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If all regular languages have property 𝑷, and 
some new language 𝑳 does not have property 𝑷, 
then...?



If all regular languages have property 𝑷, and 
some new language 𝑳 does not have property 𝑷, 
then 𝑳 cannot be a regular language.



Properties That Imply Language is Regular?

Claim: Languages that are 
finite in size are regular.

Claim: Languages where all strings 
have bounded size (each string 
has size ≤ some	𝑛) are regular.



Claim: Languages that are 
finite in size are regular.

Proof: Since there are a finite 
number of strings, build a 
DFA for each individual string 
in the language. 
Then connect all start states 
to a new start state via 
𝜀-transitions. 

Claim: Languages where all strings 
have bounded size (each string 
has size ≤ some	𝑛) are regular.

Properties That Imply Language is Regular?



Claim: Languages that are 
finite in size are regular.

Proof: Since there are a finite 
number of strings, build a 
DFA for each individual string 
in the language. 
Then connect all start states 
to a new start state via 
𝜀-transitions. 

Claim: Languages where all strings 
have bounded size (each string 
has size ≤ some	𝑛) are regular.

Proof: Since the alphabet is finite, 
there is a finite number of strings 
constructible with 𝑛 characters. 
Thus, the language is finite and 
regular.

Properties That Imply Language is Regular?



What do we know about non-regular languages?

• They must be infinite in size.
• They must have arbitrarily long strings in them.

Quest for Regular Language Properties



Quest for Regular Language Properties
Suppose some regular language 𝐿 contains strings of arbitrary length 
(i.e. ∀𝑛 ≥ 0, ∃𝑠 ∈ 𝐿	such that 𝑠 ≥ 𝑛). Then:

 ?



Quest for Regular Language Properties
Suppose some regular language 𝐿 contains strings of arbitrary length 
(i.e. ∀𝑛 ≥ 0, ∃𝑠 ∈ 𝐿	such that 𝑠 ≥ 𝑛). Then:

1. We know the DFA for that language has a finite number of states.
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2.  ∃ strings longer than the number of states.
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Let 𝑝 = number of states.
Let 𝑠 be any string in 𝐿 such that 𝑠 ≥ 𝑝.
Then…
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Let 𝑝 = number of states.
Let 𝑠 be any string in 𝐿 such that 𝑠 ≥ 𝑝.
Then, 𝑠 must visit repeated states (i.e. loops).
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e.g.  𝑠 = 00111 ∈ 𝐿

Let 𝑝 = number of states.
Let 𝑠 be any string in 𝐿 such that 𝑠 ≥ 𝑝.
Then, 𝑠 must visit repeated states (i.e. loops).
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Is 𝑠 = 00110111 ∈ 𝐿?

Let 𝑝 = number of states.
Let 𝑠 be any string in 𝐿 such that 𝑠 ≥ 𝑝.
Then, 𝑠 must visit repeated states (i.e. loops).
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e.g.  𝑠 = 00111 ∈ 𝐿
Is 𝑠 = 00110111 ∈ 𝐿?
What about 𝑠 = 00110110111 ∈ 𝐿?

Let 𝑝 = number of states.
Let 𝑠 be any string in 𝐿 such that 𝑠 ≥ 𝑝.
Then, 𝑠 must visit repeated states (i.e. loops).
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Is 𝑠 = 00110111 ∈ 𝐿?
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What about 𝑠 = 01 ∈ 𝐿?

Let 𝑝 = number of states.
Let 𝑠 be any string in 𝐿 such that 𝑠 ≥ 𝑝.
Then, 𝑠 must visit repeated states (i.e. loops).
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𝒚 𝒛𝒙
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What about 𝑠 = 00110110111 ∈ 𝐿?

Let 𝑝 = number of states.
Let 𝑠 be any string in 𝐿 such that 𝑠 ≥ 𝑝.
Then, 𝑠 must visit repeated states (i.e. loops).
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What about 𝑠 = 01 ∈ 𝐿?

Let 𝑝 = number of states.
Let 𝑠 be any string in 𝐿 such that 𝑠 ≥ 𝑝.
Then, 𝑠 must visit repeated states (i.e. loops).

𝒚 𝒛𝒙

𝒛𝒙
𝒙-Start

𝒚-First Loop

𝒛-End



Quest for Regular Language Properties
Suppose some regular language 𝐿 contains strings of arbitrary length 
(i.e. ∀𝑛 ≥ 0, ∃𝑠 ∈ 𝐿	such that 𝑠 ≥ 𝑛). Then:
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Summary: Given a regular language 𝐿, ∃ a number 
𝑝 such that any string 𝑠 ∈ 𝐿, with 𝑠 ≥ 𝑝, can be 
divided into three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying:
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Summary: Given a regular language 𝐿, ∃ a number 
𝑝 such that any string 𝑠 ∈ 𝐿, with 𝑠 ≥ 𝑝, can be 
divided into three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying:

1.  𝑥𝑦!𝑧 ∈ 𝐿, ∀𝑖 ≥ 0.

From our previous 
argument.
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𝒛-End
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Summary: Given a regular language 𝐿, ∃ a number 
𝑝 such that any string 𝑠 ∈ 𝐿, with 𝑠 ≥ 𝑝, can be 
divided into three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying:

1.  𝑥𝑦!𝑧 ∈ 𝐿, ∀𝑖 ≥ 0.
2. 𝑦 > 0.

Since |𝑠| ≥ 𝑝, we must 
have repeated states.

𝒙-Start

𝒚-First Loop

𝒛-End



Since there have to be 
repeated states within 
the first 𝑝 transitions.
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The Pumping Lemma is our property that all regular 
languages must have.
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Suppose some regular language 𝐿 contains strings of arbitrary length 
(i.e. ∀𝑛 ≥ 0, ∃𝑠 ∈ 𝐿	such that 𝑠 ≥ 𝑛). Then:
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Summary: Given a regular language 𝐿, ∃ a number 
𝑝 such that any string 𝑠 ∈ 𝐿, with 𝑠 ≥ 𝑝, can be 
divided into three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying:

1.  𝑥𝑦!𝑧 ∈ 𝐿, ∀𝑖 ≥ 0.
2. 𝑦 > 0.
3.  |𝑥𝑦| ≤ 𝑝.

Pumping Lemma

𝒙-Start

𝒚-First Loop

𝒛-End

The Pumping Lemma is our property that all regular 
languages must have. So, if some language does not 
have that property, it cannot be a regular language.



Pumping Lemma
Pumping Lemma: Given a regular language 𝐿, ∃ a 
number 𝑝 such that any string 𝑠 ∈ 𝐿, with 𝑠 ≥ 𝑝, can 
be divided into three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying:

1.  𝑥𝑦!𝑧 ∈ 𝐿, ∀𝑖 ≥ 0.
2. 𝑦 > 0.
3.  |𝑥𝑦| ≤ 𝑝.



Pumping Lemma
Pumping Lemma: Given a regular language 𝐿, ∃ a 
number 𝑝 such that any string 𝑠 ∈ 𝐿, with 𝑠 ≥ 𝑝, can 
be divided into three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying:

1.  𝑥𝑦!𝑧 ∈ 𝐿, ∀𝑖 ≥ 0.
2. 𝑦 > 0.
3.  |𝑥𝑦| ≤ 𝑝.

Pumping Lemma User Manual:
1. The pumping lemma says all regular languages have property 𝑷.
2. If we can show a language does not have property 𝑷, then it 

cannot be regular.



Pumping Lemma: Given a regular language 𝑳, ∃ a 
number 𝑝 such that any string 𝑠 ∈ 𝐿, with 𝑠 ≥ 𝑝, can 
be divided into three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying:

1.  𝑥𝑦!𝑧 ∈ 𝐿, ∀𝑖 ≥ 0.
2. 𝑦 > 0.
3.  |𝑥𝑦| ≤ 𝑝.

Non-Regularity Proofs

1. Suppose language is regular.



Pumping Lemma: Given a regular language 𝐿, ∃ a 
number 𝒑 such that any string 𝑠 ∈ 𝐿, with 𝑠 ≥ 𝑝, can 
be divided into three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying:

1.  𝑥𝑦!𝑧 ∈ 𝐿, ∀𝑖 ≥ 0.
2. 𝑦 > 0.
3.  |𝑥𝑦| ≤ 𝑝.

Non-Regularity Proofs

1. Suppose language is regular.
2. Select 𝑝 from pumping lemma.



Pumping Lemma: Given a regular language 𝐿, ∃ a 
number 𝑝 such that any string 𝒔 ∈ 𝑳, with 𝒔 ≥ 𝒑, can 
be divided into three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying:

1.  𝑥𝑦!𝑧 ∈ 𝐿, ∀𝑖 ≥ 0.
2. 𝑦 > 0.
3.  |𝑥𝑦| ≤ 𝑝.

Non-Regularity Proofs

1. Suppose language is regular.
2. Select 𝑝 from pumping lemma.
3. Carefully select 𝑠 ∈ 𝐿	and 𝑠 ≥ 𝑝.



Pumping Lemma: Given a regular language 𝐿, ∃ a 
number 𝑝 such that any string 𝑠 ∈ 𝐿, with 𝑠 ≥ 𝑝, can 
be divided into three pieces, 𝒔 = 𝒙𝒚𝒛 satisfying:

1.  𝑥𝑦!𝑧 ∈ 𝐿, ∀𝑖 ≥ 0.
2. 𝒚 > 𝟎.
3.  |𝒙𝒚| ≤ 𝒑.

Non-Regularity Proofs

1. Suppose language is regular.
2. Select 𝑝 from pumping lemma.
3. Carefully select 𝑠 ∈ 𝐿	and 𝑠 ≥ 𝑝.
4. Determine what 𝑦 must consist of.



Pumping Lemma: Given a regular language 𝐿, ∃ a 
number 𝑝 such that any string 𝑠 ∈ 𝐿, with 𝑠 ≥ 𝑝, can 
be divided into three pieces, 𝒔 = 𝒙𝒚𝒛 satisfying:

1.  𝒙𝒚𝒊𝒛 ∈ 𝐿, ∀𝒊 ≥ 𝟎.
2. 𝑦 > 0.
3.  |𝑥𝑦| ≤ 𝑝.

Non-Regularity Proofs

1. Suppose language is regular.
2. Select 𝑝 from pumping lemma.
3. Carefully select 𝑠 ∈ 𝐿	and 𝑠 ≥ 𝑝.
4. Determine what 𝑦 must consist of.
5. Make new string by selecting 𝑖.



Pumping Lemma: Given a regular language 𝐿, ∃ a 
number 𝑝 such that any string 𝑠 ∈ 𝐿, with 𝑠 ≥ 𝑝, can 
be divided into three pieces, 𝒔 = 𝒙𝒚𝒛 satisfying:

1.  𝑥𝑦!𝑧 ∈ 𝑳, ∀𝑖 ≥ 0.
2. 𝑦 > 0.
3.  |𝑥𝑦| ≤ 𝑝.

Non-Regularity Proofs

1. Suppose language is regular.
2. Select 𝑝 from pumping lemma.
3. Carefully select 𝑠 ∈ 𝐿	and 𝑠 ≥ 𝑝.
4. Determine what 𝑦 must consist of.
5. Make new string by selecting 𝑖.
6. Show new string is not in language. 


