Pumping Lemma CSCI 338

If all regular languages have property P, and some new language L does not have property P, then...?

If all regular languages have property P, and some new language L does not have property P, then L cannot be a regular language.

Properties That Imply Language is Regular?

Claim: Languages that are finite in size are regular.

Claim: Languages where all strings have bounded size (each string has size \leq some n) are regular.

Properties That Imply Language is Regular?

Claim: Languages that are finite in size are regular.

Proof: Since there are a finite number of strings, build a DFA for each individual string in the language.
Then connect all start states to a new start state via ε-transitions.

Claim: Languages where all strings have bounded size (each string has size \leq some n) are regular.

Properties That Imply Language is Regular?

Claim: Languages that are finite in size are regular.

Proof: Since there are a finite number of strings, build a DFA for each individual string in the language.
Then connect all start states to a new start state via ε-transitions.

Claim: Languages where all strings have bounded size (each string has size \leq some n) are regular.

Proof: Since the alphabet is finite, there is a finite number of strings constructible with n characters. Thus, the language is finite and regular.

Quest for Regular Language Properties

What do we know about non-regular languages?

- They must be infinite in size.
- They must have arbitrarily long strings in them.

Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:
?

Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.

Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.

Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.

Let $p=$ number of states.
Let s be any string in L such that $|s| \geq p$. Then...

Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.

Let $p=$ number of states.
Let s be any string in L such that $|s| \geq p$.
Then, s must visit repeated states (i.e. loops).

Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.

Let $p=$ number of states.
Let s be any string in L such that $|s| \geq p$. Then, s must visit repeated states (i.e. loops).

$$
\text { e.g. } s=00111 \in L
$$

Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.

Let $p=$ number of states.
Let s be any string in L such that $|s| \geq p$. Then, s must visit repeated states (i.e. loops).

$$
\text { e.g. } s=0|011| 1 \in L
$$

Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.

Let $p=$ number of states.
Let s be any string in L such that $|s| \geq p$. Then, s must visit repeated states (i.e. loops).

$$
\begin{aligned}
& \text { e.g. } s=0|011| 1 \in L \\
& \text { Is } s=0|011| 011 \mid 1 \in L ?
\end{aligned}
$$

Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.

Let $p=$ number of states.
Let s be any string in L such that $|s| \geq p$. Then, s must visit repeated states (i.e. loops).

$$
\text { e.g. } s=0|011| 1 \in L
$$

Is $s=0|011| 011 \mid 1 \in L$?
What about $s=0|011| 011|011| 1 \in L$?

Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.

Let $p=$ number of states.
Let s be any string in L such that $|s| \geq p$. Then, s must visit repeated states (i.e. loops).
e.g. $s=0|011| 1 \in L$

Is $s=0|011| 011 \mid 1 \in L$?
What about $s=0|011| 011|011| 1 \in L$?
What about $s=0 \mid 1 \in L$?

Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.

y-First Loop
 Let $p=$ number of states.

Let s be any string in L such that $|s| \geq p$.
Then, s must visit repeated states (i.e. loops).

e.g. $s=0|011| 1 \in L$

Is $s=0|011| 011 \mid 1 \in L$?
What about $s=0|011| 011|011| 1 \in L$?
What about $s=0 \mid 1 \in L$?

Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.
y-First Loop Let $p=$ number of states.
Let s be any string in L such that $|s| \geq p$.
Then, s must visit repeated states (i.e. loops).

$$
\text { e.g. } s=0|011| 1 \in L
$$

What about $s=$| x | y | y | y |
| :--- | :--- | :--- | :--- |
| 0 | y | z | z |

Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.
y-First Loop
Let $p=$ number of states.
Let s be any string in L such that $|s| \geq p$.
Then, s must visit repeated states (i.e. loops).

$$
\text { e.g. } s=0|011| 1 \in L
$$

Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.
y-First Loop

Summary: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.
y-First Loop

Summary: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.

Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.
y-First Loop

Summary: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.

Since $|s| \geq p$, we must have repeated states.

Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.
y-First Loop

Summary: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.

Since there have to be repeated states within the first p transitions.

Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.

Pumping Lemma
y-First Loop Summary: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.

Quest for Regular Language Properties

Suppos The Pumping Lemma is our property that all regular (i.e. $\forall n$ languages must have.
 1. W
 2. \exists strings ionger than the number or states.

Pumping Lemma
y-First Loop
Summary: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.

Quest for Regular Language Properties

Suppos The Pumping Lemma is our property that all regular th
(i.e. $\forall n$ languages must have. So, if some language does not

1. Whave that property, it cannot be a regular language.
2. \exists strings ionger than the number or states.

Pumping Lemma
y-First Loop Summary: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.
x-Start
z-End

Pumping Lemma

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.

Pumping Lemma

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.

Pumping Lemma User Manual:

1. The pumping lemma says all regular languages have property P.
2. If we can show a language does not have property P, then it cannot be regular.

Non-Regularity Proofs

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.
4. Suppose language is regular.

Non-Regularity Proofs

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.
4. Suppose language is regular.
5. Select p from pumping lemma.

Non-Regularity Proofs

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.
4. Suppose language is regular.
5. Select p from pumping lemma.
6. Carefully select $s \in L$ and $|s| \geq p$.

Non-Regularity Proofs

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.
4. Suppose language is regular.
5. Select p from pumping lemma.
6. Carefully select $s \in L$ and $|s| \geq p$.
7. Determine what y must consist of.

Non-Regularity Proofs

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.
4. Suppose language is regular.
5. Select p from pumping lemma.
6. Carefully select $s \in L$ and $|s| \geq p$.
7. Determine what y must consist of.
8. Make new string by selecting i.

Non-Regularity Proofs

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.
4. Suppose language is regular.
5. Select p from pumping lemma.
6. Carefully select $s \in L$ and $|s| \geq p$.
7. Determine what y must consist of.
8. Make new string by selecting i.
9. Show new string is not in language.
