
Pumping Lemma
CSCI 338

If all regular languages have property 𝑷, and
some new language 𝑳 does not have property 𝑷,
then...?

If all regular languages have property 𝑷, and
some new language 𝑳 does not have property 𝑷,
then 𝑳 cannot be a regular language.

Properties That Imply Language is Regular?

Claim: Languages that are
finite in size are regular.

Claim: Languages where all strings
have bounded size (each string
has size ≤ some	𝑛) are regular.

Claim: Languages that are
finite in size are regular.

Proof: Since there are a finite
number of strings, build a
DFA for each individual string
in the language.
Then connect all start states
to a new start state via
𝜀-transitions.

Claim: Languages where all strings
have bounded size (each string
has size ≤ some	𝑛) are regular.

Properties That Imply Language is Regular?

Claim: Languages that are
finite in size are regular.

Proof: Since there are a finite
number of strings, build a
DFA for each individual string
in the language.
Then connect all start states
to a new start state via
𝜀-transitions.

Claim: Languages where all strings
have bounded size (each string
has size ≤ some	𝑛) are regular.

Proof: Since the alphabet is finite,
there is a finite number of strings
constructible with 𝑛 characters.
Thus, the language is finite and
regular.

Properties That Imply Language is Regular?

What do we know about non-regular languages?

• They must be infinite in size.
• They must have arbitrarily long strings in them.

Quest for Regular Language Properties

Quest for Regular Language Properties
Suppose some regular language 𝐿 contains strings of arbitrary length
(i.e. ∀𝑛 ≥ 0, ∃𝑠 ∈ 𝐿	such that 𝑠 ≥ 𝑛). Then:

 ?

Quest for Regular Language Properties
Suppose some regular language 𝐿 contains strings of arbitrary length
(i.e. ∀𝑛 ≥ 0, ∃𝑠 ∈ 𝐿	such that 𝑠 ≥ 𝑛). Then:

1. We know the DFA for that language has a finite number of states.

Quest for Regular Language Properties
Suppose some regular language 𝐿 contains strings of arbitrary length
(i.e. ∀𝑛 ≥ 0, ∃𝑠 ∈ 𝐿	such that 𝑠 ≥ 𝑛). Then:

1. We know the DFA for that language has a finite number of states.
2. ∃ strings longer than the number of states.

Quest for Regular Language Properties
Suppose some regular language 𝐿 contains strings of arbitrary length
(i.e. ∀𝑛 ≥ 0, ∃𝑠 ∈ 𝐿	such that 𝑠 ≥ 𝑛). Then:

1. We know the DFA for that language has a finite number of states.
2. ∃ strings longer than the number of states.

Let 𝑝 = number of states.
Let 𝑠 be any string in 𝐿 such that 𝑠 ≥ 𝑝.
Then…

Quest for Regular Language Properties
Suppose some regular language 𝐿 contains strings of arbitrary length
(i.e. ∀𝑛 ≥ 0, ∃𝑠 ∈ 𝐿	such that 𝑠 ≥ 𝑛). Then:

1. We know the DFA for that language has a finite number of states.
2. ∃ strings longer than the number of states.

Let 𝑝 = number of states.
Let 𝑠 be any string in 𝐿 such that 𝑠 ≥ 𝑝.
Then, 𝑠 must visit repeated states (i.e. loops).

Quest for Regular Language Properties
Suppose some regular language 𝐿 contains strings of arbitrary length
(i.e. ∀𝑛 ≥ 0, ∃𝑠 ∈ 𝐿	such that 𝑠 ≥ 𝑛). Then:

1. We know the DFA for that language has a finite number of states.
2. ∃ strings longer than the number of states.

0

1

1

1

0
e.g. 𝑠 = 00111 ∈ 𝐿

Let 𝑝 = number of states.
Let 𝑠 be any string in 𝐿 such that 𝑠 ≥ 𝑝.
Then, 𝑠 must visit repeated states (i.e. loops).

Quest for Regular Language Properties
Suppose some regular language 𝐿 contains strings of arbitrary length
(i.e. ∀𝑛 ≥ 0, ∃𝑠 ∈ 𝐿	such that 𝑠 ≥ 𝑛). Then:

1. We know the DFA for that language has a finite number of states.
2. ∃ strings longer than the number of states.

0

1

1

1

0
e.g. 𝑠 = 00111 ∈ 𝐿

Let 𝑝 = number of states.
Let 𝑠 be any string in 𝐿 such that 𝑠 ≥ 𝑝.
Then, 𝑠 must visit repeated states (i.e. loops).

Quest for Regular Language Properties
Suppose some regular language 𝐿 contains strings of arbitrary length
(i.e. ∀𝑛 ≥ 0, ∃𝑠 ∈ 𝐿	such that 𝑠 ≥ 𝑛). Then:

1. We know the DFA for that language has a finite number of states.
2. ∃ strings longer than the number of states.

0

1

1

1

0
e.g. 𝑠 = 00111 ∈ 𝐿
Is 𝑠 = 00110111 ∈ 𝐿?

Let 𝑝 = number of states.
Let 𝑠 be any string in 𝐿 such that 𝑠 ≥ 𝑝.
Then, 𝑠 must visit repeated states (i.e. loops).

Quest for Regular Language Properties
Suppose some regular language 𝐿 contains strings of arbitrary length
(i.e. ∀𝑛 ≥ 0, ∃𝑠 ∈ 𝐿	such that 𝑠 ≥ 𝑛). Then:

1. We know the DFA for that language has a finite number of states.
2. ∃ strings longer than the number of states.

0

1

1

1

0
e.g. 𝑠 = 00111 ∈ 𝐿
Is 𝑠 = 00110111 ∈ 𝐿?
What about 𝑠 = 00110110111 ∈ 𝐿?

Let 𝑝 = number of states.
Let 𝑠 be any string in 𝐿 such that 𝑠 ≥ 𝑝.
Then, 𝑠 must visit repeated states (i.e. loops).

Quest for Regular Language Properties
Suppose some regular language 𝐿 contains strings of arbitrary length
(i.e. ∀𝑛 ≥ 0, ∃𝑠 ∈ 𝐿	such that 𝑠 ≥ 𝑛). Then:

1. We know the DFA for that language has a finite number of states.
2. ∃ strings longer than the number of states.

0

1

1

1

0
e.g. 𝑠 = 00111 ∈ 𝐿
Is 𝑠 = 00110111 ∈ 𝐿?
What about 𝑠 = 00110110111 ∈ 𝐿?
What about 𝑠 = 01 ∈ 𝐿?

Let 𝑝 = number of states.
Let 𝑠 be any string in 𝐿 such that 𝑠 ≥ 𝑝.
Then, 𝑠 must visit repeated states (i.e. loops).

Quest for Regular Language Properties
Suppose some regular language 𝐿 contains strings of arbitrary length
(i.e. ∀𝑛 ≥ 0, ∃𝑠 ∈ 𝐿	such that 𝑠 ≥ 𝑛). Then:

1. We know the DFA for that language has a finite number of states.
2. ∃ strings longer than the number of states.

0

1

1

1

0
e.g. 𝑠 = 00111 ∈ 𝐿
Is 𝑠 = 00110111 ∈ 𝐿?
What about 𝑠 = 00110110111 ∈ 𝐿?
What about 𝑠 = 01 ∈ 𝐿?

Let 𝑝 = number of states.
Let 𝑠 be any string in 𝐿 such that 𝑠 ≥ 𝑝.
Then, 𝑠 must visit repeated states (i.e. loops).

𝒙-Start

𝒚-First Loop

𝒛-End

𝒚 𝒛𝒙

Quest for Regular Language Properties
Suppose some regular language 𝐿 contains strings of arbitrary length
(i.e. ∀𝑛 ≥ 0, ∃𝑠 ∈ 𝐿	such that 𝑠 ≥ 𝑛). Then:

1. We know the DFA for that language has a finite number of states.
2. ∃ strings longer than the number of states.

0

1

1

1

0
e.g. 𝑠 = 00111 ∈ 𝐿

What about 𝑠 = 00110110111 ∈ 𝐿?

Let 𝑝 = number of states.
Let 𝑠 be any string in 𝐿 such that 𝑠 ≥ 𝑝.
Then, 𝑠 must visit repeated states (i.e. loops).

𝒚 𝒛𝒙

𝒚 𝒛𝒙 𝒚 𝒚

𝒙-Start

𝒚-First Loop

𝒛-End

Quest for Regular Language Properties
Suppose some regular language 𝐿 contains strings of arbitrary length
(i.e. ∀𝑛 ≥ 0, ∃𝑠 ∈ 𝐿	such that 𝑠 ≥ 𝑛). Then:

1. We know the DFA for that language has a finite number of states.
2. ∃ strings longer than the number of states.

0

1

1

1

0
e.g. 𝑠 = 00111 ∈ 𝐿

What about 𝑠 = 01 ∈ 𝐿?

Let 𝑝 = number of states.
Let 𝑠 be any string in 𝐿 such that 𝑠 ≥ 𝑝.
Then, 𝑠 must visit repeated states (i.e. loops).

𝒚 𝒛𝒙

𝒛𝒙
𝒙-Start

𝒚-First Loop

𝒛-End

Quest for Regular Language Properties
Suppose some regular language 𝐿 contains strings of arbitrary length
(i.e. ∀𝑛 ≥ 0, ∃𝑠 ∈ 𝐿	such that 𝑠 ≥ 𝑛). Then:

1. We know the DFA for that language has a finite number of states.
2. ∃ strings longer than the number of states.

0

1

1

1

0

Summary: Given a regular language 𝐿, ∃ a number
𝑝 such that any string 𝑠 ∈ 𝐿, with 𝑠 ≥ 𝑝, can be
divided into three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying:

𝒙-Start

𝒚-First Loop

𝒛-End

Quest for Regular Language Properties
Suppose some regular language 𝐿 contains strings of arbitrary length
(i.e. ∀𝑛 ≥ 0, ∃𝑠 ∈ 𝐿	such that 𝑠 ≥ 𝑛). Then:

1. We know the DFA for that language has a finite number of states.
2. ∃ strings longer than the number of states.

0

1

1

1

0

Summary: Given a regular language 𝐿, ∃ a number
𝑝 such that any string 𝑠 ∈ 𝐿, with 𝑠 ≥ 𝑝, can be
divided into three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying:

1. 𝑥𝑦!𝑧 ∈ 𝐿, ∀𝑖 ≥ 0.

From our previous
argument.

𝒙-Start

𝒚-First Loop

𝒛-End

Quest for Regular Language Properties
Suppose some regular language 𝐿 contains strings of arbitrary length
(i.e. ∀𝑛 ≥ 0, ∃𝑠 ∈ 𝐿	such that 𝑠 ≥ 𝑛). Then:

1. We know the DFA for that language has a finite number of states.
2. ∃ strings longer than the number of states.

0

1

1

1

0

Summary: Given a regular language 𝐿, ∃ a number
𝑝 such that any string 𝑠 ∈ 𝐿, with 𝑠 ≥ 𝑝, can be
divided into three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying:

1. 𝑥𝑦!𝑧 ∈ 𝐿, ∀𝑖 ≥ 0.
2. 𝑦 > 0.

Since |𝑠| ≥ 𝑝, we must
have repeated states.

𝒙-Start

𝒚-First Loop

𝒛-End

Since there have to be
repeated states within
the first 𝑝 transitions.

Quest for Regular Language Properties
Suppose some regular language 𝐿 contains strings of arbitrary length
(i.e. ∀𝑛 ≥ 0, ∃𝑠 ∈ 𝐿	such that 𝑠 ≥ 𝑛). Then:

1. We know the DFA for that language has a finite number of states.
2. ∃ strings longer than the number of states.

0

1

1

1

0

Summary: Given a regular language 𝐿, ∃ a number
𝑝 such that any string 𝑠 ∈ 𝐿, with 𝑠 ≥ 𝑝, can be
divided into three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying:

1. 𝑥𝑦!𝑧 ∈ 𝐿, ∀𝑖 ≥ 0.
2. 𝑦 > 0.
3. |𝑥𝑦| ≤ 𝑝.

𝒙-Start

𝒚-First Loop

𝒛-End

Quest for Regular Language Properties
Suppose some regular language 𝐿 contains strings of arbitrary length
(i.e. ∀𝑛 ≥ 0, ∃𝑠 ∈ 𝐿	such that 𝑠 ≥ 𝑛). Then:

1. We know the DFA for that language has a finite number of states.
2. ∃ strings longer than the number of states.

0

1

1

1

0

Summary: Given a regular language 𝐿, ∃ a number
𝑝 such that any string 𝑠 ∈ 𝐿, with 𝑠 ≥ 𝑝, can be
divided into three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying:

1. 𝑥𝑦!𝑧 ∈ 𝐿, ∀𝑖 ≥ 0.
2. 𝑦 > 0.
3. |𝑥𝑦| ≤ 𝑝.

Pumping Lemma

𝒙-Start

𝒚-First Loop

𝒛-End

Quest for Regular Language Properties
Suppose some regular language 𝐿 contains strings of arbitrary length
(i.e. ∀𝑛 ≥ 0, ∃𝑠 ∈ 𝐿	such that 𝑠 ≥ 𝑛). Then:

1. We know the DFA for that language has a finite number of states.
2. ∃ strings longer than the number of states.

0

1

1

1

0

Summary: Given a regular language 𝐿, ∃ a number
𝑝 such that any string 𝑠 ∈ 𝐿, with 𝑠 ≥ 𝑝, can be
divided into three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying:

1. 𝑥𝑦!𝑧 ∈ 𝐿, ∀𝑖 ≥ 0.
2. 𝑦 > 0.
3. |𝑥𝑦| ≤ 𝑝.

Pumping Lemma

𝒙-Start

𝒚-First Loop

𝒛-End

The Pumping Lemma is our property that all regular
languages must have.

Quest for Regular Language Properties
Suppose some regular language 𝐿 contains strings of arbitrary length
(i.e. ∀𝑛 ≥ 0, ∃𝑠 ∈ 𝐿	such that 𝑠 ≥ 𝑛). Then:

1. We know the DFA for that language has a finite number of states.
2. ∃ strings longer than the number of states.

0

1

1

1

0

Summary: Given a regular language 𝐿, ∃ a number
𝑝 such that any string 𝑠 ∈ 𝐿, with 𝑠 ≥ 𝑝, can be
divided into three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying:

1. 𝑥𝑦!𝑧 ∈ 𝐿, ∀𝑖 ≥ 0.
2. 𝑦 > 0.
3. |𝑥𝑦| ≤ 𝑝.

Pumping Lemma

𝒙-Start

𝒚-First Loop

𝒛-End

The Pumping Lemma is our property that all regular
languages must have. So, if some language does not
have that property, it cannot be a regular language.

Pumping Lemma
Pumping Lemma: Given a regular language 𝐿, ∃ a
number 𝑝 such that any string 𝑠 ∈ 𝐿, with 𝑠 ≥ 𝑝, can
be divided into three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying:

1. 𝑥𝑦!𝑧 ∈ 𝐿, ∀𝑖 ≥ 0.
2. 𝑦 > 0.
3. |𝑥𝑦| ≤ 𝑝.

Pumping Lemma
Pumping Lemma: Given a regular language 𝐿, ∃ a
number 𝑝 such that any string 𝑠 ∈ 𝐿, with 𝑠 ≥ 𝑝, can
be divided into three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying:

1. 𝑥𝑦!𝑧 ∈ 𝐿, ∀𝑖 ≥ 0.
2. 𝑦 > 0.
3. |𝑥𝑦| ≤ 𝑝.

Pumping Lemma User Manual:
1. The pumping lemma says all regular languages have property 𝑷.
2. If we can show a language does not have property 𝑷, then it

cannot be regular.

Pumping Lemma: Given a regular language 𝑳, ∃ a
number 𝑝 such that any string 𝑠 ∈ 𝐿, with 𝑠 ≥ 𝑝, can
be divided into three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying:

1. 𝑥𝑦!𝑧 ∈ 𝐿, ∀𝑖 ≥ 0.
2. 𝑦 > 0.
3. |𝑥𝑦| ≤ 𝑝.

Non-Regularity Proofs

1. Suppose language is regular.

Pumping Lemma: Given a regular language 𝐿, ∃ a
number 𝒑 such that any string 𝑠 ∈ 𝐿, with 𝑠 ≥ 𝑝, can
be divided into three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying:

1. 𝑥𝑦!𝑧 ∈ 𝐿, ∀𝑖 ≥ 0.
2. 𝑦 > 0.
3. |𝑥𝑦| ≤ 𝑝.

Non-Regularity Proofs

1. Suppose language is regular.
2. Select 𝑝 from pumping lemma.

Pumping Lemma: Given a regular language 𝐿, ∃ a
number 𝑝 such that any string 𝒔 ∈ 𝑳, with 𝒔 ≥ 𝒑, can
be divided into three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying:

1. 𝑥𝑦!𝑧 ∈ 𝐿, ∀𝑖 ≥ 0.
2. 𝑦 > 0.
3. |𝑥𝑦| ≤ 𝑝.

Non-Regularity Proofs

1. Suppose language is regular.
2. Select 𝑝 from pumping lemma.
3. Carefully select 𝑠 ∈ 𝐿	and 𝑠 ≥ 𝑝.

Pumping Lemma: Given a regular language 𝐿, ∃ a
number 𝑝 such that any string 𝑠 ∈ 𝐿, with 𝑠 ≥ 𝑝, can
be divided into three pieces, 𝒔 = 𝒙𝒚𝒛 satisfying:

1. 𝑥𝑦!𝑧 ∈ 𝐿, ∀𝑖 ≥ 0.
2. 𝒚 > 𝟎.
3. |𝒙𝒚| ≤ 𝒑.

Non-Regularity Proofs

1. Suppose language is regular.
2. Select 𝑝 from pumping lemma.
3. Carefully select 𝑠 ∈ 𝐿	and 𝑠 ≥ 𝑝.
4. Determine what 𝑦 must consist of.

Pumping Lemma: Given a regular language 𝐿, ∃ a
number 𝑝 such that any string 𝑠 ∈ 𝐿, with 𝑠 ≥ 𝑝, can
be divided into three pieces, 𝒔 = 𝒙𝒚𝒛 satisfying:

1. 𝒙𝒚𝒊𝒛 ∈ 𝐿, ∀𝒊 ≥ 𝟎.
2. 𝑦 > 0.
3. |𝑥𝑦| ≤ 𝑝.

Non-Regularity Proofs

1. Suppose language is regular.
2. Select 𝑝 from pumping lemma.
3. Carefully select 𝑠 ∈ 𝐿	and 𝑠 ≥ 𝑝.
4. Determine what 𝑦 must consist of.
5. Make new string by selecting 𝑖.

Pumping Lemma: Given a regular language 𝐿, ∃ a
number 𝑝 such that any string 𝑠 ∈ 𝐿, with 𝑠 ≥ 𝑝, can
be divided into three pieces, 𝒔 = 𝒙𝒚𝒛 satisfying:

1. 𝑥𝑦!𝑧 ∈ 𝑳, ∀𝑖 ≥ 0.
2. 𝑦 > 0.
3. |𝑥𝑦| ≤ 𝑝.

Non-Regularity Proofs

1. Suppose language is regular.
2. Select 𝑝 from pumping lemma.
3. Carefully select 𝑠 ∈ 𝐿	and 𝑠 ≥ 𝑝.
4. Determine what 𝑦 must consist of.
5. Make new string by selecting 𝑖.
6. Show new string is not in language.

