Regular Expressions CSCI 338

Regular Expressions

Rules for building regular expressions (regex):

1. Each $e \in \Sigma$ is a regex
2. $\{\varepsilon\}$ is a regex
3. \varnothing is a regex
4. $\left(R_{1} \cup R_{2}\right)$ is a regex
5. $\left(R_{1} \circ R_{2}\right)$, denoted $\left(R_{1} R_{2}\right)$ is a regex
6. $R_{1}{ }^{*}$ is a regex

Order of operations:

- Parentheses, star (and plus), concatenation, union.

Regular Expression Practice
Suppose that $\Sigma=\{0,1\}$.

- $1^{*} 0^{*} 1=$?

Regular Expression Practice
Suppose that $\Sigma=\{0,1\}$.

- $1^{*} 0^{*} 1=\{w: w$ contains $\geq 01 \mathrm{~s}$, then $\geq 00 \mathrm{~s}$, then a 1$\}$

Regular Expression Practice
Suppose that $\Sigma=\{0,1\}$.

- $1^{*} 0^{*} 1=\{w: w$ contains $\geq 01 \mathrm{~s}$, then $\geq 00 \mathrm{~s}$, then a 1$\}$
- $(1 \cup 0)^{*} 1=$?

Regular Expression Practice
Suppose that $\Sigma=\{0,1\}$.

- $1^{*} 0^{*} 1=\{w: w$ contains $\geq 01 \mathrm{~s}$, then $\geq 00 \mathrm{~s}$, then a 1$\}$
- $(1 \cup 0)^{*} 1=\{w: w$ ends in 1$\}$

Regular Expression Practice
Suppose that $\Sigma=\{0,1\}$.

- $1^{*} 0^{*} 1=\{w: w$ contains $\geq 01 \mathrm{~s}$, then $\geq 00 \mathrm{~s}$, then a 1$\}$
- $(1 \cup 0)^{*} 1=\{w: w$ ends in 1$\}$
- $\{w: w$ contains a single 1$\}=$?

Regular Expression Practice
Suppose that $\Sigma=\{0,1\}$.

- $1^{*} 0^{*} 1=\{w: w$ contains $\geq 01 \mathrm{~s}$, then $\geq 00 \mathrm{~s}$, then a 1$\}$
- $(1 \cup 0)^{*} 1=\{w: w$ ends in 1$\}$
- $\{w: w$ contains a single 1$\}=0^{*} 10^{*}$

Regular Expression Practice

Suppose that $\Sigma=\{0,1\}$.

- $1^{*} 0^{*} 1=\{w: w$ contains $\geq 01 \mathrm{~s}$, then $\geq 00 \mathrm{~s}$, then a 1$\}$
- $(1 \cup 0)^{*} 1=\{w: w$ ends in 1$\}$
- $\{w: w$ contains a single 1$\}=0^{*} 10^{*}$
- $\{w: w$ contains at least one 1$\}=$?

Regular Expression Practice

Suppose that $\Sigma=\{0,1\}$.

- $1^{*} 0^{*} 1=\{w: w$ contains $\geq 01 \mathrm{~s}$, then $\geq 00 \mathrm{~s}$, then a 1$\}$
- $(1 \cup 0)^{*} 1=\{w: w$ ends in 1$\}$
- $\{w: w$ contains a single 1$\}=0^{*} 10^{*}$
- $\{w: w$ contains at least one 1$\}=\Sigma^{*} 1 \Sigma^{*}$ or $(0 \cup 1)^{*} 1(0 \cup 1)^{*}$

Regular Expression Practice

Suppose that $\Sigma=\{0,1\}$.

- $1^{*} 0^{*} 1=\{w: w$ contains $\geq 01 \mathrm{~s}$, then $\geq 00 \mathrm{~s}$, then a 1$\}$
- $(1 \cup 0)^{*} 1=\{w: w$ ends in 1$\}$
- $\{w: w$ contains a single 1$\}=0^{*} 10^{*}$
- $\{w: w$ contains at least one 1$\}=\Sigma^{*} 1 \Sigma^{*}$
- $(\Sigma \Sigma)^{*}=$?

Regular Expression Practice

Suppose that $\Sigma=\{0,1\}$.

- $1^{*} 0^{*} 1=\{w: w$ contains $\geq 01 \mathrm{~s}$, then $\geq 00 \mathrm{~s}$, then a 1$\}$
- $(1 \cup 0)^{*} 1=\{w: w$ ends in 1$\}$
- $\{w: w$ contains a single 1$\}=0^{*} 10^{*}$
- $\{w: w$ contains at least one 1$\}=\Sigma^{*} 1 \Sigma^{*}$
- $(\Sigma \Sigma)^{*}=\{w: w$ has even length $\}$

Regular Expression Practice

Suppose that $\Sigma=\{0,1\}$.

- $1^{*} 0^{*} 1=\{w: w$ contains $\geq 01 \mathrm{~s}$, then $\geq 00 \mathrm{~s}$, then a 1$\}$
- $(1 \cup 0)^{*} 1=\{w: w$ ends in 1$\}$
- $\{w: w$ contains a single 1$\}=0 * 10^{*}$
- $\{w: w$ contains at least one 1$\}=\Sigma^{*} 1 \Sigma^{*}$
- $(\Sigma \Sigma)^{*}=\{w: w$ has even length $\}$
- $\{w$: every 0 is followed by at least one 1$\}=$?

Regular Expression Practice

Suppose that $\Sigma=\{0,1\}$.

- $1^{*} 0^{*} 1=\{w: w$ contains $\geq 01 \mathrm{~s}$, then $\geq 00 \mathrm{~s}$, then a 1$\}$
- $(1 \cup 0)^{*} 1=\{w: w$ ends in 1$\}$
- $\{w: w$ contains a single 1$\}=0 * 10^{*}$
- $\{w: w$ contains at least one 1$\}=\Sigma^{*} 1 \Sigma^{*}$
- $(\Sigma \Sigma)^{*}=\{w: w$ has even length $\}$
- $\{w$: every 0 is followed by at least one 1$\}=1^{*}\left(01^{+}\right)^{*}$

Regular Expression Practice

Suppose that $\Sigma=\{0,1\}$.

- $1^{*} 0^{*} 1=\{w: w$ contains $\geq 01 \mathrm{~s}$, then $\geq 00 \mathrm{~s}$, then a 1$\}$
- $(1 \cup 0)^{*} 1=\{w: w$ ends in 1$\}$
- $\{w: w$ contains a single 1$\}=0^{*} 10^{*}$
- $\{w: w$ contains at least one 1$\}=\Sigma^{*} 1 \Sigma^{*}$
- $(\Sigma \Sigma)^{*}=\{w: w$ has even length $\}$
- $\{w$: every 0 is followed by at least one 1$\}=1^{*}\left(01^{+}\right)^{*}$
- $1^{*} \emptyset=$?

By definition, $A \circ B=\{x y: x \in A, y \in B\}$

Regular Expression Practice

Suppose that $\Sigma=\{0,1\}$.

- $1^{*} 0^{*} 1=\{w: w$ contains $\geq 01 \mathrm{~s}$, then $\geq 00 \mathrm{~s}$, then a 1$\}$
- $(1 \cup 0)^{*} 1=\{w: w$ ends in 1$\}$
- $\{w: w$ contains a single 1$\}=0^{*} 10^{*}$
- $\{w: w$ contains at least one 1$\}=\Sigma^{*} 1 \Sigma^{*}$
- $(\Sigma \Sigma)^{*}=\{w: w$ has even length $\}$
- $\{w$: every 0 is followed by at least one 1$\}=1^{*}\left(01^{+}\right)^{*}$
- $1^{*} \emptyset=\varnothing$

By definition, $A \circ B=\{x y: x \in A, y \in B\}$
Since there is no element in \emptyset, there cannot be any $x y$ such that $y \in \emptyset$.

Regular Expression Practice

Suppose that $\Sigma=\{0,1\}$.

- $1^{*} 0^{*} 1=\{w: w$ contains $\geq 01 \mathrm{~s}$, then $\geq 00 \mathrm{~s}$, then a 1$\}$
- $(1 \cup 0)^{*} 1=\{w: w$ ends in 1$\}$
- $\{w: w$ contains a single 1$\}=0^{*} 10^{*}$
- $\{w: w$ contains at least one 1$\}=\Sigma^{*} 1 \Sigma^{*}$
- $(\Sigma \Sigma)^{*}=\{w: w$ has even length $\}$
- $\{w$: every 0 is followed by at least one 1$\}=1^{*}\left(01^{+}\right)^{*}$
- $1^{*} \emptyset=\varnothing$

By definition, $A \circ B=\{x y: x \in A, y \in B\}$

- $1^{*} \varepsilon=$?

Regular Expression Practice

Suppose that $\Sigma=\{0,1\}$.

- $1^{*} 0^{*} 1=\{w: w$ contains $\geq 01 \mathrm{~s}$, then $\geq 00 \mathrm{~s}$, then a 1$\}$
- $(1 \cup 0)^{*} 1=\{w: w$ ends in 1$\}$
- $\{w: w$ contains a single 1$\}=0^{*} 10^{*}$
- $\{w: w$ contains at least one 1$\}=\Sigma^{*} 1 \Sigma^{*}$
- $(\Sigma \Sigma)^{*}=\{w: w$ has even length $\}$
- $\{w$: every 0 is followed by at least one 1$\}=1^{*}\left(01^{+}\right)^{*}$
- $1^{*} \emptyset=\emptyset$

By definition, $A \circ B=\{x y: x \in A, y \in B\}$

- $1^{*} \varepsilon=1^{*}$

Regular Expression Practice

Suppose that $\Sigma=\{0,1\}$.

- $1^{*} 0^{*} 1=\{w: w$ contains $\geq 01 \mathrm{~s}$, then $\geq 00 \mathrm{~s}$, then a 1$\}$
- $(1 \cup 0)^{*} 1=\{w: w$ ends in 1$\}$
- $\{w: w$ contains a single 1$\}=0^{*} 10^{*}$
- $\{w: w$ contains at least one 1$\}=\Sigma^{*} 1 \Sigma^{*}$
- $(\Sigma \Sigma)^{*}=\{w: w$ has even length $\}$
- $\{w$: every 0 is followed by at least one 1$\}=1^{*}\left(01^{+}\right)^{*}$
- $1^{*} \emptyset=\varnothing$

By definition, $A^{*}=\left\{x_{1} x_{2} \ldots x_{k}: k \geq 0, x_{i} \in A\right\}$

- $1^{*} \varepsilon=1^{*}$
- $\emptyset^{*}=$?

Regular Expression Practice

Suppose that $\Sigma=\{0,1\}$.

- $1^{*} 0^{*} 1=\{w: w$ contains $\geq 01 \mathrm{~s}$, then $\geq 00 \mathrm{~s}$, then a 1$\}$
- $(1 \cup 0)^{*} 1=\{w: w$ ends in 1$\}$
- $\{w: w$ contains a single 1$\}=0^{*} 10^{*}$
- $\{w: w$ contains at least one 1$\}=\Sigma^{*} 1 \Sigma^{*}$
- $(\Sigma \Sigma)^{*}=\{w: w$ has even length $\}$
- $\{w$: every 0 is followed by at least one 1$\}=1^{*}\left(01^{+}\right)^{*}$
- $1^{*} \emptyset=\varnothing$
- $1^{*} \varepsilon=1^{*}$
- $\emptyset^{*}=\varepsilon$

By definition, $A^{*}=\left\{x_{1} x_{2} \ldots x_{k}: k \geq 0, x_{i} \in A\right\}$ Thus, it can append 0 elements of \emptyset and get the empty string ε.

Regular Expression Practice

Suppose that $\Sigma=\{0,1\}$.

- $1^{*} 0^{*} 1=\{w: w$ contains $\geq 01 \mathrm{~s}$, then $\geq 00 \mathrm{~s}$, then a 1$\}$
- $(1 \cup 0)^{*} 1=\{w: w$ ends in 1$\}$
- $\{w: w$ contains a single 1$\}=0^{*} 10^{*}$
- $\{w: w$ contains at least one 1$\}=\Sigma^{*} 1 \Sigma^{*}$
- $(\Sigma \Sigma)^{*}=\{w: w$ has even length $\}$
- $\{w$: every 0 is followed by at least one 1$\}=1^{*}\left(01^{+}\right)^{*}$
- $1^{*} \emptyset=\emptyset$
- $1^{*} \varepsilon=1^{*}$
- $\emptyset^{*}=\varepsilon$

$$
\emptyset^{+}=?
$$

Regular Expression Practice

Suppose that $\Sigma=\{0,1\}$.

- $1^{*} 0^{*} 1=\{w: w$ contains $\geq 01 \mathrm{~s}$, then $\geq 00 \mathrm{~s}$, then a 1$\}$
- $(1 \cup 0)^{*} 1=\{w: w$ ends in 1$\}$
- $\{w: w$ contains a single 1$\}=0^{*} 10^{*}$
- $\{w: w$ contains at least one 1$\}=\Sigma^{*} 1 \Sigma^{*}$
- $(\Sigma \Sigma)^{*}=\{w: w$ has even length $\}$
- $\{w$: every 0 is followed by at least one 1$\}=1^{*}\left(01^{+}\right)^{*}$
- $1^{*} \emptyset=\emptyset$
- $1^{*} \varepsilon=1^{*}$
- $\emptyset^{*}=\varepsilon$

$$
\emptyset^{+}=\emptyset
$$

