Pumping Lemma
CSCI 338
If all regular languages have property P, and some new language L does not have property P, then...?
If all regular languages have property \(P \), and some new language \(L \) does not have property \(P \), then \(L \) cannot be a regular language.
Properties That Imply Language is Regular?

Claim: Languages that are finite in size are regular.

Claim: Languages where all strings have bounded size (each string has size \leq some n) are regular.
Properties That Imply Language is Regular?

Claim: Languages that are finite in size are regular.

Proof: Since there are a finite number of strings, build a DFA for each individual string in the language. Then connect all start states to a new start state via ε-transitions.

Claim: Languages where all strings have bounded size (each string has size \leq some n) are regular.
Properties That Imply Language is Regular?

Claim: Languages that are finite in size are regular.

Proof: Since there are a finite number of strings, build a DFA for each individual string in the language. Then connect all start states to a new start state via ε-transitions.

Claim: Languages where all strings have bounded size (each string has size \leq some n) are regular.

Proof: Since the alphabet is finite, there is a finite number of strings constructible with n characters. Thus, the language is finite and regular.
What do we know about non-regular languages?

- They must be infinite in size.
- They must have arbitrarily long strings in them.
Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

?
Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.
Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.

Let $p =$ number of states.
Let s be any string in L such that $|s| \geq p$.
Then...
Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.

Let $p = \text{number of states}$.
Let s be any string in L such that $|s| \geq p$.
Then, s must visit repeated states (i.e. loops).
Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.

Let $p = $ number of states.
Let s be any string in L such that $|s| \geq p$.
Then, s must visit repeated states (i.e. loops).

\[e.g. \ s = 00111 \in L \]
Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.

Let $p =$ number of states.

Let s be any string in L such that $|s| \geq p$.

Then, s must visit repeated states (i.e. loops).

e.g. $s = 0|011|1 \in L$
Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.

Let $p =$ number of states.
Let s be any string in L such that $|s| \geq p$.
Then, s must visit repeated states (i.e. loops).

e.g. $s = 0|011|1 \in L$
Is $s = 0|011|011|1 \in L$?
Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.

Let $p = \text{number of states}$.
Let s be any string in L such that $|s| \geq p$.
Then, s must visit repeated states (i.e. loops).

E.g. $s = 0|011|1 \in L$
Is $s = 0|011|011|1 \in L$?
What about $s = 0|011|011|011|1 \in L$?
Suppose some regular language \(L \) contains strings of arbitrary length (i.e. \(\forall n \geq 0, \exists s \in L \text{ such that } |s| \geq n \)). Then:

1. We know the DFA for that language has a finite number of states.
2. \(\exists \) strings longer than the number of states.

Let \(p = \text{number of states} \).

Let \(s \) be any string in \(L \) such that \(|s| \geq p \).

Then, \(s \) must visit repeated states (i.e. loops).

\[e.g. \ s = 0|011|1 \in L \]
\[\text{Is } s = 0|011|011|011|1 \in L? \]

\[\text{What about } s = 0|11|011|011|1 \in L? \]
\[\text{What about } s = 0|1 \in L? \]
Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.

Let $p = \text{number of states.}$

Let s be any string in L such that $|s| \geq p$. Then, s must visit repeated states (i.e. loops).

Let $s = 0|011|1 \in L$

Is $s = 0|011|011|011|1 \in L$?

What about $s = 0|1|1 \in L$?
Quest for Regular Language Properties

Suppose some regular language \(L \) contains strings of arbitrary length (i.e. \(\forall n \geq 0, \exists s \in L \) such that \(|s| \geq n \)). Then:

1. We know the DFA for that language has a finite number of states.
2. \(\exists \) strings longer than the number of states.

Let \(p = \text{number of states} \).

Let \(s \) be any string in \(L \) such that \(|s| \geq p \).

Then, \(s \) must visit repeated states (i.e. loops).

\[x \quad y \quad z \]

e.g. \(s = 0|011|1 \in L \)

What about \(s = 0|011|011|011|1 \in L \)?
Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.

Let $p =$ number of states. Let s be any string in L such that $|s| \geq p$. Then, s must visit repeated states (i.e. loops).

\[
\text{e.g. } s = 0|011|1 \in L
\]

What about $s = 0|1 \in L$?
Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.

Summary: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s = xyz$ satisfying:
Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.

Summary: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s = xyz$ satisfying:

1. $xy^iz \in L, \forall i \geq 0$.

From our previous argument.
Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.

Summary: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s = xyz$ satisfying:

1. $xy^iz \in L, \forall i \geq 0$.
2. $|y| > 0$.

Since $|s| \geq p$, we must have repeated states.
Quest for Regular Language Properties

Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.

Summary: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s = xyz$ satisfying:

1. $xy^iz \in L$, $\forall i \geq 0$.
2. $|y| > 0$.
3. $|xy| \leq p$.

Since there have to be repeated states within the first p transitions.
Suppose some regular language L contains strings of arbitrary length (i.e. $\forall n \geq 0, \exists s \in L$ such that $|s| \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.

Pumping Lemma

Summary: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s = xyz$ satisfying:

1. $xy^iz \in L, \forall i \geq 0$.
2. $|y| > 0$.
3. $|xy| \leq p$.
The Pumping Lemma is our property that all regular languages must have.

Summary: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s = xyz$ satisfying:

1. $xy^iz \in L, \forall i \geq 0$.
2. $|y| > 0$.
3. $|xy| \leq p$.

Pumping Lemma
Suppose some regular language \mathcal{L} contains strings of arbitrary length (i.e. $\forall n \geq 0$, $\exists s \in \mathcal{L}$ such that $s \geq n$). Then:

1. We know the DFA for that language has a finite number of states.
2. \exists strings longer than the number of states.

Summary: Given a regular language \mathcal{L}, \exists a number p such that any string $s \in \mathcal{L}$, with $|s| \geq p$, can be divided into three pieces, $s = xyz$ satisfying:

1. $xy^iz \in \mathcal{L}, \forall i \geq 0$.
2. $|y| > 0$.
3. $|xy| \leq p$.

The Pumping Lemma is our property that all regular languages must have. So, if some language does not have that property, it cannot be a regular language.
Pumping Lemma

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s = xyz$ satisfying:

1. $xy^iz \in L$, $\forall i \geq 0$.
2. $|y| > 0$.
3. $|xy| \leq p$.
Pumping Lemma

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s = xyz$ satisfying:

1. $xyz^i z \in L, \forall i \geq 0$.
2. $|y| > 0$.
3. $|xy| \leq p$.

Pumping Lemma User Manual:

1. The pumping lemma says all regular languages have property P.
2. If we can show a language does not have property P, then it cannot be regular.
Non-Regularity Proofs

Pumping Lemma: Given a regular language L, there exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s = xyz$ satisfying:

1. $xy^iz \in L$, $\forall i \geq 0$.
2. $|y| > 0$.
3. $|xy| \leq p$.

1. Suppose language is regular.
Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s = xyz$ satisfying:

1. $x y^i z \in L$, $\forall i \geq 0$.
2. $|y| > 0$.
3. $|xy| \leq p$.

Non-Regularity Proofs

1. Suppose language is regular.
2. Select p from pumping lemma.
Non-Regularity Proofs

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s = xyz$ satisfying:

1. $xy^iz \in L, \forall i \geq 0$.
2. $|y| > 0$.
3. $|xy| \leq p$.

1. Suppose language is regular.
2. Select p from pumping lemma.
3. Carefully select $s \in L$ and $|s| \geq p$.
Non-Regularity Proofs

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s = xyz$ satisfying:

1. $xy^iz \in L$, $\forall i \geq 0$.
2. $|y| > 0$.
3. $|xy| \leq p$.

1. Suppose language is regular.
2. Select p from pumping lemma.
3. Carefully select $s \in L$ and $|s| \geq p$.
4. Determine what y must consist of.
Non-Regularity Proofs

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s = xyz$ satisfying:

1. $xy^iz \in L, \forall i \geq 0$.
2. $|y| > 0$.
3. $|xy| \leq p$.

1. Suppose language is regular.
2. Select p from pumping lemma.
3. Carefully select $s \in L$ and $|s| \geq p$.
4. Determine what y must consist of.
5. Make new string by selecting i.
Non-Regularity Proofs

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s = xyz$ satisfying:

1. $xyz^i z \in L$, $\forall i \geq 0$.
2. $|y| > 0$.
3. $|xy| \leq p$.

1. Suppose language is regular.
2. Select p from pumping lemma.
3. Carefully select $s \in L$ and $|s| \geq p$.
4. Determine what y must consist of.
5. Make new string by selecting i.
6. Show new string is not in language.