States o oL 55
Animation States 58
Correct Usage of Non-pause Packets. 60
Pascal Source Code for Example 2. 61
Forward Execution Through read 64
Reverse Execution Through read 65
Variable Display of Simple Record 72
Variable List Used to Generate Variable Display 73

Abstract

This thesis is part of the fourth phase in the development of an interactive
computer science laboratory environment called DYNALAB (an acronym for
DYNAmic LABoratory). DYNALAB is an interactive software system that
demonstrates programming and computer science concepts at an introductory
level. The first DYNALAB development phase was the design of a virtual
computer—the E-Machine (Education Machine). The E-Machine was designed
by Samuel D. Patton and is presented in his Master’s thesis, The E-Machine:
Supporting the Teaching of Program Erecution Dynamics. In order to facil-
itate the support of program animation activities, the E-Machine has many
unique features, notably the ability to execute in reverse. The second phase
in the development of DYNALAB was the design and implementation of an
E-Machine emulator, which is presented in Michael L.. Birch’s Master’s thesis,
An Emulator for the E-Machine. The third, ongoing phase of the DYNALARB
project is the development of compilers generating E-Machine code. The first
of these compilers is the Pascal compiler by Frances Goosey, described in her
Master’s thesis, A miniPascal Compiler for the FE-Machine The second com-
piler is the Ada/CS compiler by David Poole, described in her Master’s thesis,
An Ada/CS Compiler for the FE-Machine. The fourth phase of the project is
the development of program animators. This thesis describes the concepts of
DYNALAB program animation as well as the design and implementation of
an OSF /Motif program animator.

DYNALAB program animation involves a variety of issues fundamental to
computer science, some issues that apply to program animation in general, and
a number of issues that apply to program animation in the DYNALAB and
OSF /Motif environments. This thesis describes the current implementation of
the E-Machine, the current object file format, the issues related to reversable
program animation, and how they were addressed in the production of the
current working version of the OSF/Motif DYNALAB program animator.

Chapter 1

Introduction

1.1 The DYNALAB System

This thesis is part of the fourth phase of the ongoing DYNALARB software
development project. DYNALAB is an acronym for DYNAmic LABoratory,
and its primary purpose is to support formal computer science laboratories
at the introductory undergraduate level. Students will use DYNALAB to ex-
periment with and explore programs and fundamental concepts of computer
science [Ross 93] [BBGPPPR 95]. The current objectives of DYNALAB in-
clude:

e providing students with facilities for studying the dynamics of program-
ming language constructs—such as iteration, selection, recursion, param-
eter passing mechanisms, and so forth—in an animated and interactive
fashion;

e providing students with capabilities to validate or empirically determine
the run time complexities of algorithms interactively in the experimental
setting of a laboratory;

o extending to instructors the capability of incorporating animation into
lectures on programming and algorithm analysis.

In order to meet these immediate objectives, the DYNALAB project was

divided into four phases.

The first phase was the design of a virtual computer, called the Fducation
Machine, or F-Machine, that would support the animation activities envi-
sioned for DYNALAB. The two primary technical problems to overcome in
the design of the E-Machine were the incorporation of features for reverse ex-
ecution and provisions for coordination with a program animator. Reverse
execution was engineered into the E-Machine to allow students and instruc-
tors to repetitively animate sections of a program that were unclear without
requiring that the entire program be restarted. Also, since the purpose of
DYNALARB is to allow user interaction with programs, the E-Machine had to
be designed to be driven by an animator which controls the execution of pro-
grams, the corresponding animation, and the display of pertinent information
dynamically. This first phase was completed by Samuel Patton in his Mas-
ter’s thesis, The E-Machine: Supporting the Teaching of Program FEzecution
Dynamics [Patton 89].

The second phase of the DYNALAB project was the implementation of an
emulator for the E-Machine. This was accomplished by Michael Birch in his
Master’s thesis, An Emulator for the E-Machine, [Birch 90]. As the emulator
was implemented, Birch also included some modifications and extensions to
the E-Machine.

The third phase of the DYNALARB project is the design and implementa-
tion of compilers for the E-Machine. The first compiler—miniPascal, a subset
of ISO Pascal—was created by Frances Goosey and described in her Master’s
thesis A miniPascal Compiler for the E-Machine, [Goosey 93]. During the
development of this first compiler, changes to the E-Machine design and its
emulator were required to facilitate proper program animation.

The second compiler, the Ada/CS compiler, was created by David Poole
and described in his Master’s thesis An Ada/CS Compiler for the E-Machine,

[Poole 94]. During the development of the Ada/CS compiler, the E-Machine
and its emulator were further modified.

The fourth phase of the DYNALAB project is the design and implemen-
tation of program animators that drive the E-Machine and display programs
in dynamic, animated fashion under control of the user. Preliminary text-
based animators were implemented for the testing of the E-Machine emulator
and the Pascal compiler. As with the first compiler the first official animator,
which is described in this paper, uncovered issues not originally considered in
the design and implementation of the E-Machine. The compilers, E-Machine,
and the E-Machine emulator suffered numerous changes as these issues were
resolved.

The second animator, running under Microsoft Windows, is far along in its
development cycle. This, and subsequent animators, are anticipated to have
little impact upon the E-Machine, its emulator, or the compilers.

This thesis does not conclude the DYNALAB project. A C compiler is
in progress and a C++ compiler is in the planning stages. Work on the
Ada/CS and Pascal compiler, and both animators will continue. Algorithm
animation (as opposed to program animation—-see for example, [Brown 88-1,
Brown 88-2]) is also a planned extension to DYNALAB. In fact, the DY-
NALAB project will likely never be finished, as new ideas and pedagogical
conveniences are incorporated as needed.

It’s helpful to realize that each major component of the DYNALAB project
is directly analogous to elements of a traditional computer system: The E-
Machine corresponds to the CPU and memory of a traditional computer sys-
tem. The compilers turn high-level languages into object files. And the an-
imator is analogous to the operating system; it reads object files, uses the

information therein to control the program’s environment, runs the program,

control access to resources such as input and output streams, and handles ab-
normal execution conditions. The major difference between this environment
and a traditional computing system is due to the fact that the E-Machine is a
virtual machine and therefore the DYNALAB animation system is not depen-
dent upon the actual system architecture. Secondly, the primary goal of each

component is to provide an educational animation environment.

1.2 Preview

Chapter 1 presents an overview of the thesis and the DYNALAB project in
general. A summary of the E-Machine and its emulator is given in Chapter 2.
The changes and additions made to the E-Machine during animator devel-
opment are noted in Chapter 2 as well. For a more detailed explanation of
the E-Machine and its emulator, the reader is referred to the previous theses
detailing the E-Machine [Patton 89] [Birch 90] [Goosey 93] [Poole 94]. Chap-
ter 3 outlines the general operation of the Motif animator and its interaction
with object code files, the E-Machine, and input/output streams. Chapter 4
details the logistics of program execution. To achieve the desired animation
characteristics, actions must be performed in particular ways and in a par-
ticular order. This chapter describes the rules and a tested algorithm which
performs this task.

Chapter 5 describes the design, operation, and use of the VarList routines
and data structure. This complicated platform-independent package was writ-
ten as a convenience for the animator writer. It greatly simplifies the task of
displaying variables and their values. Chapter 6 goes into the details of the
Motif animator itself. While the animator is written in C for compliance with
the current version of Motif, its design and implementation follow an object-

oriented philosophy.

Since this thesis is also intended to serve as a document describing the most
recent E-Machine revision, Appendices A and B are included for completeness
and are adapted from Birch’s thesis. Appendix A describes the E-Machine

instruction set and Appendix B lists the E-Machine addressing modes.

Chapter 2

The E-Machine

This chapter is included to provide a description of the E-Machine and is
adapted from chapter 5 of Patton’s thesis [Patton 89], chapters 1, 2, and 3 of
Birch’s thesis [Birch 90], and chapters 2 and 3 of Goosey’s thesis [Goosey 93].
This chapter is a summary and update of information from those three theses
(much of the material is taken verbatim). New E-Machine features that have
been added as a result of this thesis are noted by a leading asterisk (*).

The E-Machine is a virtual computer with its own machine language, called
E-code. The E-code instructions are described in appendix A; these instruc-
tions may reference various E-Machine addressing modes, which are described
in appendix B. The E-Machine’s function is to execute E-code programs, which
generally consist of programs translated from high-level imperative languages.
The first translator was written for the miniPascal language; Ada/CS is the
second. The real purpose of the E-Machine is to support the DYNALAB
program animation system, as described more fully in [Ross 91], [Birch 90],
[Ross 93], [?], and in Patton’s thesis [Patton 89], where it was called the “dy-

namic display system.”

2.1 E-Machine Design Considerations

The fact that the E-Machine’s sole purpose is to support program animation
is central to its design. The E-Machine operates as follows. After the E-
Machine is loaded with a compiled E-code translation of a high level language
program, it awaits a call from a driver program (the animator). A call from the
animator causes an associated group of E-code instructions, called a packet, to
be executed by the E-Machine. A packet contains the E-code translation of a
single or a portion of a high level language construct, or animation unit. For
example, an animation unit could be a complete high level language assignment

statement such as
A =X + 2%Y;

This animation unit would be translated into a packet of E-code instructions
that perform the actual arithmetic operations and the assignment operation.
In order for the animator to properly handle the proper animation activities,
other information is associated with the packet. This information determines
what effect execution of the packet will have upon the displayed variables of
the translated source program, whether or not the packet corresponds with any
visible source program region, the location of the region if any, whether the
animator should pause after execution of the packet, and whether the variable
display should be updated.

As another example, the conditional portion of an “if” statement in a high-
level language could be translated into a packet. The packet would be just the
E-code instructions translating the conditional expression.

It is the compiler writer’s responsibility to identify the animation units
in the source program and translate them into corresponding E-code packets

and also to properly generate the associated animation information. After the

E-Machine executes a packet, control is returned to the animator, which then
performs the necessary animation activities before repeating the process by
again calling the E-Machine to execute the packet corresponding to the next
animation unit. This process will be described in more detail in chapter 4.
Since the E-Machine’s purpose is to enable program execution dynamics
of high level programming languages to be displayed easily by a program ani-

mator, it had to incorporate the following:

o structures for easy implementation of high level programming language
constructs

e asimple method for implementing functions, procedures, and parameters

e the ability to execute either forward or in reverse

The driving force in the design of the E-Machine was the requirement for
reverse execution. The approach taken by the E-Machine to accomplish re-
verse execution is to save the minimal amount of information necessary to
recover just the previous E-Machine state from the current state in a given
reversal step. The E-Machine can then be restored to an arbitrary prior state
by doing the reversal one state at a time until the desired prior state is ob-
tained. This one-step-at-a-time reversal means that it is necessary only to
store successive differences between the previous state and the current state,
instead of storing the entire state of the E-Machine for each step of execution,
which is impractical for any non-trivial program.

One other aspect of program animation substantially influenced the design
of the reversing mechanism of the E-Machine. Since the animator is meant to
animate high-level language programs, the E-Machine actually has to be able
to effect reversal only through high-level language animation units in one re-
versal step, not each low level E-Machine instruction in the packet that is the

translation of an animation unit. This observation led to further efficiencies in

the design of the E-Machine and the incorporation of two classes of E-Machine
code instructions, critical and non-critical. An E-Machine instruction within
a packet is classified as eritical if it destroys information essential to reversing
through the corresponding high level language animation unit; it is classified
as non-critical otherwise. For example, in translating the animation unit cor-
responding to an arithmetic assignment statement, a number of intermediate
values are likely to be generated in the corresponding E-code packet. These
intermediate values are needed in computing the value on the right-hand side
of the assignment statement before this value can be assigned to the variable
on the left-hand side. However, the only value that needs to be restored during
reverse execution as far as the animation unit is concerned is the original value
of the variable on the left-hand side. The intermediate values computed by
various E-code instructions are of no consequence. Hence, E-code instructions
generating intermediate values can be classified as non-critical and their effects
ignored during reverse execution. It is the compiler writer’s responsibility to
produce the correct E-code (involving critical and non-critical instructions) for

reverse execution.

2.2 E-Machine Architecture

Figure 2.1 shows the logical structure of the E-Machine. A stack-based archi-
tecture was chosen for the E-Machine; however, a number of components that
are not found in real stack-based computers were included.

Program memory contains the E-code program currently being executed by
the E-Machine. Program memory is loaded with the instruction stream found
in the CODESECTION of the E-Machine object code file, which is described
later in this chapter.

The program counter contains the address in program memory of the next

10

Label Label Variable Variable
Registers Stacks Registers Stacks
Index
Register L D
] A :
| | T T
A J R
L I
Address M N
Register F a
[] S
] 0 S
R P
Y A
CPU C
E
Evaluation Dynamic
Stack Evaluation Scope Dynamic
Register Stack Stack Scope
I:l Register Stack
I: STATIC
SCOPE
MEMORY
Return Save
Address Return Dynamic Save
Stack Address Scope Dynamic
Register Stack Stack Scope P
I:l Register Stack Previous R
I:l Program 0
Counter G
8
A
Save Stack Save M
Register Stack SOURCE
l MEMORY Program M
Packet Counter E
Register M
:lT A
[PACKET | R
MEMORY Y

Figure 2.1: The E-Machine

11

E-code instruction to be executed. The previous program counter, needed
for reverse execution, contains the address in program memory of the most
recently executed E-code instruction.

Packet memory contains information about the translated E-code packets
and their corresponding source language animation units. Packet memory,
which is loaded with the information found in the PACKETSECTION of the
E-Machine object code file, essentially effects the “packetization” of the E-code
program found in source memory. Packet information includes the starting and
ending line and column numbers of the original source program animation unit
(e.g, an entire assignment statement, or just the conditional expression in an
“if” statement) whose translation is the packet of E-code instructions about
to be executed. Other packet information includes the starting and ending
program memory addresses for the E-code packet, which are used internally
to determine when execution of the packet is complete.

The packet register contains the packet memory address of the packet infor-
mation corresponding to either the next packet to be executed, or the packet
that is currently being executed.

Source memory is an array of strings, each of which is a copy of a line
of source code for the compiled program. Source memory is loaded from the
E-Machine object file’s SOURCESECTION at run time and is referenced only
by the animator for display purposes.

Data memory contains the values of variable instantiations and dynamic
storage allocation areas. Data memory actually consists of three structures:
an area of data words containing the actual values, an area signifying which
words are defined and which are undefined, and an area signifying which words
have changed and which haven’t changed recently. The last two structures are

managed by the E-Machine emulator itself and are used by the animator (or

12

the VarList routines specifically) to determine the status of the data memory
corresponding with variables. See chapter 5 for more information regarding
these structures.

The variable registers are an unbounded number of registers that are as-
signed to source program variables, constants, and parameters during com-
pilation of a source program into E-code. Each identifier name representing
memory in the source program will be assigned its own unique variable regis-
ter in the E-Machine. The information held in a variable register consists of
the corresponding variable’s size (e.g., number of bytes) as well as a pointer
to a corresponding variable stack. Fach variable stack entry, in turn, holds a
pointer into data memory, where the actual variable values are stored. The
variable stacks are necessary because a particular variable may have multiple
associated instances due to its use in recursive procedures or functions. In
such instances, the top of a particular variable’s register stack points to the
value of the current instance of the associated variable in data memory. The
second stack element points to the value of the previous instantiation of the
variable, and so on. The E-Machine’s data memory represents the usual ran-
dom access memory found on real computers. The E-Machine, however, uses
data memory only to hold data values (it does not hold any of the program
instructions).

The string space component of the E-Machine’s architecture contains the
values of all string literals and enumerated constant names encountered during
the compilation of a program. The string space is loaded with the information
contained in the STRINGSECTION of the E-Machine object file. Currently,
this string space is used only by the animator when displaying string constant
and enumerated constant values.

The label registers are another unique component of the E-Machine re-

13

quired for reverse execution. There are an unbounded number of these reg-
isters, and they are used to keep track of labeled E-code instructions. Each
E-code label instruction is assigned a unique label register at compile time.
The information held in a label register consists of the program memory ad-
dress of the corresponding F-code label instruction as well as a pointer to a
label stack. A label stack essentially maintains a history of previous instruc-
tions that caused a branch to the label represented by the label register in
question. During reverse execution, the top of the label stack allows for cor-
rect determination of the instruction that previously caused the branch to the
label instruction.

The index register is found in real computers and serves the same purpose
in the E-Machine. In many circumstances, the data in a variable is accessed
directly through the appropriate variable register. However, in the translation
of a high level language data structure, such as an array or record, the address
of the beginning of the structure is in a variable register. To access an individ-
ual data value in the structure an offset, stored in the index register, is used.
When necessary, the compiler can therefore utilize the index register so that
the E-Machine can access the proper memory location via one of the indexed
addressing modes.

The address register is provided to allow access to memory areas that are
not accessible through variable registers. For example, a pointer in Pascal is
a variable that contains a data address. Data at that address can be accessed
using the address register via the appropriate E-Machine addressing mode.
The address register can be used in place of variable registers for any of the
addressing modes.

The operands and results of all arithmetic and logical operations are main-

tained on the evaluation stack. The evaluation stack register keeps track of

14

the top of this stack. For example, in an arithmetic operation, the operands
are pushed onto the evaluation stack and the appropriate operation is per-
formed on them. The operands are consumed by the operation and the result
is pushed onto the top of the stack. An assignment is performed by popping
the top value of the evaluation stack and placing it into the proper location in
data memory.

The return address stack (or call stack) is the E-Machine’s mechanism for
implementing procedure and function calls. When a subroutine call is made,
the program counter plus one is pushed onto the return address stack. Then,
when the E-Machine executes a return from subroutine instruction, it pops the
top value from the return address stack into the program counter. A pointer to
the top of the return address stack is kept in the return address stack register.

The save stack contains information necessary for reverse execution. When-
ever some critical information is about to be destroyed, as determined by the
execution of a critical instruction, the required information is pushed onto the
save stack. This ensures that when backing up, the instruction that most re-
cently destroyed some critical information can be reversed by retrieving the
critical information from the top of the save stack. The save stack register
points to the top of the save stack.

The dynamic scope stack allows the animator to determine all currently
active scopes for memory display. The animator must be able to display vari-
able values associated with the execution of a packet both from within the
current invocation of a procedure (or function) and from within the calling
scope(s). That is, the animator must have the ability to illustrate a program’s
run-time stack during execution. The Static Scope Table, which is loaded
into static scope memory from the E-Machine object file’s STATSCOPESEC-

TTON, provides the animator with the information relevant to the static nature

15

of a program (e.g., information pertaining to variable names local to a given
procedure). However, the specific calling sequence resulting in a particular
invocation of a procedure (or function) is obviously not available in the static
scope memory.

To keep track of the set of active scopes at any point during program ex-
ecution, the dynamic scope stack provides the dynamic chain as found in the
run time stack of activation records generated by most conventional compil-
ers. At any given point during program execution, the dynamic scope stack
entries reflect the currently active scopes. Each dynamic scope stack entry—
corresponding to a program name, a procedure name, or a function name—
contains the index of the Static Scope Table entry describing that name (i.e.,
a static scope name). Once these indices are available, the animator can then
use the Static Scope Table information to determine the variables whose values
must be displayed following the execution of a packet. The animator needs
access to the entire dynamic scope stack in order to display all pertinent data
memory information following the execution of any given packet. The dynamic
scope stack register points to the top of the dynamic scope stack.

In order to handle reverse execution, a save dynamic scope stack was added
to the E-Machine architecture. This stack records the history of procedures
and/or functions that have been called and subsequently returned from. The
save dynamic stack register points to the top of this stack.

Finally, the CPU is what executes E-Machine instructions. It is the E-
Machine emulator originally programmed by Birch and is described in the

next section.

16

2.3 E-Machine Emulator

The E-Machine emulator was designed and written by Michael Birch and is
described in his thesis [Birch 90]. The emulator’s design essentially follows the
design of the E-Machine presented the previous sections of this chapter. The
emulator was written in ANSI C for portability and has been compiled on a
wide variety of environments and compilers including MS-DOS-, OS/2- and
Unix-based IBM PCs, Silicon Graphics IRIX, DEC Alpha OSF /1, DECStation
Ultrix, and MicroVAX Ultrix.

Within the complete DYNALAB environment, the emulator acts as a slave
to the program animator, executing a packet of E-code instructions upon each

call.

2.3.1 The E-Machine Emulator API

The program animator controls the E-Machine emulator through a defined
set of calls. These calls allow the animator to initialize, control, and examine
the state of the emulator. The C Application Program Interface (API) to the
E-Machine emulator consists of the following routines:

e FaultType getfault() — Return current fault status (see description of
FaultType below)

e char * faultmsg(FaultType SourceFault) — Return a pointer to the
message associated with SourceFault.

¢ LoadObjfile(char *FileName) - Load the specified object file into the
E-Machine emulator and reset the state of all the E-Machine components
to their initial state. If getfault() returns anything except NOFAULT,
the load was unsuccessful and the state of the E-Machine is undefined
until a LoadObjFile is performed successfully.

o getcurrpacket(Packet *Target) — Copy the next packet descriptor to
be executed into *Target

17

e executepacket() - Execute the next packet. A fault is raised if an error
condition occurs during execution. Depending upon the fault type, the
state of the emulator may be undefined.

e reverse() — Change the direction of execution. Note that the packet
next to execute will be different than before the reverse().

o getlastaddr(ProgAddress *Target) — Assign *Target the address
of the last program instruction in program memory

¢ Boolean PauseDir(PktDirectives Source) — Return TRUE if packet
directive Source contains a DIR_PAUSE directive. The meaning of
these directives can be found in the section detailing the packet section
of the object file.

¢ Boolean ShowSourceDir(PktDirectives Source) — Return TRUE
if packet directive Source contains a DIR_SHOWSOURCE directive.

¢ Boolean VarUpdateDir(PktDirectives Source) — Return TRUE
if packet directive Source contains a DIR_UPDATEVARS directive.

(Note: The function of the following calls are generally limited to accessing
the names and values of variables. The VarlList routines remove much of their
usage for animators.)

e getvaraddress (VariableReg Source, DataAddress *Target) -
Assign Target the data memory location corresponding to variable reg-
ister Source.

e getprevvaraddress(VariableReg Source, IntegerType Depth, DataAd-
dress *Target) — Assign Target the data memory location correspond-
ing to the Depth-th last instantiation of variable register Source.

¢ getvarsize(VariableReg Source, IntegerType *Target) - Assign
Target the size of a instantiation of a variable Source.

e getstatscopeentry(int Source, ST *Target) — Copy static scope
entry Source into Target.

e getnumprocs() — Return the number of subroutines defined in the pro-
gram (functions+procedures4programs).

e getdynamlevel(int *Target) — Assign Target the current number of
dynamic levels. This number generally corresponds to the number of
subroutine calls.

18

¢ datasize(DataType Source) - Returns the size of data type Source
in bytes.

¢ readdata (DataType SourceType, DataAddress Source, DataValue
*Target, DataWord *TargetDefined) - Reads data type Source-
Type from data memory at location Source and copy the contents to
Target and its corresponding define bits to TargetDefined.

¢ writedata(DataType TargetType, DataAddress Target, DataValue
Source) — Writes Source of type TargetType to data memory location
Target.

¢ EMClearChangeRecord() — Resets the change record, setting all data
locations as “unchanged”.

¢ int EMCheckChangeRecord (DataType SourceType, DataAd-
dress Source) — Returns 0 if the variable at data memory location
Source of type SourceType is unchanged since the last EMClearChan-
geRecord and non-0 if it has changed.

e char stringchar(int Source) — Returns the character at position Source
within the string space

The majority of the E-Machine emulator APT calls are related to accessing
data memory. This is by far the most complicated interaction between the
animator and the emulator. This prompted the development of the animator-
independent VarList routines discussed in chapter 5. How these API calls are
used to read the current values of the program variables is discussed therein.
The remaining calls and their use in controlling the animation are discussed

in chapter 4.

2.3.2 Relevant E-Machine Emulator Data Types
The following type definitions are relevant to the API:

e DataType — Set of enumerated types designating the fundamental E-
Machine data type elements. Valid enumerations are: BOOLEAN,
INTEGER, REAL, ADDRESS, CHARACTER.

19

e FaultType — Enumerated type which designates the type of the last
E-Machine error. Valid enumerations are: NOFAULT, EVALOVR-
FLW, EVALEMPTY, CALLOVRFLW, CALLEMPTY, ILLE-
GALINSTR, ILLEGALTYPE, BADVARREG, BADLABELREG,
BADPROGADDR, BADDATAADDR, BADFILE, OUTMEM,
VARNOTALLOC, ILLEGALFLAG, SAVEUNDRFLW, UNDEF-
DATA, ILLEGALMODE, DIVBYZERO, MEMALLOC, DY-
NAMOVRFLW, DYNAMEMPTY, SAVDYNAMOVRFLW, SAV-
DYNAMEMPTY, FREEMEMOVRFLW, FILENOTOPEN, NO-
MAGICNUM, NOHEADER, MULTSTRING, MULTCODE,
MULTVAR, MULTLAB, MULTSOURCE, MULTSTATSCOP,
MULTPACKET, BADSECT, NOCODE, NOVAR, NOLAB, NOS-
TATSCOP, NOPACKET, NOSOURCE, NOSTRING, BAD-
LABELS, BADVARS, BADSTRINGS, BADPACKET, BAD-
SOURCE, BADSTATSCOPE, BADCODE, EF BADLOGNUM,
EF_ BADROOTNUM.

o Packet — Structure describing a single E-Machine packet and consisting
of the following fields:

1. ProgAddress startaddr — Starting address of the E-Machine in-
struction the packet references in source memory

2. ProgAddress endaddr — Ending address of the E-Machine in-

struction the packet references in source memory

3. int startline — Starting line number of source code the packet
references in source memory

4. int startcol — Starting column number of the source code the
packet references in source memory

5. int endline — Ending line number of the source code the packet
references in source memory

6. int endcol — Ending column number of the source code the packet
references in source memory

7. StatScopeEntry scope — Number of entries from the top of the
static scope block to display. Basically, this number tells the anima-
tor how many entries to look at in the current scope from the top.
This determines which variables should be shown as “declared.”

8. PktDirectives forward_directives — Directives to apply when
running in the forward direction. This field is a bitmap composed
of a logical union (or) of any of the following symbols:

(a) DIR_.UPDATEVARS - The animator should update the vari-
able display after forward execution of this packet

20

(b) DIR_PAUSE - The animator should pause for user interac-
tion before execution of this packet if running in an incremental
execution mode

(c) DIR.SHOWSOURCE - The animator should highlight the

source code associated with this packet before execution

9. PktDirectives reverse_directives — Directives to apply when
running in the reverse direction. This field is a bitmap composed
by a logical union (or) of any of the following symbols:

(a) DIR_.UPDATEVARS - The animator should update the vari-

able display before reverse execution (unexecution) of this packet

(b) DIR_PAUSE - The animator should pause for user interac-
tion before execution of this packet if running in an incremental
execution mode

(c) DIR.SHOWSOURCE - The animator should highlight the

source code associated with this packet before execution

10. IntegerType TestResultVar — If positive, this field defines the
variable register to examine for the intermediate result of an ex-
pression resulting in a True or False result. If defined, the animator
should display the contents of this register after execution of this
packet when running forward. In reverse execution, the animator
is expected to ignore this field.

o ST — The ST structure defines an element of the Static Scope Table. As a
whole, the static scope table describes every data structure in the source
language program and the location of the elements in data memory. How
this is done is described in chapter 5. The ST type contains the following
elements:

1. char name[| - The element name, if any

2. StatScopeEntryType type — The type of the element. StatScopeEn-
tryType is defined to be one of: PROCEDURE, FUNCTION,
INTFUNCTION, REALFUNCTION, BOOLFUNCTION,
CHARFUNCTION, ENUMFUNCTION, PTRFUNCTION,
HEADER, END, RECORD, STRING, INTCONST, RE-
ALCONST, BOOLCONST, CHARCONST, STRINGCONST,
ENUMCONST, PTRCONST, ENUMINT.

3. IntegerType upperbound — Upper value of index if the element
is a static array or the register that contains the index if the element
describes a dynamic array.

10.

11.

12.

13.

21

IntegerType lowerbound — Lower value of the index if the ele-
ment is a static array or the register that contains the index if the
element describes a dynamic array.

int nextindex — If positive, this field is used as the index of the
static scope table entry that describes the next dimension in multi-
dimensional arrays.

IntegerType offset — For elements of aggregate data types, such
as record fields, the offset field stores the offset of the field from
the beginning of the record.

IntegerType VarSize — Size of the element in bytes

int parent — If positive, this field is used as the index of the
HEADER element of the enclosing scope block

int child — If positive, this field is used as the index of the child
scope block.

VariableReg varreg — If positive, the varreg field designates the
variable register that contains the address of the element in data
memory.

int ProcNum - Unique procedure identifier. This identifier is used
to identify procedures on the dynamic scope stack.

int IndexType — The index type if the element describes an array
dimension

StatScopeArrayType ArrayType — The type of array, either
STATIC or DYNAMIC. This controls how the index fields are

interpreted.

2.4 The E-Machine Object File

The E-Machine emulator defines the object file format that must be generated

by a compiler. A single E-code object file ready for execution on the E-Machine

consists of eight sections, seven of which may occur in any order. The file is

stored using 7-bit ASCII and is formatted to be human-readable to facilitate

debugging.

Each section of an object code file is preceded by an object file record

containing the section’s name followed by a record that contains a count of

22

the number of records in that particular section. Each of these eight sections
(whose names are shown in capital letters) holds information which is loaded
into a corresponding E-Machine component at run time as follows:

e The HEADERSECTION, which is loaded into animator memory

o The CODESECTION, which is loaded into program memory

o The PACKETSECTION, which is loaded into packet memory

o The VARIABLESECTION, which is loaded into the size information

associated with the variable registers

e The LABELSECTION, which is loaded into the label program address

information associated with the label registers
e The SOURCESECTION, which is loaded into source memory
o The STATSCOPESECTION, which is loaded into static scope memory
o The STRINGSECTION, which is loaded into the string space.

The file sections are described below.

2.4.1 The HEADERSECTION

The HEADERSECTION is a repository for specific information about the
program, such as the E-Machine version number and the compiler version
number with which the program was compiled, as well as general information
about the program itself (e.g. a description of the program such as “this
program illustrates a linked list”). The HEADERSECTION is not yet fully
implemented and new elements will find their way into this section as time

goes on. The HEADERSECTION must be the first section in the object file.

2.4.2 The CODESECTION

The CODESECTION contains the translated program—the E-code instruc-

tion stream. Even though the instruction stream can be thought of as a stream

23

of pseudo assembly language instructions, the instructions are actually con-
tained in an array of C structures, and are loaded from the CODESECTION
into the E-Machine’s program memory at run time. Each E-code instruction
structure contains the following information:

e The instruction number followed by a colon

e An operation code (e.g., push or pop)

The instruction mode (critical or non-critical)

The data type of the operand (e.g., I indicates INTEGER)

Either a numeric data value or an addressing mode

2.4.3 The PACKETSECTION

The PACKETSECTION consists of lines which are used to define the packet
structures describing source program animation units and their translated E-
code packets. These structures are loaded into the E-Machine’s packet memory

at run time. Each line of the packet section contains the following information:

e The packet number followed by a colon

o The packet’s starting and ending E-code instruction addresses in pro-
gram memory

o The starting and ending line and column numbers in the original source
file of the program animation unit corresponding to the packet

e An index into the current scope block of the Static Scope Table
e The forward and reverse directives (in hexadecimal notation)

e a variable register number that will hold the result of the execution of a
conditional expression.

24

2.4.4 The VARIABLESECTION

The VARTABLESECTION consists of lines which are used to define the vari-
able registers used by the compiled program. A variable register definition
consists of a variable number field followed by a colon and the size of the
data represented by the register. This information is used to initialize size

information held in the E-Machine’s variable registers.

2.4.5 The LABELSECTION

The LABELSECTION consists of lines used to define label structures. A label
definition consists of a label number followed by a colon and the program
address at which the corresponding label is defined. This information is used
to initialize the label program address information held in the E-Machine’s

label registers.

2.4.6 The SOURCESECTION

The SOURCESECTION consists of lines defining the source code of the com-
piled program. Fach line consists of a line number followed by a colon and
the source code for that line. This section is referenced exclusively by the

animator for display purposes.

2.4.7 The STATSCOPESECTION

The STATSCOPESECTION was originally named the SYMBOLSECTION in
Birch’s thesis. It contains lines which are used to define the static scope table.
The Static Scope Table (called the “symbol table” in Birch’s thesis) is used by
the animator to determine the variable values that should be displayed upon

execution of a packet. The name was changed to Static Scope Table in order to

25

avoid confusion with a compiler’s symbol table. The STATSCOPESECTION
records are loaded into the E-Machine’s static scope memory at run time.

Each line of the STATSCOPESECTION contains the following informa-
tion:

e The entry number followed by a colon

e Upper and lower bounds (for array variables)

e The entry number of the Static Scope Table entry containing the next
array index bounds (for multidimensional arrays)

e The offset value (for aggregate types)

e An integer representation of the enumerated value indicating the data
type

e The size of the variable in bytes
e The entry number of the entry’s parent Static Scope Entry

e The entry number of the child of this entry (e.g., if this static scope entry
describes a procedure, this field would hold the index of the first entry
in the static scope block describing the variables declared local to the
procedure)

o The variable register number that contains the address of the variable’s
value

e The procedure identifier number (used for dynamic scoping)

o An integer value corresponding to an enumerated type denoting whether
a variable name is an array, and if so, whether it is static or dynamic

e A value describing the index type of an array variable (e.g. integer,
enumerated, or character).

e The name of the identifier being described (e.g., a variable name or a
procedure name)

26

2.4.8 The STRINGSECTION

The STRINGSECTION contains the values of string literals and enumerated
constant names. The contents of the STRINGSECTION are loaded into the
E-Machine’s string space at run time. The animator retrieves the values of

string constants from the string space.

2.4.9 The E-Machine Object File API

The DYNALAB compilers create object files and the E-Machine emulator
reads object files using a common library of routines. This allows the format
of the object file to change without requiring recompilation of the compilers
and the E-Machine emulator.

Each object file section has a corresponding write and read routine to
generate and parse the section, respectively. There is no required order for the
sections except the header section, which must come first. The C object file

API calls are as follows:

¢ BooleanType open_code_file(char *FileName) - Opens the object
file given by FileName. Any subsequent reads reference this file. If the
open is successful, open_code_file returns TRUE, otherwise it returns

FALSE.
e void close_code_file(void) — Closes file opened with open_code_file.

¢ int write_code(FILE * TargetF'ile, int NumlInstructions, Instruc-
tion * Source) — Writes a code section out to a file. Source is the base
of the instruction array to write, TargetFile is the file to write the sec-
tion into, and NumlInstructions is the number of instructions to write.
write_code returns 1 if successful.

¢ int read_code(int NumlInstructions, Instruction ** Target) -
Reads the code section into E-Machine memory. NumlInstructions
is the number of instructions to read and Target is a pointer to an ar-
ray of instruction structures (with enough room for NumlInstructions
elements) where the read instructions are stored. read_code returns 1
if successful.

27

void write_labels(FILE * TargetFile, int NumLabels, LabelReg
* Source) — Writes a label section out to a file. Source is the base of
the label array to write, TargetFile is the file to write the label section
into, and NumLabels is the number of labels to write.

BooleanType read_labels(int NumLabels, LR ** Target) — Reads
the label section into E-Machine memory. NumLabels is the number
of labels to read and Target is a pointer to an array of label register
structures (with enough room for NumULabels elements) where the read
label parameters are stored. read_labels returns TRUE if successful.

void write_packets(FILE * TargetFile, int NumPackets, Packet
* Source) — Writes a packet section out to a file. Source is the base
of the packet array to write, TargetFile is the file to write the packet
section into, and NumLabels is the number of labels to write.

BooleanType read_packets(int NumPackets, Packet ** Target,
ProgAddress * LastAddress) — Reads the packet section into E-
Machine memory. NumPackets is the number of packets to read and
Target is a pointer to an array of packet structures (with enough room
for NumPackets elements) where the packets are stored. LastAd-
dress is assigned the highest numbered address referenced by a packet.
read_packets returns TRUE if successful.

void write_source(FILE * TargetFile, int NumSourceLines, char
** Source) — Writes a source section out to a file. Source is a pointer
to an array of string pointers to write, TargetFile is the file to write
the source section into, and NumSourceLines is the number of source
lines to write.

BooleanType read_source(int NumsourceLines, char ** Target)
— Reads the source section into E-Machine memory. NumSource-
Lines is the number of source lines to read and Target is a pointer to
an array of character pointers (with enough pointers for NumSource-
Lines elements) where pointers to the strings (which are malloced by
read_source) are stored. read_source returns TRUE if successful.

void write_statscope(FILE * TargetFile, int NumEntries, ST *
Source) — Writes a static scope section out to a file. Source is the
base of the static scope structure array to write, TargetFile is the file
to write the static scope section into, and NumEntries is the number
of entries to write.

28

¢ BooleanType read_statscope(int NumEntries, ST ** Target, *
int NumProcs) — Reads the static scope section into E-Machine *
memory. NumEntries is the number of static scope * structures to
read and Target is a pointer to an array of * packet structures (with
enough room for NumElements * elements) where the packets are
stored. NumProcs is * assigned the number of PROCEDURE and
FUNCTION entry * types seen. read_statscope returns TRUE if *
successful.

¢ void write_strings(FILE * TargetFile, int Length, char * Source)
— Writes a string section out to a file. Source is a pointer to an array
of characters to write, TargetFile is the file to write the string section
into, and Length is the number of characters in the string section.

¢ BooleanType read_strings(int Length, char * Target) - Reads
the string section into E-Machine memory. Length is the number of
characters to read and Target is a pointer to an array of characters (with
enough room for Length elements) where the characters are stored.
read _strings returns TRUE if successful.

¢ void write_variables(FILE * TargetFile, int NumElements, Vari-
ableReg * Source) — Writes a variable section out to a file. Source
is the base of the variable array to write, TargetFile is the file to write
the variable section into, and NumElements is the number of variable
elements to write.

¢ BooleanType read_variables(int NumElements, VR ** Target)
— Reads the variable section into E-Machine memory. NumElements
is the number of variable elements to read and Target is a pointer
to an array of variable register structures (with enough room for Nu-
mElements elements) where the read variable parameters are stored.
read_variables returns TRUE if successful.

The read routines are used by the E-Machine emulator to load the sections
into its internal structures. But the animator and other utility programs may
use these routines to access the contents of code files. Specifically, the HEAD-
ERSECTION, when fully implemented, should be read by E-Machine object
file browsers and the like to obtain detailed information about the object file.

This information includes the author, a short description, a long description,

date of creation, and other information as deemed useful.

29

2.4.10 Relevant Object File Data Types

Since the E-Machine emulator already has a representation for the structures
used in the object file API, the object file API simply uses those definitions
instead of re-inventing them. The following type definitions are relevant to the

object file API:

e DataType — Set of enumerated types designating the fundamental E-
Machine data type elements. Valid enumerations are: BOOLEAN,
INTEGER, REAL, ADDRESS, CHARACTER.

e Instruction — Structure containing the information for a single E-Machine
instruction. It contains the following fields:

1. Opcode opcode — Operator code for instruction. This is one of
PUSH, PUSHA, POP, POPIR, POPAR, LOADIR, LOADAR,
ADD, SUB, MULT, DIV, NEG, AND, OR, XOR, NOT,
SHL, SHR, MOD, CAST, LABEL, BR, BRT, BRF, EQL,
NEQL, LESS, LEQL, GTR, GEQL, CALL, RETURN, AL-
LOC, UNALLOC, INST, UNINST, LINK, UNLINK, NOP,
PUSHD, POPD, OPEN, READ, WRITE, CLOSE, PUSHAR,
OP_ATAN, OP_COS, OP_EXP, OP_LN, OP_SIN, OP_SQRT.
See Appendix A for a description of the E-Machine instructions.

2. ModeType mode — The mode of an instruction is either CRIT-
ICAL or NONCRITICAL. See the description earlier in this
chapter.

3. unsigned char type — The type of the operand (see description
of DataType above)

4. DataValue data — The operand for the instruction. A DataValue
can be any of AddressType, BooleanType, CharacterType,
IntegerType, or RealType.

5. int addrmode — The addressing mode for the instruction. This
may be a logical union between IMMEDIATE, VARIABLE,
ADDRREG, INDEXED, OFFSET, INDIRECT, and/or IN-
DEXFIRST. Only certain combinations are valid. See [Goosey 93]
and [Poole 94] for details on their use.

e LabelReg — Integer referring to a particular E-Machine label.

e LR — A structure containing information about a label register. Tt con-
sists of the following fields:

30

ProgAddress address — The address in code memory correspond-
ing to the label.

LabelStack * stack — A pointer to the label stack for this label.
It is necessary to store each branch to a label for reverse execution.

Packet — See description above.

ST — See description above.

VariableReg — Integer designating a variable register in the E-Machine.

VR - A structure containing information pertaining to a particular vari-
able register. It consists of the following fields:

1.

IntegerType size — The size of the element stored in the variable
register

VarStack * stack — A pointer to the variable stack for this register.
This is used for multiple instantiations of the same variable.

Chapter 3
The OSF /Motif DYNALAB

Animator

This chapter is included to provide a description of the functionality of Version
1 Release 1 of the Motif-based DYNALAB Program Animator. The details of
the implementation can be found in chapters 4 and 6.

The program animator’s purpose is to illustrate the run-time behavior of
programs compiled with one of the DYNALAB compilers. The DYNALAB
compilers generate DYNALAB animation object files which describe both the
static and dynamic nature of the source program. As outlined in chapter 2,
an object file contains E-Machine assembly instructions that implement the
program, information about the variables declared in the program, the original
source code, a textual description of the program, and other information the
E-Machine and animator require to properly animate the program.

The purpose of the DYNALAB project is to help students understand
the complexities of programming. The philosophy behind the design of the
animator interface gives highest priority to this fact. The Motif DYNALAB
animator is designed to add as little complexity as possible to the task of
analyzing a program. To this end, each element of the animator and how it

functions is intended to clarify and simplify the understanding of the animated

31

32

program more than it complicates the use of the animator itself. How this is
realized for each element is described below.
A typical use of the animator by a student in a lab environment would

involve him or her performing the following:

e Retrieving a pre-constructed or compiled program into the animator from
an on-line library of programs or constructing a source program and
translating the source program using one of the DYNALAB compilers
into a DYNALARB object code file

e Forward and reverse executing through the program to study new pro-
gramming concepts in action

o Performing a time complexity analysis by entering various values and
running the program or a portion of the program to acquire execution
cost values.

Figure 3.1 depicts a typical animation session. The goal of the animation
window is to be simple and intuitive. The primary elements of the animation

window are:

A The File menu allows the user to load programs from a library into the
animator, reset the current animation, and exit from the animator

B The source area contains the source code for the animated program. The
highlighted region designates the source that is about to be executed or
unexecuted.

C The execution control buttons allow for forward execution and advancement
(depending upon the mode) or the reverse execution (unexecution) of the
currently highlighted source.

D The variable display area contains the current call stack and the values of
all variables in each active routine. Variables that have changed since
the last execution step are highlighted.

E The execution mode selector controls how execution is performed. The
modes and their operation are detailed later in the chapter.

F The input/output (10) area lists the output by the program at its current
state as well any input read by the program.

33

File (&)

procedure Tower (FrorPegq, e Yanable DIspay
ToPedq. :
: £ s -=-=- Hanhoi -=-=-
;“xpeg Emlm:i : %:;,;er)' Pegl is undefined
{ ! : 2 Pey? is undefined
Moves N disks from FronPeg to ToPeg 599-1'3 undefined
using AnxPeqg as an anxiliary. =
Pre : FromPeq, ToPeq, AuxPeq, and N are defined.
Post: Displays a list of move instructions that transfer -=-=- Tower -=-=-
the disks. FromPeqg = "a’
} ToPeq = °c’
_ AuxPey = b’
begin {Tower} N=4
ifN=1 then begin) —=—=_ Tower -=-=-
Writeln {‘Move disk 1 from peq . FrowPeg, FromPeg = "a’ @
* to pey ', ToPeqg); ToPeg = b’
gnuhmter i= Comnter + 1 AuxPey = ¢’
else th=~d
begin {recursive step} e Tuwe,r,—=—=—
Tower {FromPey, AuxPeq, ToPeg, N-1); mePle’a
Uriteln {‘Move disk ‘', N :1, * from peg ‘', FromPeg, ToPeg = 'c
* to peqg *, ToPeq): AuxPey ="’
Comter := Coomter + 1; N=2
Tower (AwxPeq, ToPeqg, FromPeqg, N-1)
end {recarsive step}
| I
=4 = A

FPlease input a value > 0 for the humber of disks = 4
Move disk 1 from peq a to peg b
Move disk 2 from peq a to peg c

®

T

REVERSE EXECUTE

©

FORWARD EXECUTE

(E) © Nopause mode

<+ Pause mode

4+ Auto execute mode

Figure 3.1: Typical Motif DYNALAB Animator Display

34

G The execution cost area displays the number of E-Machine instructions
executed to the current point of execution. The Reset button allows
the cost counter to be reset to zero so that the cost of a particular
program section can be determined easily.

3.1 The Animation Controls

Control of the animator is intended to be straight-forward and predictable.
That is, all actions are intended to have minimal side-effects. Since the source
program is the object of study, the animator should add minimal complexity
to the program animation. Only two buttons and operations on the “File”

menu affect the state of execution.

3.1.1 The Execution Controls

The two principle controls are the FORWARD EXECUTE/ADVANCE and
REVERSE EXECUTE buttons in the control area at the bottom of the ani-
mation window. The forward button causes execution of the current packet.
It changes its label to reflect the current state of the execution when in pause
mode or auto execute mode, described below. The reverse execute button
unexecutes the highlighted region and advances to the previously-executed

packet regardless of animation mode.

3.1.2 The Mode Selection Controls

Execution of a single packet, the highlighted portion of the source program,
typically follows a sequence similar to that illustrated in Figures 3.2 - 3.5. The
default execution mode, which this sequence illustrates, is the Pause mode.
This mode is useful for allowing a student the opportunity to predict the result
of the execution of the current line before executing it. And, after executing

the line, the student may then predict the next line to be executed before

35

control advances.

When the animator is in the nopause mode, it automatically advances to
the next packet to be executed after executing the current packet. This allows
more rapid traversal of the program when desired.

In auto execute mode the animator runs to the end of the program, pausing
only for user input. This mode is useful for examining the output of a program

and determining the execution cost of the program.

end {recursive step} & Yarialis Display
end; {Tower} - Hanoi -=-=-
. - Peq1 is undefined
heg;f'm{g:"?:}u. Peg2 is undefined
write('Please input a value > 0 for the mmber 1 Feg3 is undefined
N is undefined
vhile N <= 0 do begin Counter = 0
write{’No, no, no!!! A value > 0 please! > *’
readln{N}

end;
Tower{'a’, "c’', ‘b, N);
writeln;
writeln{'Done, after *, Cowmter:1l, * woves!l‘)
end.

H] el | — =
Y
Please input a value = 0 for the humber of disks = | |]
i
~l T
~
REVERSE EXECUTE Pause mode
+ Hopause mode RESET |
| FORWARDY EXECUTE «» Auto execute mode 134

Figure 3.2: A Source Packet Before Execution

The solid reverse highlight signifies that this packet is about to be executed.
Notice that the forward button is labeled “FORWARD EXECUTE”, the
value of “N” is “undefined”, and the current execution cost is “134.”

3.2 The File Menu

The open item in the file menu (Figure 3.6) allows the user to load a DY-
NALAB animation code file into the animator. The restart option causes

the animator to restart the animation of the current code file. And the quit

36

File

end {recursive step} kX Variable Display

end: {Tower}

-=-=- Hanoi -=-=-
- - Peq1 is undefined
begle Wamol) Peg2 is undefined
write('Please input a value > 0 for the muiber Feg3 is undefined
N is undefined
vhile N <= 0 do begin Counter = 0
write{’No, no, no!!! A value > 0 please! > *’
readln{N}
end;
Tower{'a’, "c’', ‘b, N);
writeln;
writeln{'Done, after *, Cowmter:1l, * woves!l‘)
end.

S — Enter input: s
] =
i Y
Please input a i
£

~l ‘ 0K T

REVERSE EX

+ Hopause mode RESET |

+» Auto execute mode 134

| FORWARD EXECUTE

Figure 3.3: A Source Packet During Execution

After the user presses the “FORWARD EXECUTE” button, the packet is
executed. Since this packet required user input, the animator brings up a
requester for the user to enter a value.

option terminates the animator.

The open option brings up a file selection dialog box listing the code files
in the current directory. When the user selects a file, the animator verifies the
code file structure, loads it if it checks out, and initializes the displays. Figure

3.7 illustrates a typical file selection.

3.3 The Animator Displays

There are four primary displays in the animator: The source pane, the variable
pane, the output pane, and the execution cost counter. With the exception
of the execution cost counter, the contents of these displays are entirely non-

interactive.

37

File
end {recursive step} Y Vanable Display
end; {Tower - Hanoi -=-=-
. - Peq1 is undefined
heg;f'mgi"?:}u. Peg2 is undefined
write('Please input a value > 0 for the muber %'S undefined
wvhile N <= 0 do begin Counter = 0
write{’No, no, no!!! A value > 0 please! > *’
readln{N}
end;
Tower(‘a’, ‘c’, ‘b, N);
writeln;
writeln{'Done, after *, Cowmter:1l, * woves!l‘)
end. =
4
|] T el | — -
Y
Please input a value = 0 for the number of disks = 3 |:
£
-1]
o~
REVERSE EXECUTE Pause morke
+ Hopause mode RESET
| FORWARDADVANCE +» Auto execute mode 397

Figure 3.4: A Source Packet

After Execution

The underline highlight signifies that this packet has been executed. Notice
that the value of “N” is now “3” and is highlighted to signify that the value of
“N” has changed. The execution cost now displays “397.” Also the forward
button is now labeled “FORWARD ADVANCE”. Pressing the button will
cause the animator to advance to and highlight the next statement to be

38

File
end {recursive step} & Variatile Display
end; {Tower - Hanoi -=-=-
. - Peq1 is undefined
hegmigf?:}u. Peg2 is undefined
rite(’ Please input a value > 0 for the muber PEE3 is undefined
readln{N};
vhile N <= 0 do begin Counter = 0
write{’No, no, no!!! A value > 0 please! > *’
readln{N}
end;
Tower(‘a’, ‘c’, ‘b, N);
writeln;
writeln{'Done, after *, Cowmter:1l, * woves!l‘)
end. =
4
H] | — -~
Y
Please input a value » 0 for the number of disks > |]
£
-1]
o~
REVERSE EXECUTE I Pause morke
+ Hopause mode RESET
FOBWARD:EXECUITE | < Auto execute mode 134

Figure 3.5: A Source Packet After Reverse Execution

This is the animator display after reverse execution of the “readln” packet.
Notice that the contents of the execution cost, variable display, and 10 areas
are the same as in Figure 3.2. Since the previous line containing the “writeln”
is the next packet to be unexecuted, it is highlighted. Also, the variable
display for “N” is highlighted since it changed from “3” to “undefined.”

39

File |
| Open... I:Tu]
FiLH

N

Restart...

Quit animator

Moves N disks from
using AnxPeqg as an
Pre : FromPeq, ToPi

Dok Thhoalarre o 1

Figure 3.6: The File Menu

3.3.1 The Source Area

The source area contains the source code for the animated program. The user
may scroll through the source, but its primary function is to show the next
portion of the program to be executed. Upon execution of a highlighted area,
the highlight is changed according to the state of the execution and the mode
of execution. The pane is scrolled automatically so that the portion being

executed is always visible to the user.

3.3.2 The Variable Display Area

The variable display area contains the names and values of the active program
variables at the current point of execution. Each active call frame partitions
the variable display and is displayed in a top-down fashion. The initial routine
is at the top of the variable display and each active routine, if any, and its
variables appear below it. See Figure 3.1 item D for a typical variable display.

The user is free to scroll the variable display pane if its contents exceed the
height of the pane to examine various variables. The currently-visible portion

of the variable display remains in-place as program animation progresses unless

40

Filter
fuserl fcraigfdynaimisc/hooks/pascal-labs/sorting - labs/* .cod
Directories Files
mischooks/pascal-labs/sorting-labs/, L ARE A
vmisc/hooks/pascal-labs/sorting-labs/.. uiksort.cod
¥ ¥i
= IL= = L=

Select code file to nun

craigfdyna/misc/hooks/pascal - labs/sorting - labsfquiksort.cod

Figure 3.7: The Object File Selection Dialog

variables are instantiated in the process of animation. The variable display is
automatically scrolled to the bottom when new variables appear.

It is important to note that the variable display is fundamentally different
than the variable examination mechanism offered by source-level debuggers.
Program animation generally displays all active variables by default while a
debugger commonly shows only those variables selected by the user. To reduce
the number of displayed variables in programs with a large number of variables,
future enhancements to the animator include the ability to collapse sections

of the variable display that aren’t important to the program being studied.

41

3.3.3 The Input/Output Area

The input/output (10) area displays the output of the program at the current
point of execution and also all values read by the program from the user. It is
important to note that the display reflects the current position in the program
and not an output history.

For example, if the user were to reverse execute through the “writeln” in
Figure 3.5 the 10 pane would be set blank since nothing had been input or
output previous to that statement in the program. It should also be noted that
reverse executing through the “readln” removed the “3” from the 1O pane (see
Figure 3.4).

The user may scroll through the 10 area if the output size exceeds the pane
size. The pane is automatically scrolled to the bottom whenever the program

produces output.

3.3.4 The Execution Cost Display

The execution cost display is initialized to zero at the beginning of the anima-
tion and incremented after every forward execution by the number of F-Code
instructions associated with the executed packet. On reverse execution, it is
decremented in a similar fashion.

The execution cost does not necessarily reflect the exact number of E-
Machine instructions executed. But it gives a very good estimate for the cost
of executing the highlighted portion. In the example execution, it is apparent
that the “readln” is much more costly than all the statements preceding it. On
all modern computer systems, it is likewise true that 10 is a relatively costly
operation. In the DYNALARB system, this fact comes about naturally.

Above the execution cost display is a “RESET” button. This allows the

execution cost to be reset to “0” at any point in the execution. The reset

42

button allows the execution cost of a portion of the program to be calculated

more easily.

3.4 Animator Input Dialogs

There are instances where the animator prompts the user for specific infor-
mation. These are handled through Motif dialogs which appear, request user
input, and then disappear. They are presented here in the order that they are

typically encountered.

3.4.1 The Object File Selection Dialog

When the user selects the “open” option in the file menu, a file selection dialog
appears (Figure 3.7) which lists all the object files in the currently selected

“.cod” extension. When

directory. Currently, these files are designated with a
the user selects a file, the box disappears and the file is loaded into the animator
if no errors are encountered. If an error is encountered, the animator reports
the error and its controls become inactive until a valid object file is loaded. If

the user selects the “Cancel” button, animation resumes where the user left

off in the currently loaded animation.

3.4.2 The Input Selection Dialog

When the DYNALAB Motif animator encounters a open file command for the
keyboard (standard input), the animator queries the user for an input source
(see Figure 3.8). This allows the user to redirect input from a file. If the user
chooses to read from a file, a file selection dialog similar to Figure 3.7 appears
to allow the user to select a data file. If the user chooses to input from the

keyboard, an input request dialog (Figure 3.9) appears when input is required.

43

Where would you like to read from

Keyboard File

Figure 3.8: The Input Selection Dialog

3.4.3 The Input Request Dialog

When input is requested by the program from the keyboard, the animator
opens the dialog shown in Figure 3.9 to receive input from the user. The
characters entered by the user (followed by a newline character) are entered

into an input buffer.

Enter input:

B |

0K

Figure 3.9: The Input Request Dialog

Subsequent requests for input by the animated program are given charac-
ters in the buffer, if any. As with any buffered input system, input is requested
only if the input buffer is exhausted. When the user reverse executes through
a portion of the source program that requests input, the buffer is cleared so

that the user has the opportunity to enter different values upon proceeding

44

with execution in the forward direction. Future animator implementations
may include the input buffer as an additional display to clarify how the input
buffer is used. This would be beneficial since input buffering is a common

source of confusion for beginning programming students.

Chapter 4

Program Animation Logistics

This chapter describes the logistics of performing proper animation of pro-
grams compiled for the DYNALAB animators. The synchronization of the
variable display, source display, input/output display, and the various dialogs
is a non-trivial task involving such fundamental computer science theoretical
concepts as the Halting Problem.

When the E-Machine was first designed, it was presumed that program
animation would simply involve executing a designated section of E-Machine
code (a packet), highlighting the source code associated with it, updating the
variable display, and moving on to the next packet [Birch 90]. As progress was
made on the first compiler, it became clear that this model was too simplistic
to properly animate certain programming constructs. Many changes have
subsequently been made to the E-Machine to allow these constructs to be
animated.

As originally conceived, the animator deals with program sections no smaller
than packets. When the E-Machine is told to execute the current packet by
the animator, the E-Machine executes an entire packet. The animator can
then query the E-Machine to determine the number of the next packet to be

executed. In order to accommodate unforeseen animation characteristics of

45

46

unimplemented DYNALAB compilers, the packet structure was redesigned to
give the compiler author more control over how packets are handled by the
animator and what effects they have on the animator’s displays. This in-
creased flexibility has complicated the task of program animation. But it is
hoped that this flexibility will prevent additional redesigns of the E-Machine
execution logic. This is imperative since any changes to the execution mecha-
nism may require fundamental modifications to all DYNALAB compilers and

animators.

4.1 Simple Animation

Figure 4.1 lists a very simple Pascal program. When compiled by the DY-
NALAB Pascal compiler, a code file is produced containing the E-code in-
structions that implement the program (Figure 4.2), and a variety of data
structures used by the E-Machine and animator. Table 4.1 lists the packets,
the associated source, E-Machine assembly instructions, and animator direc-
tives for a simple Pascal program.

As Table 4.1 shows, this particular program contains about one packet
for each line in the source program. Notice that most of the packets have
their packet directives set to “Y”. (At present, only binary (two-value) di-
rectives have been necessary to encode the directives for envisioned program
constructs.) These packets are basically equivalent to the original packet con-
cept. That is, in the original packet concept, the animator would highlight
each packet before execution, pause before executing the packet, and then
update the variable and program counter displays after executing it.

But even this simple program illustrates the need for a more complex mech-
anism than originally envisioned. Some of these cases were handled by the

introduction of “Packet Fragments” [Goosey 93]. But as more complicated

47

Forward Reverse

Packet First | Last || Directives || Directives
Number Source Instr | Instr [H|{P | U | H|P|U
0 | Program Test(input) | 0 I Y| Y|Y||Y|Y|Y

1| VAR 12 12 YIY Y|Y|Y]|Y

2 | 1t Integer; 13 4 IYIY|Y||Y|Y]Y

3 | PROCEDURE dud; 15 16 YIY Y|Y|Y]|Y

4 | BEGIN 17 17 YIY Y|Y|Y]|Y

51 i:=3; 18 19 YIY Y|Y|Y]|Y

6 | END; 20 20 YIY Y|Y|Y]|Y

7 21 22 NIN[N|IN|N|N

8 | BEGIN 23 24 YIY Y|Y|Y]|Y
91i:=1; 25 26 YIY Y|Y|Y]|Y

10 | dud; 27 27 YIY Y|N|N|N

11 | dud; 28 28 NINIYI|Y|Y|Y

12 |1:= 2112 29 30 YIY Y|Y|Y]|Y

13 | END. 31 36 YIY Y|Y|Y]|Y

e Forward directives: H - Highlight before execution, P - Pause before
execution, U - Update variable display after execution

e Reverse directives: H - Highlight before un-execution, P - Pause before
un-execution, U - Update variable display before unexecution

Table 4.1: Packet Information for Example 1

48

Program Test (input) ;
VAR
1: Integer;

PROCEDURE dud;
BEGIN

1:=3;
END;

Figure 4.1: Pascal Source Code for Example 1

special cases were discovered, packet fragments and packet types [Poole 94]
were removed in favor of the packet directives.

In the forward direction, proper program animation dictates that the pro-
cedure invocation, “dud” in this case, should be highlighted before being en-
tered. Packet 10 ensures that this occurs. Proper program animation also
requires that the procedure invocation should be highlighted when executing
back through it in the reverse direction. Since the same packet cannot be
used for both purposes, as they each contain different instructions, packet 11
is required for animation in the reverse direction. When execution leaves the
procedure in either the forward or reverse direction, execution is to proceed to
the statement immediately following or preceding the procedure invocation,
depending upon the direction. The compiler implements this functionality
by setting the reverse pause directive of packet 10 to “N”. This instructs the

animator to execute the packet without confirmation by the user. Packet 11

W W W WWWWNDNNMNMNDMNDMNMNDMNNDNNNERPRRPR PR PR PR
OO P WNEFE O O 0N UL WNE, O OO0 N O WN = O

©O© 00 N Ok WN = O

pushd
nop
open
inst
pop
inst
push
cast
pop
open
inst
pop
nop
inst
br
label
pushd
nop
push
pop
nop
popd
return
label
nop
push
pop
call
label
push
pop
nop
uninst
uninst
uninst
uninst

popd

Figure 4.2: E-Machine Assembly Code for Example 1

O 0O 0 0 0 0 0 0 0 0 0 0 0000 00000000000 0000000000

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

49

DS7

CI0, CIO
Vi

I, v1

V2

I, CIO
I, C

c, V2
CI1, CIe
V3

I, V3

V4
LO
L1
DS4

CI3
V4

CI1
V4

CI2112
V4

V4
V3
V2
Vi

50

has its forward pause directive set to “N” so it is skipped after leaving “dud”

when executing forward. See Figures 4.3 and 4.4 for an illustration of this

animation.
File
PROCEDURE dud 5 Variable Display
BE?E - Test -=—=-
END ;
BEGIN
g
i:=2112; |
END.
£
I""'I |- I‘*I_I -
L
REVERSE EXECUTE | + Pause mode
<+ Hopause mode RESET |
FORWARD EXECUTE Y SR — i
File ﬁ
[PROCEDURE dud; iy Variahle Display
BE?E} -=-=- Test -=-=-
BD; i=1
BEGIN
i:=1;
dud;
i = 2112; |
END.
£
I""'I |- I‘*I_I -
L
REVERSE EXECUTE + Pause mode
<+ Hopause mode RESET |
FORWARD EXECUTE Y SR — 5

Figure 4.3: Forward Execution Through Procedure Call

Packet 7 is also of interest in this example. Once again, this packet is
strategically placed here to produce proper program animation. Notice that
it has no source code associated with it and has all its directives, in both

directions, set to “N”. This causes the animator to execute it with no user

51

T variable Display

—=-=- Test -=—=-

|~

S — -

REVERSE EXECUTE

FORWARD EXECUTE

+~ Pause mode

< Hopause mode

RESET |

+ Auto execute mode

29 ‘J

: -
File
PROCEDURE dud; 5 Variable Display
BE?E -=-=- Test -=—=-
- i=3
—=-=-dud -=-=-
BEGIN
1 =l
i- 2112 1
END.
£
I""'I |- I‘*I_I *,
-t =
REVERSE EXECUTE + Pause mode
<+ Hopause mode RESET |
FORWARD EXECUTE Y SR — 5

d

Figure 4.4: Reverse Execution Through Procedure Exit

52

confirmation regardless of direction. The E-code associated with packet 7 is a
“popd” and a “return”. These instructions remove “dud” from the call stack.
When executing forward through packet 6, which contains the “END;” for the
“dud” procedure, the animator will first execute packet 6, discover that packet
7 is the next packet and that its pause directive in the forward direction is
“N”, and execute it. The animator then queries the E-Machine and finds the
next packet to be packet 11. This isn’t a pause packet either, but its update
directive is “Y”. So, the animator updates the variable display. The previous
update of the variable display had “dud” on the call stack. Now, after the
“popd” has been executed, “dud” is no longer on the stack.

Actually, the above functionality could have been achieved using a single
packet, but only in the forward direction. In reverse, packet 11 is a pause
packet. So, when reverse executing though packet 11, the animator discovers
that packet 7 is the next packet. If packet 7 were part of packet 6, the animator
would update the display, execute the packet, and wait for a user event. The
display would not show “dud” in the variable display since the update was
done before the “popd” was unexecuted. Since packet 7 is a separate non-
pause packet, the variable display correctly lists “dud” as an active subroutine
when it updates the display before executing packet 6.

The point of this example is to illustrate the complications involved in
properly animating even a simple program. Since the animator has no real
knowledge of the source program it is animating, and should not, it must rely

upon the packet information generated by the compiler.

4.2 Animation in Nopause Mode

As described in Chapter 3, pause mode involves two different actions: execu-

tion and advancement. In pause mode, control is first advanced to a packet

33

which is then executed in a second, separate step. In nopause mode, the steps
are combined. When a packet is executed, control is automatically advanced
to the next (pause) packet. The logistics of animating in nopause mode are
more straight-forward than the pause mode logistics.

The animation is guided by the packet directives described in chapter 2.
There are no restrictions upon the combinations of packet directives that may
occur in a packet. There are a number of common directive combinations, but
none that are invalid. It is vitally important that the animator properly deal
with the directives, and all their combinations, so programs animate in the
way the DYNALAB compiler writer intended.

The directive of primary interest to the animator is the pause directive.
This directive tells the animator that the associated packet should not execute
(or at least not appear to be executed) until the user requests it to be executed
when the animator is in a stepping mode. A stepping mode is one where
where the user is executing the program one step at a time. How the animator
implements this depends upon the animator implementation. With an event-
driven input system, simple forward execution could follow these steps.

1. Wait for user to select “Execute”

2. Execute the current packet

3. If the executed packet has the “Forward update” directive set, update
the variable display to reflect the current state of the E-Machine

4. Get the next packet to be executed. While it is not a pause packet, loop:

(a) If the packet has its “forward highlight” directive set, highlight the
source corresponding to the packet

(b) Execute the packet
(c) If the packet has its “Forward update” directive set, update the
variable display

5. If the packet has its “forward highlight” directive set, highlight the source
corresponding to the packet

54

6. If not at end of program, go to step 1.

Of course, this algorithm is far too simple to be of much use since it doesn’t
handle reverse execution — one of the main features of the E-Machine and an
extremely useful animation option. If the E-Machine was at the end of a
program, the following algorithm could be used to step through the program

in reverse.

1. Wait for user to select “Execute”
2. Unexecute the current packet

3. Get the next packet to be unexecuted. While it is not a pause packet,
loop:

(a) If the packet has its “Reverse highlight” directive set, highlight the
source corresponding to the packet

(b) If the packet has its “Reverse update” directive set, update the
variable display

(¢) Execute the packet

4. Tf the packet has its “Reverse highlight” directive set, highlight the source
corresponding to the packet

5. If executed packet has “Reverse update” directive set, update the vari-
able display to reflect the current state of the E-Machine

6. If not at beginning of program, go to step 1

The notable difference between the forward and reverse execution nopause
algorithms is the treatment of the update directive. The forward-update di-
rective dictates that the variable display should be updated after execution of
the associated packet while the reverse-update directive dictates that the vari-
able display should be updated before unexecution of the associated packet.
This difference of interpretation is necessary so the compiler can easily gen-

erate packets which have variables updated at a consistent point regardless

39

of direction. This could be implemented with a consistent interpretation but
it would require a minimum of two packets to implement what is currently
implemented in one.

Neither of these algorithms allow the changing of direction at an arbitrary
point in program animation. And incorporation of directional change isn’t just
a simple matter of performing the appropriate algorithm depending upon the
direction of execution. Some steps must be taken to ensure that the transition
is done naturally. If the user was forward executing through a program using
the forward algorithm above, then suddenly executed in reverse using the

reverse algorithm, animation would appear to jump an instruction.

A
Pause Packet
B
Non-pause Packet
C
Pause Packet
D
Pause Packet
E
Non-pause Packet
Non-pause Packet
F
Pause Packet
G

Figure 4.5: Execution States

Figure 4.5 illustrates the situation. When executing forward, the animator
would pause at states A, C, D, and F. When executing in reverse, the animator
would pause at states G, E, D, and B. If the direction of execution were changed

from forward to reverse while the animator is in state C, the animator would

56

need to unexecute to state B; in D to D; and in F to E. If the direction of
execution were changed from reverse to forward and animation is in state B,
the animator would need to execute to state C; from D to D; and from E to
F.

The algorithm to perform this is fairly simple.

1. Reverse the E-Machine
2. Get the next packet

3. Execute/unexecute until a pause packet is found, highlighting source
and updating variable display as directed and according to direction of
execution

With the three algorithms outlined thus far, an algorithm to implement

nopause mode can be stated as:

1. Wait for user to select “Execute” or “Reverse”
2. If the user selects “Reverse”

(a) Reverse the E-Machine
(b) Get the next packet

(¢) Execute until a pause packet is found, highlighting the source and
updating variable display as directed and according to the direction
of execution

3. If the user selects “Execute”

(a) If going forward, execute the current packet and update variable
display if directive set
(b) If going backward, execute the current packet

(¢) Execute until a pause packet is found, highlighting and updating
variable display as directed according to direction of execution

This algorithm will properly animate a program on a step-by-step basis

going either forward or backward. But many important and difficult factors

57

have been neglected. Checks are missing to ensure that execution doesn’t con-
tinue past the top or bottom of the program. And I/0, instruction counting,
and run-time errors have not been dealt with. These will be discussed later in

the chapter.

4.3 Animation in Pause Mode

Implementing pause mode requires significantly more logic than nopause mode.
The only state in nopause mode of any consequence is the state of the E-
Machine. In pause mode, there are two states of execution which might be
labeled “Ready to advance” and “Ready to execute.” These states parallels
the current highlighting style of the source display. See chapter 3 for more
information about the operation of pause mode.

The complexity of pause mode arises due to the number of state combina-
tions between the animator and E-Machine. There are a number of states the
E-Machine may be in during execution, five states of execution in pause mode,
the state of the I/O window, the state of the variable display, the state of the
program counter, and four different types of control events. The minimal in-
put events are execute/advance, change direction, switch to pause mode, and
switch to nopause mode.

A finite state automaton (FSA) to control the animation is shown in Figure
4.6. Notice that this FSA doesn’t include “reversal” as an event. Instead,
forward execute and reverse execute are given as events. It is presumed that
reversal of the E-Machine and the skipping of non-pause packets outlined above
is done when a direction change is requested by the user.

The appropriate highlighting style and all valid options at any point can
be determined from the current state of the animation. Specifically, when

in state P1, which is the start state for the animation, the animator should

P1-P5
N1-N4
fa

fe

re

fe /he
re/hs
sn

sp

38

Pause States

refhs fere

Nopause States

Figure 4.6: Animation States

The pause states

The nopause states

Forward advance event

Forward execute event

Reverse execute event

Forward execute and hit end of program
Reverse execute and hit start of program
Switch to nopause mode event

Switch to pause mode event

59

only allow the user to “advance” and nothing should be highlighted. This
allows the user to guess the entry point of the program before the animator
actually advances there and highlights the entry point. When in state P3, the
animator should highlight the packet just executed differently to distinguish it
from a highlight signifying a packet which is about to be executed. States P5
and N4 are similar to P1; nothing should be highlighted since execution has
proceeded beyond the end of the program. All other states should highlight
the next packet to be executed or unexecuted.

There are, of course, some complications.

4.3.1 Advancing Without Executing

As with any machine, it is impossible to predict the path of execution of an
arbitrary program or program section without actually executing the program.
This problem is, in fact, a corollary of the Halting Problem. But that is
precisely the task the animator must seemingly perform in pause mode. The
solution is to make the packet only appear to not execute until the user selects
to execute it.

While it is required that all the animator displays be synchronized with
each other, there isn’t any requirement that the state of the E-Machine and
the state the animator be synchronous. In fact, it is required that they not
be synchronized when advancing to the next packet to be executed in pause
mode.

To implement advancement, the animator may follow these steps when in

state P2 or P4 and the user selects to execute the current packet (event “fe”):

1. Execute the current packet, update the variable display if directed, and
distinctly highlight the executed packet to signify that it has been exe-
cuted, not about to be executed. This reflects transition to state P3 or
P5, if at end of program.

60

2. Execute all non-pause packets up to the next pause packet and remember
the last seen packet with its highlight directive set

3. When the user selects advance, just highlight the last seen highlight
packet (typically the current pause packet). This reflects the transition
to state P2 or P4.

In order for this illusion to work, one assumption must be made. Any
non-pause packets that contain instructions which query the animator for user
input — such as reads and file opens — must follow the pause packet they
are associated with. If any of these instructions were contained in non-pause
packets preceding the packet with the associated source code, it would appear
to the user that they were being asked for input before they requested execution
of the source code containing the input statement. This also applies to variable
update directives. Any update directives must reflect changes associated with

the source for the previous pause packet. Figure 4.7 illustrates this fact.

read(i)

Pause Packet

In Pause mode, this packet is executed
followed by any non-pause packets.

It has source associated directly with it
or with one of the non-pause packets
~ above

Pause Packet =

——— |f these non-pause packets contain

— _.---" E-Machine 10 instructions or update the
S variable display, the instructions must be
| associated with execution of the previous
Pause Packet pause packet, not the next one

Figure 4.7: Correct Usage of Non-pause Packets

Also, it is assumed that there is a highlight packet between every adja-

61

cent pause packet. This assumption is also made for nopause mode. It is
the compiler writer’s responsibility to produce code which animates properly
according to the specification of the E-Machine, the packet directives, and the
above rule. The animator may make no other assumptions about the produced
code.

As an example, below is a very simple Pascal program which reads a num-

ber from the user.

program test(input);

var
i:integer;

begin
read(i);
end.

Figure 4.8: Pascal Source Code for Example 2

As table 4.2 shows, the majority of the packets for this small program are
non-pause non-highlight packets. In this case, the Pascal compiler chose to
implement 1/0O using individual packets. The E-Machine code to implement
this program isn’t included due to length. The E-code from addresses 4 to
350 include instructions for user input, and packet 29 includes a variable up-
date directive. The location of the packets containing the I/O instructions is
valid in this case since the pause packet preceding the non-pause packets is
associated with the Pascal “read”. The location of the Update directive in
packet 29 implies that packets 4-29 only affect variables associated with the
implementation of the “read(i)”.

In the reverse direction, execution will be paused on packet 29 since its

62

Forward Reverse
Packet First | Last || Directives || Directives
Number Source Instr |Instr [H|{P | U | H|P|U
0 | program test(input); 0 19 [Y Y[Y|Y|Y|Y
1| var 20 20 YIY|IY[|Y|Y|Y
2 | i:integer; 21 21 YIYIY|Y|Y]|Y
3 | begin 22 22 YIY Y|Y|Y]|Y
4 | read(i); 23 25 |Y|Y|Y|N|N|N
5 26 31 NIN|[N|N|N|N
6 32 37 NIN|[N|N|N|N
7 38 56 NIN|[N|N|N|N
8 57 59 NIN|[N|N|N|N
9 60 70 NIN|[N|N|N|N
10 71 94 NIN|[N|N|N|N
11 95 97 N|{N|N|N|N|N
12 98 120 | N|{N|N|N|N|N
13 121 123 | N|{N|N|N|N|N
14 124 | 129 |N|N|N|N|N|N
15 130 | 155 |IN|N|N|N|N|N
16 156 | 183 IN|N|N|N|N|N
17 184 | 183 IN|N|N|N|N|N
18 186 | 192 |N|N|N|N|N|N
19 193 | 242 |N|N|N|N|N|N
20 243 | 244 | N|N|N|N|N|N
21 245 | 248 | N|N|N|N|N|N
22 249 | 278 | N|N|N|N|N|N
23 279 | 280 || N[N |N|N|N|N
24 281 | 287 | N|N|N|N|N|N
25 288 | 324 | N|N|N|N|N|N
26 325 | 328 N[N |NJ|N|N|N
27 329 | 337 | N[N |NJ|N|N|N
28 338 | 339 [N[N |NJ|N|N|IN
29 | read(i); 340 | 342 IN|N|Y|[|Y|Y|Y
30 | end. 343 | 350 [Y|Y|Y|Y|Y|Y

e Forward directives: H - Highlight before execution, P - Pause before
execution, U - Update variable display after execution

e Reverse directives: H - Highlight before un-execution, P - Pause before
un-execution, U - Update variable display before un-execution

Table 4.2: Packet Information for Example 2

63

reverse pause directive is set. When the user un-executes the packet, the
animator will reverse execute all packets from 29 through 4 and stop on packet
3. Since packet 3 has its reverse update directive set, the variable display will
be updated to reflect the new state of the variables. In this case, i will take
on its previous value of “undefined.” Since reverse pause mode is considered
to be of little instructional value, no design considerations have been made
for its inclusion. And, in fact, it would not be possible under the the current
scheme in many situations.

Figures 4.9 and 4.10 illustrate animation of the “read” above. Notice that

W
1

the entered value, “42”, is displayed as the value of after the read. Since

the compiler set the forward Update directive in packet 29, the new value of

“i” 1s shown immediately after the input is performed.

4.3.2 Reversing from the Forward State

Since reverse execution does not pause, it is much simpler to implement. But
the transition from states P4 to P3 requires some explanation. When the ani-
mator is in state P4, the state of the execution has the pause packet associated
with the next section of code as the next packet to execute. But the animator
hasn’t yet highlighted it since it is waiting for the user to press “Advance”
before continuing.

The animator could unexecute the currently-highlighted packet and reverse
advance to the previous packet. But it was decided that it would be more
natural if it simply changed the highlighting of the currently-highlighted packet
before unexecuting it.

So, when the user requests reverse execution during the advance state of
pause mode, the animator unexecutes all the non-pause packets it executed

during the execution state and highlights the next pause packet it finds. Note

64

|
—'I animate .exp |J
File
program test{input); far Variable Display
var -=-=- test -=-=-
i:integer; i is undefined
beqgi
end.
¥
I""“l |- I‘*I—l : -
=l ey
H
REVERSE EXECUTE | Fause mode
+» Nopause mode RESET |
FORWARD EXECUTE . 23 i
= animate.exp]
File
program test{input); far Variable Display
var -=-=- test -=-=-
i:integer; i is undefined
beqgi
end.
Enter input:
p— [="
=l =
REVEF,
0K| RESET |
Jd| FORWE 55 i
! T
1 i
—'I animate .exp |J
File
program test{input); far Variable Display
Yar
1i:integer;
]JEE::
end.
¥
I""“l |- I‘*I—l : -
=l -
H
REVERSE EXECUTE | Pause mode
+» Nopause mode RESET |
Jd| FORWARD ADVANCE . 237

Figure 4.9: Forward FExecution Through read

65

|
—'I animate .exp |J
File
program test{input); far Variable Display
var -=-=- test -=-=-
1i:integer; i=42
beqgi
end.
¥
I""“l |- I‘*I—l -
L
< Pause mode
REVERSE EXECUTE
+» Nopause mode RESET |
Jd| FORWARD ADVANCE . 237 i
= animate.exp]
File
program test{input); far Variable Display
var -=-=- test -=-=-
i:i [Hefined
isinteger;
e qin
read{1)};
end.
¥
I""“l |- I‘*I—l -
L
< Pause mode
REVERSE EXECUTE
+» Nopause mode RESET |
Jd| FORWARD EXECUTE . 23
. | pr—

Figure 4.10: Reverse Execution Through read

66

that this packet may not be the same as the packet encountered in the forward

direction.

4.4 An Algorithm for Animation Control

The following algorithms parallel the operation of the DYNALAB OSF/Motif
program animator. The C/Motif implementation of this algorithm can be
found with the source code in the file control.c. This algorithm is presumed
to be invoked each time the user chooses to execute in either the forward or
reverse direction. Mode changes can be made at any time between the exit of
this algorithm and its invocation.
A base algorithm used by the animator, described below, is RunToNextPause.

It takes the current state as a parameter and returns the number of instructions

associated with the packets executed.

Function RunToNextPause(AnimationState) returns a scalar
NextPacket <- Get the current packet from the E-Machine
Cost <- 0
If E-Machine is in forward execution mode

Loop while NextPacket’s forward pause directive isn’t set
If EndOfProgram flag is set, return Cost
If the next packet is the last packet then
Raise EndOfProgram flag
If NextPacket’s forward Show Source directive is set,
highlight the source code associated with NextPacket
according to AnimationState (no highlight if null
state)
Tell the E-Machine to execute the current packet
If E-Machine fault occured, call fault handler and
return Cost
Increment Cost by number of instructions in NextPacket
If NextPacket’s forward variable update directive is set,
update the variable display
NextPacket <- Get the current packet from the E-Machine
End loop
If NextPacket'’s forward Show Source directive is set,

67

highlight the source code associated with NextPacket
according to AnimationState
Otherwise, the E-Machine is in reverse execution mode
Loop while NextPacket’s reverse pause directive isn’t set
If TopOfProgram flag is set, return Cost
If the next packet is the top packet then
Raise TopOfProgram flag
If NextPacket’s reverse Show Source directive is set,
highlight the source code associated with NextPacket
according to AnimationState
If NextPacket’s reverse variable update directive is set,
update the variable display
Tell the E-Machine to execute the current packet
If E-Machine fault occured, call fault handler and
return Cost
Increment Cost by number of instructions in NextPacket
NextPacket <- Get the current packet from the E-Machine
End loop
If NextPacket’s reverse variable update directive is set,
update the variable display
If NextPacket’s reverse Show Source directive is set,
highlight the source code associated with NextPacket
according to AnimationState
Return Cost

The algorithm to perform the actual animation control is greatly simplified
by using RunToNextPause. The initial mode is assumed to be pause mode,
the initial animation state is Start, the E-Machine direction to be forward,

and the next packet is the first packet of the program.

Procedure Execution
Cost <- 0
NextPacket <- Get the current packet from the E-Machine
If the direction of execution the user selected conflicts with
the current execution direction of the E-Machine
Reverse the E-Machine (changing the next packet to be executed)
If the E-Machine is now going in reverse and the animator is in
pause mode, change the forward button to read
"forward advance"

68

Otherwise set it to "forward execute"
Call RunToNextPause(Execute state) and increment Cost by its
return value
Return from Execution procedure
If the E-Machine is in forward execution mode
If EndOfProgram flag is set (state P5), return
If TopOfProgram flag is set, reset it
If current animation mode is pause mode
If the animation is in the Advance state (state P1 or P4)
Call RunToNextPause(Execute state) and increment Cost by
its return value
Set current state to Execute state
Otherwise animation is in the Execute state (state P2 or P4)
Tell the E-Machine to execute the current packet
If E-Machine fault occured, call fault handler and return
If NextPacket’s forward variable update directive is set,
update the variable display
Increment Cost by number of instructions in NextPacket
Call RunToNextPause(null state) and increment Cost by its
return value
Increment the instruction counter by Cost and set Cost to O
If E-Machine fault occured, call fault handler and return
If the next packet is the last packet then
Raise EndOfProgram flag
Set current state to Advance state
Set the highlight style of the currently-highlighted area for
advancement
Change the forward button to read "forward advance"
Otherwise the animator is in nopause mode
If current animation state is Advance state (P1 or P4)
Set current state to Execution state (N1 or N3)
Set the highlight style of the currently-highlighted area for
execution
Change the forward button to read "forward execute"
Otherwise the current animation state is Execute
Tell the E-Machine to execute the current packet
Increment Cost by number of instructions in NextPacket
If E-Machine fault occured, call fault handler and return
If NextPacket’s forward variable update directive is set,
update the variable display
Call RunToNextPause(null state) and increment Cost by its

69

return value
Increment the instruction counter by Cost and set Cost to O
If the next packet is the last packet then
Raise EndOfProgram flag
Otherwise, the E-Machine is in reverse execution mode
If TopOfProgram flag is set (state P1 and N1), return
Tell the E-Machine to execute the current packet
If E-Machine fault occured, call fault handler and return
Increment Cost by number of instructions in NextPacket
Call RunToNextPause (null state) and increment Cost by its
return value
Decrement the instruction counter by Cost as set Cost to O
If the next packet is the first packet
Raise TopOfProgram flag
Remove the current highlight
Set the next state to the Start state (state P1/N1)
End Execution procedure

Of course, this is only one of many ways to handle the execution logistics.
The philosophy behind the method outlined in this chapter is that the state
of the animation and execution is only effected by the execution procedure.
Mode changes can be made with no visual affect; only the forward and reverse
execution events have any visual effect on the animator and no effect whatso-
ever on the state of the execution. The intention of this design philosophy is
to make program animation as natural as possible with as little unexpected

functionality as possible.

Chapter 5

The VarList Package

Control of program animation is a non-trivial task. However, the parsing of
the E-Machine static scope table and the accessing of the E-Machine data and
string space to extract variable names and values is a fundamentally more
difficult problem. The animator must properly display the variables at each
point in the execution, each of which has an arbitrary data type.

For the first two animators — the text-based DOS and Unix/curses ani-
mators — variable parsing and extraction was implemented according to the
characteristics of the display environments. Due to the complexity of the
process, implementation was both time-consuming and error-prone. As the
development of the Motif animator progressed and the MS-Windows animator
began, it was deemed necessary to create an animator-independent package
that would remove the burden of writing a static scope parser specific to the
animator’s display environment. The result was the VarList package.

The VarList package maintains a data structure containing the names,
values, and all associated E-Machine information regarding each variable in
the program. The animator can use this structure to display the active scopes,

variable names, and the variable values.

70

71

5.1 The VarList Structure

The VarList structure is designed to accommodate all foreseeable variable dis-
play features. Hence, its structure contains a number of elements and optional
extensions. To use the basic features of the structure only three simple el-
ements need to be accessed. The structure elements are described by their

order of importance:

e itemtype — Type descriptor of item. This designates the type of the
VarList entry, which can be any one of: VLBOOLEAN, VLINTE-
GER, VLREAL, VLPOINTER, VLCHARACTER, VLSTRING,
VLUNDEFINED, VLPROGRAM, VLPROCHEAD, VLPROC-
TAIL, VLFUNCHEAD, VLFUNCTAIL, VLENUMHEAD, VLENU-
MELEMENT, VLENUMTAIL, VLARRAYHEAD, VLARRAYELE-
MENT, VLARRAYTAIL, VLRECORDHEAD, VLRECORDELE-
MENT, VLRECORDTAIL, VLTYPEHEAD, VLTYPEELEMENT,
VLTYPETAIL, or VLCOMMENT.

o level — Integer representing the nesting or indention level for the item
(negative numbers mean “not visible”)

e itemstring — String constructed for this item containing the completely-

w_»

specified variable name, an sign, and the value of the variable.

o ssentry — Offset of entry in the static scope table for direct access to
the variable information. ssentry is only valid if positive.

e varreg — The number variable register associated with this item (if pos-
itive).

e vardepth — How deep the item is located on the varreg variable register
stack

e changed — Tells whether or not the item has changed since the last
EMClearChangeRecord. This field is zero if the item is unchanged and

nonzero otherwise.

o extra— Generic pointer for any extra information that may be associated
with the variable

e next — Pointer to next element in the VarList (nil if at end of list).

72

e prev — Pointer to previous element in the VarList (nil if at beginning of

list).

As an example, Figure 5.1 illustrates a snapshot of the animation of a
Pascal program containing a simple record. The record is passed in-out to a
routine. Since the value of P.Age changed during the execution of the previous
packet, it is highlighted in the variable display. Since Personl is the actual

parameter, it is highlighted as well.

= animate.exp |01
File
PersonlRecd = RECORD £ Yarioble Display
Enp1Nane : STRING; -=-=- TestSimpleRecord -=-=-
SSN: STRING;
Age : INTEGER; Record Personl
Salary: INTEGER Personl.EmplHame = "John Doe "
END; { PersonlRecd } Personl.3SH = "123-45-67569"
Personl.Age = 45
VAR Personl. Salary is undefined
Personl :PersonlRecd; End Record
EnplName : STRING ; EmplHame is undefined
—=—=- InitP -=-=-
Procedure InitP{VAR P:PersonlRecd); Record P
BEGIN { Procedure InitP } P.EmplName = "John Doe
P.]':hmp]NalPe:= * John D?e °; P.8SM = "123-45-6789"
P.SSN:= 4;23—45—5739 = |
e 5 P.Salary is undefined
END; { Procedure InitP } End:Record
/
=] T L | =

+» Pause mode

REVERSE EXECUTE |

“* Hopause mode _ RESET

FORWARD EXECUTE <+ futo execute mode 247 0

Figure 5.1: Variable Display of Simple Record

The corresponding Varlist used to create the variable display in figure 5.1
is shown in figure 5.2. Each line of the variable display corresponds to one
element of the VarList structure. The only fields used to create the display
were itemtype, level, itemstring, changed, and next. Notice that the
highlighted entries of the variable display correspond to those lines which have

a non-zero changed field.

73

|
|

|

|
|

|

|15 [-1 [o

‘ 0 ‘TestSianeRecord

’ VLPROCHEAD

[nuit |

|

o
|15 [nuit |

ERE

’ VLRECORDHEAD \ 1 \ Record Personl

ull |

o

ERE

‘ 2 ‘Personl.Enplhbne:"Joh..‘ 4

’ VLSTRI NG

ENE

\ 2 \ Per sonl. SSN=" 123- 45-6. . \ 5

’ VLSTRI NG

nul

[0

‘ 11 ‘ 1

‘ 2 ‘Personl.Age = 45

’ VLI NTEGER

nl. Salary is

’ VLUNDEFI NED \ 2 \ Per so

’ VLRECORDTAI L \ 1 \ End Record

undefi ned ‘ 11 ‘12 ‘1

’ VLUNDEFI NED \ 1 \ Enpl Nane i s

|12 [-1 Jo

[o [initp

’ VLPROCHEAD

’ VLRECORDHEAD \ 1 \ Record P

[nuit |

o

|15 [1

B

\ 2 \ P. Enpl Nare="John Doe. . .

’ VLSTRI NG

"123- 45- 6789" \ 5

|2 [Possn=

’ VLSTRI NG

|15 [nuit |

‘15 ‘1

‘ 2 ‘P.age = 45

’ VLI NTEGER

[nutt |

[o

‘15 ‘1

undef i ned ‘7

’VLUNDEFINED ‘2 ‘P.Salary is

’ VLRECORDTAI L \ 1 \ End Record

Figure 5.2: Variable List Used to Generate Variable Display

74

Even using this subset of the available fields provides a very functional
variable display. The other fields are intended for advanced animator fea-
tures which have yet to be explored. The animator could, at its choosing,
directly access the names and value of variables using the ssentry, varreg,
and vardepth fields and format the names and values in whatever fashion it

chooses. The itemstring field is included as a pure convenience.

5.2 The VarList API

There are only a few defined operations for the Varlist package since the
structure is directly accessed by the animator. There are just three routines

that operate on VarLists.

e int VLBuild(StatScopeEntry ssScope, VLElementType * *vl-
Head, int iDebugLevel) — VLBuild will build a Variable List for F-
Machine scope ssScope and return a pointer to the first element of
it in *vlepHead. If iDebuglLevel is greater then zero, debugging
information will be input as VLCOMMENT entries in the Variable
List. If VLBuild is unsuccessful, VLBuild will return a negative value
and a positive value otherwise. (See chapter 2 for information on the
StatScopeEntry type.)

¢ int VLDestroy(VLElementType *vIHead) - VL.Destroy will deal-
locate the Variable List pointed to by vlHead. If unsuccessful, VLDe-
stroy will return a negative value and a positive value otherwise.

¢ VLElementType * VLAddElement(VLElementType * vlTar-
get, VLItemType vliType, short int iLevel, char * cpString,
StatScopeEntry ssSource, VariableReg vrSourceReg, int iVarDepth,
int iChanged, void * vpExtra) - VLAddElement will create a new
element and put it at the end of the Variable List pointed to by vlTarget
and assign its data values from the remaining parameters.

Chapter 6

Animator Design

The high-level design of the DYNALAB OSF/Motif program animator fol-
lows a simple and intuitive pattern common to graphical user interface (GUI)
designs. Fach major element of the animator is implemented as a separate
package or object. The primary element is the animation window itself. The
constituent elements of the animation window are the source code area, the
variable display area, the input/output (I/O) area, the instruction counter,
and the animation control area (see Figure 3.1 for their visual appearance). A
number of OSF /Motif and custom objects are used in the construction of these
areas, including the VarList, E-Machine, and object file packages discussed in
earlier chapters.

The animator is implemented in ANSI C. The current instability of the
OSF/Motif C++ bindings made the use of C4+ infeasible. But every ef-
fort has been made to follow the primary maxims of object-oriented design.
Encapsulation, data-hiding, and polymorphism are employed throughout the

design.

75

76

6.1 The Animation Window

The animation window is the containing window for all the visible animation
elements. Visually, the animation window contains the drop-down menus and
the top-level widget managers, which in turn contain the source, variable dis-
play, 1/0, control, and instruction counter areas. The main window is also
responsible for parsing command-line parameters, initializing the X-Windows
connection, initializing the OSF /Motif toolkit, and starting the event loop.
The animation window supports only one public (externally-accessible)

routine:

¢ AnimatorError — Reports a major animation error to the user and
disables controls based on the error (some errors can be backed out of
by reverse executing).

The primary private routines for the animation window are:

¢ CreateMainWindow - Constructs the main window. The drop-down
menu, widget managers and all the containing areas are constructed.
The callback routines for the drop down menu items are defined and
associated here as well.

e InitAnimator — Initializes the animation. The state of the animator is
initialized with the code file path given as a parameter. The initialization
routines for the E-Machine and all the areas are called.

e main — The main routine parses the command line parameters, calls
CreateMainWindow, and starts the main loop.

6.2 The Control Area

The control area contains the common animation controls. This currently
includes the forward execute/advance button, reverse execute button, and the

execution mode selector. The callback routines in the control area implement

77

the algorithms described in chapter 4. Hence, the majority of the animator
complexity is contained within the control object.

The public routines for the control area consist of the following:

o CreateControlArea — Creates the control area as a child widget of the
widget given as a parameter. This routine generates the buttons and
mode selectors and adds the callbacks to the corresponding controls.

e InitControl - Initializes the control area to its default state. This en-
ables the forward button, disables the reverse button, sets the execution
mode to “pause” mode, and initializes the execution state machine.

e GetControlAreaWidget — Returns a pointer to the control area wid-
get. This allows other objects to reference the top-level control area
widget.

¢ GetForwardButton, GetBackwardButton — Returns a pointer to
the control buttons. This allows other objects to reference the execution
controls.

¢ ForwardButtonOn, ReverseButtonOn, AutoExecButtonOn - En-
ables particular control buttons.

e ForwardButtonOff, ReverseButtonOff, AutoExecButtonOff - Dis-
able particular control buttons.

¢ InputRequestHook — Routine to be called whenever input is requested.
This allows the control object to update displays as it sees fit.

The private routines for the control area consist of:

¢ ExecutionCB - Routine called whenever the user requests execution.
This routine is responsible for adjusting the current state and calling the
update routines for the various displays appropriately.

¢ ModeChangeCB — Routine called whenever the user requests a change
in the execution mode. It is responsible for changing the state of the
animation and the source highlight, if necessary.

o SetForwardButtonState - Changes the state of the forward execution
button to “advance” or “execute.”

¢ RunTimeError - Called whenever an E-Machine run-time error occurs
to report it and set the state accordingly.

78

e ChangeModeBoxes — Changes the state of the execution mode boxes.

¢ RunToEnd - Ignores any pause directives, executes the E-Machine to
the end of the program, and updates the state and displays accordingly.

¢ RunToNextPause — Executes the E-Machine in the current direction
until a packet with a pause directive is encountered. Variable and source
display are updated as directed.

e HighlightForState — Calls the source window highlight set routine ac-
cording to the current state of the execution.

6.3 The Source Area

The source area is responsible for loading source code into the source area,
setting the highlight region, changing the style of the highlight region, and
scrolling the pane to display the region containing the currently highlighted
region. The area is non-interactive. But the user is allowed to scroll the pane
to display any region of the source code.

The source area object defines the following public routines:

e CreateSourceArea — Creates the source area. The source area consists
of a text pane and scroll bars to views different regions of the source area.

o InitSourceWin — Initializes the source area. The contents are initial-
ized from the contents of the E-Machine source memory and the pane is
scrolled to the top of the area.

¢ GetSourceAreaWidget — Returns a pointer to the top-level source
area widget. This allows other objects to reference the source area.

e HighlightSource — Sets the current highlight to correspond with the
portion of the source code given in the packet parameter according to the
given highlight type parameter. This routine will also scroll the window
to display the source if the highlight type is non-nil.

e ClearSourceHighlight — Removes the current highlight.

¢ ChangeVisibleSourceHighlight — Changes the highlight style of the
currently-visible highlighted region.

79

6.4 The Variable Display Area

The variable display area contains a textual representation of all the currently-
active variables and routines of the animated program. It is responsible for
updating itself to reflect the current state of the animated program’s variables.
It does this by calling the VarList VLCreate routine, parsing the resultant
data structure, and setting its contents to reflect the values in the VarList.
The variable display area is also non-interactive. But the user is allowed to
scroll the pane to display any region of the source code. The pane will remain
in the same location unless new variables or call frames appear. In this case,
the pane will scroll to the end of the variable display area.

The variable display supports the following public routines:

e CreateVarArea — Creates the variable display area and its scroll bars.

e GetVarAreaWidget — Returns a pointer to the top-level variable dis-
play widget. This allows external objects to reference the variable display
area.

e InitVariableWin — Initializes the variable display by clearing its con-
tents.

e UpdateVarWin - Updates the variable window to reflect the state of
the E-Machine data memory. A VarList, which describes the values of
the active variables, is created and then used to update the variable
display. See chapter 5 for a more detailed description of the Varlist
package.

e DisplayVars — Sends the contents of the variable display to standard
output (for debugging purposes).

6.5 The Input/Output Area

The 1/O object is responsible for maintaining the 1/O area. When the E-
Machine interprets an OPEN, READ, WRITE, or CLOSE E-code instruc-

tion, it calls a corresponding routine in the 1/O object. These corresponding

80

routines, EM_Open_File, EM_Read_File, EM_Write_File, and EM _Close_File,
perform the actual /O operations. Since these instructions can also be reverse
executed, the routines EM_Unopen_File, EM_Unread_File, EM_Unwrite_File,
and EM_Unclose_File are called when the corresponding E-code instruction is
reverse executed. All of these routines operate on an internal string space. To
improve animation performance, the string space is mapped to the I/O area
only when instructed by a call to UpdatelOWin.

Since 1/0 can also be performed on external files, the /O object is also
responsible for maintaining information about open files. Since operations on
external files may also be reverse executed, the animator must save information
so that it may restore the data and position in the file. It is assumed that
for any 1/O operation that the E-Machine requests from the animator, it will
call the corresponding reverse operation during reverse execution. It is also
assumed that these operations will be called in exactly the reverse sequence of
their forward order. These assumptions allow the 1/O object to use a simple
stack model for saving information regarding file positions and contents.

As a record of data values read, the 1/O object also echos all read values
to the I/O window. This is intended to clarify where data values are actually
read by the animated program. See figures 3.3 and 3.4 for an illustration of
this mechanism.

The I/O object supports the following public routines:

e CreateIOArea — Creates the /0O area widget and its scroll bars.

e InitIOArea — Initializes the I/O area. This creates the string space and
clears the contents of the I/O area.

o GetlOAreaWidget — Returns a pointer to the top-level 1/0 display
widget. This allows external objects to reference the 1/0 display.

¢ UpdateIOWin - Updates the contents of the I/O area from the string
space. Since the open, read, write, and close routines work on the string

81

space and not the 1/0 display itself, this allows the updating of the 1/O
area to be controlled by the animator control routines.

EM _Open_File, EM _Unopen_File — These routines are called when-
ever the E-Machine requests a file open or reverse executes through an
open instruction, respectively. These routines receive a filename and
open mode as parameters. The animator picks a file descriptor to use
for the file and returns it to the E-Machine which then places it on the
E-Machine stack. The animated program then uses the descriptor to
reference the file in any subsequent READ or WRITE instructions.

EM_Read File, EM _Unread_File - The Read and Unread routines
are called by the E-Machine whenever it encounters a READ instruction
while executing forward or while executing in reverse, respectively. The
EM_Read_File routine receive a data type, file descriptor, and pointer
as parameters. The I/O object then reads in a variable of the given
type from the stream identified by the file descriptor, and places the
result in the E-Machine data memory at the location designated by the
pointer. During reverse execution, the Unread routine receives just a file
descriptor so that the I/O object can adjust the information associated

with the stream. The /O object must restore the stream to the state
preceding the READ.

EM_Write _File, EM _Unwrite_File - The Write and Unwrite routines
are called by the E-Machine whenever it encounters a WRITE instruction
while executing forward or while executing in reverse, respectively. The
EM_Write_File routine receive a data type, file descriptor, and pointer as
parameters. The I/O object then writes a variable of the given type to
the stream identified by the file descriptor from the location designated
by the pointer in E-Machine data memory. During reverse execution,
the Unwrite routine receives just a file descriptor so that the /O object
can adjust the information associated with the stream. The 1/O object
must restore the stream to the state preceding the WRITE.

EM _Close_File, EM _Unclose_File — The Close and Unclose routines
are called by the E-Machine whenever it encounters a CLOSE instruction
during forward or reverse execution, respectively. FEach receives a file
descriptor as a parameter. When a stream is closed, the 1/O object
simply marks it as “closed” so that any subsequent reads or writes fail.
But all information regarding the file must be maintained since the close
may eventually be unexecuted. When the Unclose routine is called, the
routine simply marks the designated stream as “open” once again.

82

The I/0O object uses the following private routines:

e OpenStdInput — This routine is called by the EM_Open_File package
whenever a request is made by the animated program to open the stan-
dard input (keyboard). It will open a dialog box which allows the user
to redirect standard input from a file.

e PushFilePos, PopFilePos — The PushFilePos routine saves the cur-
rent position of the file associated with the descriptor, which is given as
a parameter, onto a stack for later retrieval with PopFilePos.

e ReadChar — This routine is called whenever the animated program re-
quests the reading of a single character value. If the source descriptor
designates an external file or redirected standard input, the next charac-
ter is read from the source and returned. If the source is not redirected
standard input, it will first attempt to get the character from the input
buffer. If the input buffer is empty, it will open a dialog box to request
a line of input from the user which is then used to fill the input buffer.

6.6 The Instruction Counter

The instruction counter object is responsible for storing the current value of
the instruction counter, and for adjusting the counter as requested.

The instruction counter object supports the following public routines:

e CreatelnstCounter — Creates the instruction counter and the “Reset”
button.

¢ GetInstCounterWidget — Returns a pointer to the instruction counter
widget so that other objects may reference it.

e InitInstCounter - Initializes the instruction counter widget. This sets
the value of the counter to “0”.

¢ IncrementInstCounter, DecrementInstCounter — Increments or
decrements the instruction counter by the given parameter value.

e SetInstCounter — Sets the value of the instruction counter to the value
of the given parameter.

e GetInstCounter — Returns the current value of the instruction counter.

83

The instruction counter object uses the following private routines:

e UpdatelnstCounter — Sets the counter to the specified value. This
centralizes all the code that modifies the value of the widget.

e CounterResetCB — This is the routine called when the “Reset” button
is activated. It sets the value of the counter to “0” when called.

84

BIBLIOGRAPHY

Bibliography

[Birch 90]

[Brown 88-1]

[Brown 88-2]

[Goosey 93]

[Heller 91]

[Ng 82-1]

[Ng 82-2]

[Patton 89]

[Poole 94]

[Ross 91]

M. L. Birch. An Emulator for the E-Machine. Master’s the-
sis. Computer Science Department, Montana State Univer-
sity. June 1990.

M. Brown. Algorithm Animation. The MIT Press, Cam-
bridge, Massachusetts. 1988.

M. Brown. ‘Exploring Algorithms Using Balsa-I1I", Com-
puter Volume 21, Number 5. May 1988.

F. W. Goosey. A miniPascal Compiler for the E-Machine.
Master’s thesis. Computer Science Department, Montana
State University. April, 1993.

Dan Heller. Motif Programming Manual. O’Reilly and As-

sociates, Inc. 1991.

C. Ng. Ling User’s Guide. Unpublished Master’s project.
Computer Science Department, Washington State Univer-
sity. 1982.

C. Ng. Ling Programmer’s Guide. Unpublished Master’s
project. Computer Science Department, Washington State
University. 1982.

S. D. Patton. The E-Machine: Supporting the Teaching of
Program Frecution Dynamics. Master’s thesis. Computer
Science Department, Montana State University. June 1989.

D. K. Poole. An Ada/CS Compiler for the E-Machine. Mas-
ter’s thesis. Computer Science Department, Montana State
University. July, 1994.

R. J. Ross. “Experience with the DYNAMOD Program An-

imator”, Proceedings of the Twenty-second Symposium on

85

[Ross 93]

[BBGPPPR 95]

86

Computer Science Education, SIGCSE Bulletin, 23(1):35—
42. 1991.

R. J. Ross. “Visualizing Computer Science”, Chapter in the
AACE monograph, Scientific Visualization in Mathematics
and Science Fducation. 1993.

M. R. Birch, C. M. Boroni, F. W. Goosey, S. D. Patton, D.
K. Poole, C. M. Pratt, R. J. Ross. “DYNALAB: A Dy-
namic Computer Science Laboratory Infrastructure Fea-
turing Program Animation”, Proceedings of the Twenty-
sizth Symposium on Computer Science Fducation, ACM
SIGCSE Bulletin., 27(1):29-33. March 1995.

Appendix A

The E-Machine Instruction Set

This appendix, which is adapted from chapter 2 of Birch’s thesis [Birch 90],
appendix A of Goosey’s thesis [Goosey 93], and appendix A of Poole’s thesis
[Poole 94], lists all of the instructions in the instruction set of the E-Machine.
A pseudo assembly language format is used to describe the instructions and
closely resembles the format used in the CODESECTION of the E-Machine
object file. The object file is described in detail in chapter 2 of this thesis.

Fach instruction is composed of four fields (or arguments):

e an opcode mnemonic (e.g., push, pop, add);

e a flag marking the instruction as critical or noncritical (CFLAG);

e afield denoting the data type of the operand(s) of the instruction (TYPE);
e a field containing either a number (#) or an addressing mode (ADDR);

Addressing modes and their formats are described in appendix B.

The mnemonic field is separated from the other fields by one or more
spaces, and the remaining fields are separated by commas. The CFLAG field
must be either ¢ or n to designate whether the instruction is to be treated as
critical (¢) or noncritical (n). The TYPE field holds a single capital letter,

I, R, B, C, or A, referring to the data types integer, real, boolean, character,

87

88

or address, respectively. The # refers to a constant specifying the number of
an E-code label, a constant numeric value, or an E-Machine variable register
number. If the ADDR argument is used for the fourth field, it refers to any of
the addressing modes described in appendix B.

In the following description of the instruction set, the effects of execut-
ing an instruction both forward and in reverse are given. The actions taken in
each case will be different, depending on whether the instruction has been des-
ignated critical or noncritical. Some instructions have no critical /noncritical
flag, because their execution (either forward or in reverse) would be the same
in either case. Reversing through a noncritical instruction sometimes requires
that something be pushed onto the evaluation stack to keep the stack of the

proper size; in such cases an arbitrary value, called DUMMY is used.

add CFLAG, TYPE

Adds the top two values on the evaluation stack and places the result onto the
evaluation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes them onto
the save stack, and then pushes their sum onto the evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack and pushes
their sum onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards the value.
Pops the top two elements of the save stack and pushes them onto the evaluation
stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

alloc CFLAG, ADDR

Allocates a block of memory of positive integer size.

Forward: Attempts to allocate the amount of computer words of storage referenced
by ADDR. If successful, the address of the first word of data memory that was
allocated is pushed onto the evaluation stack. Otherwise, a NULL address is
pushed onto the evaluation stack.

Reverse: Pops the top value off the evaluation stack, which should be a data address,
and frees ADDR words of data memory starting at that address.

89

and CFLAG, TYPE

Bitwise and’s the top two values of the evaluation stack and places the result onto
the evaluation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two
values onto the save stack, and then pushes the bottom value bitwise and’ed
with the top value onto the evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack and pushes
the bottom value bitwise and’ed with the top value onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops
the top two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

br CFLAG, #
Unconditionally branches to label #.

Forward: Loads the program counter with the address of the label # instruction.

Reverse: No operation.

brt, brf CFLAG, #

Conditionally branches depending on whether the top of the evaluation stack is TRUE
or FALSE.

Forward-Critical: Pops the top value off the evaluation stack and pushes it onto the
save stack. Tf the value satisfies the conditional on the branch (TRUE for brt,
FALSE for brf), the program counter is loaded with the address of the label #
instruction.

Forward-Noncritical: Pops the top value off the evaluation stack. If the value
agrees with the conditional branch (TRUE for brt, FALSE for brf), the program
counter is loaded with the address of the label # instruction.

Reverse-Critical: Pops the top value of the save stack and pushes it onto the eval-
uation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

call CFLAG, #

Branches to label # saving the program address which follows the call instruction so
that execution will continue there upon execution of a return instruction.

Forward: Pushes the current program counter onto the return address stack, then
loads the address of the label # instruction into the program counter.

Reverse: Pops the top value from the return address stack.

cast CFLAG, TYPE, TYPE
Changes the top value of the evaluation stack from the first TYPE to the second.

90

Forward-Critical: Pops the top value of the evaluation stack and pushes it onto the
save stack, then transforms the value from the first TYPE to the second. The
result is pushed onto the evaluation stack.

Forward-Noncritical: Pops the top value of the evaluation stack, then transforms
the value from the first TYPE to the second. The result is pushed onto the
evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack. The pops the top value
of the save stack and pushes it onto the evaluation stack.

Reverse-Noncritical: Nothing happens.

div CFLAG, TYPE

Divides the second value from the top of the evaluation stack by the first and places
the result onto the evaluation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two
values onto the save stack, and pushes the bottom value divided by the top
value onto the evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack and pushes
the bottom value divided by the top value onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops
the top two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

eql, neql, less, leql, gtr, geql CFLAG, TYPE
If the second value from the top of the evaluation stack compares true, according

to the instruction, with the first, then TRUE 1s pushed onto the evaluation stack.
Otherwise FALSE is pushed onto the evaluation stack.

Forward-Critical: Pops the top two values off the evaluation stack, pushes the
two values onto the save stack, compares the bottom value with the top. If
the result of the comparison matches the comparison operation performed, a
boolean TRUE is pushed onto the evaluation stack, otherwise, a boolean FALSE
is pushed onto the evaluation stack.

Forward-Noncritical: Pops the top two values off the evaluation stack and compares
the bottom value with the top value. If the result matches the comparison
operation performed, a boolean TRUE is pushed onto the evaluation stack,
otherwise, a boolean FALSE is pushed onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it, then
pops the top two values off the save stack and pushes them onto the evaluation
stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

inst CFLAG, #

Creates an instance of the variable register 7.

91

Forward-Critical: Allocates enough data memory for the variable represented by
the variable register #. The address of the allocated memory is then pushed
onto the variable register’s stack.

Forward-Noneritical: Allocates enough data memory for the variable represented
by the variable register #. The size of the variable is stored in the variable
register. The address of the allocated memory is then pushed onto the variable
register’s stack.

Reverse-Critical: The data memory occupied by the variable register is freed and
the top value is popped off the variable register’s stack.

Reverse-Noncritical: Frees the space taken up by the variable in data memory and
pops the top value off the variable register’s stack.

label CFLAG, #

Marks the location to which a branch may be made.
Forward: Pushes the previous program counter onto the stack pointed to by label
register #.

Reverse: Pops the top value of the stack pointed to by label register # and places
it in the program counter.

link CFLAG, #

Associates one variable register with the value of another.
Forward: Pops the top value of the evaluation stack and pushes it onto the variable
stack pointed to by variable register #.

Reverse: Pops the top value of the variable stack pointed to by variable register #
and pushes it onto the evaluation stack.

loadar CFLAG, ADDR
Places the address ADDR in the address register.

Forward-Critical: The contents of the address register are pushed onto the save
stack. Then the address computed for the addressing mode is placed in the
address register. Important note: it is the address that is computed by the
addressing mode that is used, not the contents of that address.

Forward-Noneritical: The address computed for the addressing mode is placed in
the address register. Same note as Forward-Critical applies here.

Reverse-Critical: The address on top of the save stack 1s popped off and placed in
the address register.

Reverse-Noncritical: Nothing happens.

loadir CFLAG, #

Places # into the index register.

92

Forward-Critical: The contents of the index register are pushed onto the save stack.
Then # is placed in the address register.

Forward-Noneritical: # is placed in the index register.

Reverse-Critical: The value on top of the save stack is popped off and placed in the
index register.

Reverse-Noncritical: Nothing happens.

mod CFLAG, TYPE

Finds the remainder of the division of the second value from the top of the evaluation
stack by the first and places the result onto the evaluation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two
values onto the save stack, and then pushes the bottom value modulo the top
value onto the evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack and pushes
the bottom value modulo the top value onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops
the top two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

mult CFLAG, TYPE

Multiplies the top two values on the evaluation stack and places the result onto the
evaluation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two
values onto the save stack, and then pushes their product onto the evaluation
stack.

Forward-Noncritical: Pops the top two values of the evaluation stack and pushes
their product onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops
the top two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

neg CFLAG, TYPE

Negates the top value on the evaluation stack.
Forward: Pops the top of the evaluation stack and pushes the negation of that value
onto the evaluation stack.

Reverse: Pops the top of the evaluation stack and pushes the negation of that value
onto the evaluation stack.

93

nop CFLAG

This instruction is the standard no-operation instruction. It can be used to create
packets for high level program text for which no E-Machine instructions are generated
but which nonetheless need to be highlighted for animation purposes. An example
of this is the begin keyword in Pascal. In illustrating the flow of control during
program animation, a begin keyword may need to be highlighted (and thus have its
own underlying E-Machine packet of instructions). The nop instruction can be used
in these cases.

not CFLAG, TYPE

Bitwise complements the top value of the evaluation stack.
Forward: Pops the top of the evaluation stack and pushes the bitwise not of that
value onto the evaluation stack.

Reverse: Pops the top of the evaluation stack and pushes the bitwise not of that
value onto the evaluation stack.

or CFLAG, TYPE

Bitwise or’s the top two values of the evaluation stack and places the result onto the
evaluation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two
values onto the save stack, and then pushes the bottom value bitwise or’ed with
the top value onto the evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack and pushes
the bottom value bitwise or’ed with the top value onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops
the top two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

pop CFLAG, TYPE, ADDR
Pops the top value of the evaluation stack and places it in ADDR.

Forward-Critical: Pushes the value in ADDR onto the save stack and then pops the
top value of the evaluation stack and stores it in ADDR.

Forward-Noncritical: Pops the top value of the evaluation stack and stores it in

ADDR.

Reverse-Critical: Pushes the value in ADDR onto the evaluation stack and then
pops the top value of the save stack and places it in ADDR.

Reverse-Noncritical: Pushes the value in ADDR onto the evaluation stack.

popar CFLAG

Pops the address on top of the evaluation stack and places it in the address register.

94

Forward-Critical: The contents of the address register are pushed onto the save
stack. The address on top of the evaluation stack is popped and placed in the
address register.

Forward-Noncritical: The address on top of the evaluation stack is popped off and
placed in the address register.

Reverse-Critical: The contents of the address register are pushed onto the evaluation
stack. Then the address on top of the save stack is popped off and placed in
the address register.

Reverse-Noneritical: The contents of the address register are pushed onto the eval-
uation stack.

popd CFLAG

Pops the top value from the dynamic scope stack.
Forward: Pops the top value from the dynamic scope stack and pushes it onto the
save dynamic scope stack.

Reverse: Pops the top value from the save dynamic scope stack and pushes it onto
the dynamic scope stack.

popir CFLAG
Pops the integer on top of the evaluation stack and places it in the index register.
Forward-Critical: The contents of the index register are pushed onto the save stack.

Then the integer on top of the evaluation stack is popped off and placed in the
index register.

Forward-Noneritical: The integer on top of the evaluation stack is popped off and
placed in the index register.

Reverse-Critical: The contents of the index register are pushed onto the evaluation
stack. Then the integer on top of the save stack is popped off and placed in
the index register.

Reverse-Noneritical: The contents of the index register are pushed onto the evalu-
ation stack.

push CFLAG, TYPE, ADDR
Pushes the value in ADDR onto the evaluation stack.

Forward: Pushes the value in ADDR onto the evaluation stack.

Reverse: Pops the top value of the evaluation stack and stores it in ADDR.

pusha CFLAG, ADDR

Pushes the calculated address of ADDR onto the evaluation stack. This instruction
is intended to be used for pushing the addresses of parameters passed by reference.

Forward: Pushes the calculated address of ADDR onto the evaluation stack.

95

Reverse: Pops and discards the address on top of the evaluation stack.

pushd CFLAG, #

Pushes # onto the dynamic scope stack (where # is the index of a program, proce-
dure, or function entry in the Static Scope Table)

Forward: Pushes # onto the dynamic scope stack.

Reverse: Pops the top value from the dynamic scope stack.

read CFLAG, TYPE, ADDR

Reads a value from the user. The first TYPE is the type of the data to read. The
ADDR field is the integer file handle to read from.

Forward: A user interface function is called to get input from the user. The input is
converted from a string to the appropriate type and pushed onto the evaluation
stack.

Reverse: The top value is popped off the evaluation stack.

return CFLAG

Returns to the appropriate program address following a call instruction.

Forward: Pops the top value of the return address stack and loads it into the
program counter.

Reverse: Pushes the previous program counter onto the return address stack.

shl CFLAG, TYPE, #

Shifts the value on top of the evaluation stack # bits to the left filling on the right
with 0’s.

Forward-Critical: Pops the top value of the evaluation stack, pushes it onto the
save stack, then shifts it # bits to the left and pushes the result back onto the
evaluation stack.

Forward-Noncritical: Pops the top value of the evaluation stack, shifts it left # bits,
then pushes the result back onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack. Then pops the top
value of the save stack and pushes it onto the evaluation stack.

Reverse-Noncritical: Nothing happens.

shr CFLAG, TYPE, #

Shifts the value on top of the evaluation stack # bits to the right filling on the left
with 0’s.

Forward-Critical: Pops the top value of the evaluation stack, pushes it onto the
save stack, then shifts it # bits to the right and pushes the result back onto
the evaluation stack.

96

Forward-Noneritical: Pops the top value of the evaluation stack, shifts it right #
bits, then pushes the result back onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack. Then pops the top
value of the save stack and pushes it onto the evaluation stack.

Reverse-Noncritical: Nothing happens.

sub CFLAG, TYPE

Subtracts the value on the top of the evaluation stack from the second value from
the top and places the result onto the evaluation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two
values onto the save stack, and then pushes the bottom value minus the top
value onto the evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack, and pushes
the bottom value minus the top value onto the evaluation stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops
the top two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

unalloc CFLAG, #

Deallocates a block of memory of # size beginning at the data address atop the
evaluation stack.

Forward-Critical: Pops the top value off the evaluation stack, which should be a
data address, copies # words of data memory starting at that address to the
save stack, then frees the data memory.

Forward-Noncritical: Pops the top value off the evaluation stack, which should be
a data address, and frees # words of data memory starting at that address.

Reverse-Critical: Pops the top value off the save stack, which should be a data
address, pushes it onto the evaluation stack and allocates # words of data
memory starting at that location. # words are then moved from the save stack
to this data memory.

Reverse-Noncritical: Allocates # words of data memory and pushes the address of
the first word of allocated memory onto the evaluation stack.

uninst CFLAG, #

Dispose of an instance of variable register #.

Forward-Critical: Frees the memory occupied by the variable then pops the top
data memory address off the variable register’s stack and pushes it onto the
save stack.

Forward-Noncritical: Frees the memory occupied by the variable then pops the top
address off the variable register’s stack.

97

Reverse-Critical: Pops the address off the save stack and pushes it onto the variable
register’s stack then reallocates enough data memory for the variable # starting
at that address.

Reverse-Noncritical: Reallocates enough data memory for the variable # and pushes
the address of the data memory allocated onto the variable register’s stack.

unlink CFLAG, #

Disassociates a variable register from another.

Forward: Pops the top value of the variable stack pointed to by variable register #
and pushes it onto the save stack.

Reverse: Pops the top value of the save stack and pushes it onto the variable stack
pointed to by variable register #.

write CFLAG, TYPE, ADDR

Displays a value for the user. The first TYPE is the type of data to write. The
ADDR field is an integer file handle to write to.

Forward-Critical: The top of the evaluation stack is popped and the value pushed
onto the save stack. This value is then converted into a string and passed to a
user interface function which takes appropriate action to display the value.

Forward-Noncritical: The top of the evaluation stack is popped and is converted
into a string and passed to a user interface function to be displayed.

Reverse-Critical: The value on top of the save stack is popped and pushed onto the
evaluation stack. Then a user interface function is called to handle undisplaying
of the last value displayed.

Reverse-Noncritical: DUMMY 1s pushed onto the evaluation stack and then a user
interface function is called to handle undisplaying of the last value displayed.

xor CFLAG, TYPE

Bitwise exclusive-or’s the top two values of the evaluation stack and places the result
onto the evaluation stack.

Forward-Critical: Pops the top two values of the evaluation stack, pushes the two
values onto the save stack, and then pushes the bottom value bitwise exclusive
or’ed with the top value onto the evaluation stack.

Forward-Noncritical: Pops the top two values of the evaluation stack and pushes
the bottom value bitwise exclusive or’ed with the top value onto the evaluation
stack.

Reverse-Critical: Pops the top value of the evaluation stack and discards it. Pops
the top two values of the save stack and pushes them onto the evaluation stack.

Reverse-Noncritical: Pushes DUMMY onto the evaluation stack.

End of appendix A

Appendix B

The E-Machine Addressing
Modes

This appendix, which is adapted from chapter 2 of Birch’s thesis [Birch 90],
appendix B of Goosey’s thesis [Goosey 93], and chapter 2 of Poole’s thesis
[Poole 94] describes the various addressing modes allowed in E-Machine in-
structions. Quite a few modes are defined in order to accommodate standard
high level language data structures more conveniently. Note that each address-
ing mode refers to either the data at the computed address or the computed
address itself, depending on the instruction. That is, for those instructions
that need a data value, such as push, the data value at the address computed
from the addressing mode is used. For instructions that need an address, such
as pop, the address that was computed from the addressing mode is used.
For each addressing mode listed below, an example of its intended use is
given. Fach example is given in pseudo assembly language form for clarity; it is
important to remember that no assembler (and hence no assembly language)
has yet been developed for the E-Machine. However, the pseudo assembly

language examples should be easily understood.

98

99

constant mode - C#

This mode is often called the immediate mode in other architectures; # is itself
the integer, real, boolean, character, or address constant operand required in the
instruction.

Erample:
A = 1.5;

could be translated into the following, where V1 is the variable register associated

with A:

push R,Cl.5 ; push 1.5
pop c¢,R,V1 ; assign to A

variable mode - V#:
variable reqister # — top of variable stack — data memory

This mode accesses the data memory location given in the top element of the variable
stack that is pointed to by variable register #. This mode is intended to address
source program variables that are of one of the basic E-Machine types.

FErample:

B =1

bl

could be translated into:

push [,C1 ; push 1
pop c,I,V3 ; assign to B

variable indirect - (V#):
variable reqister #£ — top of variable stack — data memory — data memory

This mode accesses the data in data memory whose location is stored at another data
memory location, which is pointed to by the top of the variable stack pointed to by
variable register #. This mode is intended for accessing the contents of a high level
language pointer variables. It would be particularly useful for handling parameters
in C which are passed as pointers for the intention of passing by reference.

FErample:

int foo(C)
int *C

{
}

*C =1,

100

could be translated into:

label ¢,5 ; procedure entry

inst c,V3 ; create new instance of C
pop c,A V3 ; assign argument passed to *c
push [,C1 ; push 1

pop c,1,(V3) ; assign to *c

uninst ¢, V3 ; destroy instance of C
return ; return from call

variable offset mode - V#{offset}:
variable reqister #£ — top of variable stack + IR — data memory

This mode accesses the data pointed to by the top of the variable register # stack
plus a byte offset which was previously loaded into the index register. This mode
is useful for accessing fields in a structured data type such as a Pascal record or C
struct.

Erample:

A = D.Field2

could be translated into:

push 12 ; D is at offset of 2 in structure
popir ¢ ; put offset into index register
push R V4{IR} ; push D.Field2

pop c¢,R,V1 ; assign to A

address indirect - (A):

address register — data memory

This mode provides access to data located at the data address in the address register.
The address register must be loaded with a data memory address which points to
data memory. This mode is useful for multiple indirection.

Erample:

could be translated into:

loadar ¢, V7 ; load addr reg with addr of g
loadar c,(A) ; load addr reg with addr of *g
push T/(A) ; push *(*g)

pop c,I,V3 ; assign to ¢

101

address offset mode - A{offset}:
address register + IR — data memory

This mode provides access to structured data through the address register. The
index register is added to the address register to provide an address to the data to be
accessed. This mode 1s useful for indirection with structured data, such as pointers
to records in Pascal.

Erample:
I := Ht.Data

could be translated into:

push A VS ; push HT (address value of H)
popar c ; load ar with HT

push 1,C2 ; Data has offset of 2 in record
popir ¢ ; load ir with offset

push T A{IR} ; push Ht.Data

pop c,I,V9 ; assign to |

variable indexed mode - V#[index]:

variable register # — top of variable stack + IR * data size — data memory

This address mode uses the top of the variable register # stack as a base address and
adds the index register, which must be previously loaded, multiplied by the number of
bytes occupied by the data type, which is a basic E-Machine data type. The resulting
address points to the data item. This mode is useful for accessing an array whose
elements are of a basic E-Machine data type.

Erample:
B := L[3];

could be translated into:

push nJI3 ; put index of 3 into
popir ¢ ; the index register
push T VI2[IR] ; push L[3]

pop c,I,V2 ; assign to B

address indexed mode - Alindex]:

address register + IR * data size — data memory

This mode provides the same function as variable indexed mode, except instead of a
variable register providing the base address, the address register is loaded with the

102

base address. This mode could be used for accessing elements of an array which is
pointed to by a variable.

Erample:

B := St[4];

could be translated into:

push A V19 ; put address of array into
popar c ; address register

push 14 ; put index of 4 into
popir ¢ ; the index register

push T A[IR] ; push S1[4]

pop c,I,V2 ; assign to B

