Pumping Lemma
CSCI 338
Claim: The language $L = \{0^n1^n : n \geq 0\}$ is not regular.

Proof: ?
Claim: The language $L = \{0^n1^n : n \geq 0\}$ is not regular.

Proof: Suppose L is regular.
Pumping Lemma Example 1

Claim: The language $L = \{0^n1^n : n \geq 0\}$ is not regular.

Proof: Suppose L is regular.

Then, L must abide by the pumping lemma.

\[
\text{Pumping Lemma: Given a regular language } L, \exists \text{ a number } p \text{ such that any string } s \in L, \text{ with } |s| \geq p, \text{ can be divided into three pieces, } s = xyz \text{ satisfying:}
\]
\begin{enumerate}
 \item $xy^i z \in L, \forall i \geq 0$.
 \item $|y| > 0$.
 \item $|xy| \leq p$.
\end{enumerate}
Pumping Lemma Example 1

Claim: The language $L = \{0^n1^n: n \geq 0\}$ is not regular.

Proof: Suppose L is regular.
Then, L must abide by the pumping lemma. I.e. There must be some number p ...

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s = xyz$ satisfying:

1. $xy^iz \in L, \forall i \geq 0$.
2. $|y| > 0$.
3. $|xy| \leq p$.
Pumping Lemma Example 1

Claim: The language \(L = \{0^n1^n : n \geq 0\} \) is not regular.

Proof: Suppose \(L \) is regular.

Then, \(L \) must abide by the pumping lemma. I.e. There must be some number \(p \) such that any string \(s \in L \), with \(|s| \geq p \), ...

Pumping Lemma: Given a regular language \(L \), \(\exists \) a number \(p \) such that any string \(s \in L \), with \(|s| \geq p \), can be divided into three pieces, \(s = xyz \) satisfying:

1. \(xy^i z \in L \), \(\forall i \geq 0 \).
2. \(|y| > 0 \).
3. \(|xy| \leq p \).
Pumping Lemma Example 1

Claim: The language \(L = \{0^n1^n: n \geq 0\} \) is not regular.

Proof: Suppose \(L \) is regular.

Then, \(L \) must abide by the pumping lemma. I.e. There must be some number \(p \) such that any string \(s \in L \), with \(|s| \geq p \), can be divided into three pieces, \(s = xyz \)...
Pumping Lemma Example 1

Claim: The language $L = \{0^n1^n : n \geq 0\}$ is not regular.

Proof: Suppose L is regular.

Then, L must abide by the pumping lemma. I.e. There must be some number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s = xyz$ satisfying the three conditions.

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s = xyz$ satisfying:

1. $xy^iz \in L, \forall i \geq 0$.
2. $|y| > 0$.
3. $|xy| \leq p$.
Pumping Lemma Example 1

Claim: The language $L = \{0^n1^n: n \geq 0\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.

Then, L must abide by the pumping lemma. I.e. There must be some number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s = xyz$ satisfying the three conditions.

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s = xyz$ satisfying:

1. $xy^iz \in L$, $\forall i \geq 0$.
2. $|y| > 0$.
3. $|xy| \leq p$.
Pumping Lemma Example 1

Claim: The language $L = \{0^n1^n: n \geq 0\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.

Now, we need some appropriate string ($s \in L$ and $|s| \geq p$) that will break condition 1 when we allow multiple y’s.

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s = xyz$ satisfying:

1. $xy^i z \in L, \forall i \geq 0$.
2. $|y| > 0$.
3. $|xy| \leq p$.
Claim: The language \(L = \{0^n1^n : n \geq 0\} \) is not regular.

Proof: Suppose \(L \) is regular. Let \(p \) be the number from the pumping lemma.

Consider \(s = 0^p1^p \).

Since \(s \in L \) and \(|s| \geq p \), the conditions of the pumping lemma must hold for \(s = xyz \).

Pumping Lemma: Given a regular language \(L \), \(\exists \) a number \(p \) such that any string \(s \in L \), with \(|s| \geq p \), can be divided into three pieces, \(s = xyz \) satisfying:

1. \(xy^iz \in L \) for all \(i \geq 0 \).
2. \(|y| > 0 \).
3. \(|xy| \leq p \).
Pumping Lemma Example 1

Claim: The language $L = \{0^n1^n: n \geq 0\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p1^p$.

Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s = xyz$.

To break condition 1, we need to learn more about y

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s = xyz$ satisfying:

1. $xy^iz \in L, \forall i \geq 0$.
2. $|y| > 0$.
3. $|xy| \leq p$.
Pumping Lemma Example 1

Claim: The language $L = \{0^n1^n : n \geq 0\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s = 0^p1^p$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s = xyz$.

$y = 0^k$ for some $k > 0$, since

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s = xyz$ satisfying:

1. $xy^iz \in L$, $\forall i \geq 0$.
2. $|y| > 0$.
3. $|xy| \leq p$.
Pumping Lemma Example 1

Claim: The language $L = \{0^n1^n : n \geq 0\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s = 0^p1^p$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s = xyz$.
$y = 0^k$ for some $k > 0$,
since $|xy| \leq p$

$$s = \underbrace{000 \ldots}_{p} \underbrace{0011 \ldots}_{p} 111$$
Claim: The language \(L = \{0^n1^n: n \geq 0\} \) is not regular.

Proof: Suppose \(L \) is regular. Let \(p \) be the number from the pumping lemma.

Consider \(s = 0^p1^p \).

Since \(s \in L \) and \(|s| \geq p \), the conditions of the pumping lemma must hold for \(s = xyz \).

\(y = 0^k \) for some \(k > 0 \),

since \(|xy| \leq p \)

\[
\begin{align*}
 s &= 0|00|...0011...111 \\
 x &= p \\
 y &= p \\
 z &= \underbrace{00|...0011...111}_{p}
\end{align*}
\]
Pumping Lemma Example 1

Claim: The language \(L = \{0^n1^n : n \geq 0\} \) is not regular.

Proof: Suppose \(L \) is regular. Let \(p \) be the number from the pumping lemma.
Consider \(s = 0^p1^p \).
Since \(s \in L \) and \(|s| \geq p \), the conditions of the pumping lemma must hold for \(s = xyz \).

\(y = 0^k \) for some \(k > 0 \),
since \(|xy| \leq p\)

\[
s = \underbrace{000\ldots0|011\ldots111}_{p} \underbrace{x\underbrace{011\ldots111}_{p}}_{y}\underbrace{011\ldots111}_{z}
\]
Pumping Lemma Example 1

Claim: The language \(L = \{0^n1^n : n \geq 0\} \) is not regular.

Proof: Suppose \(L \) is regular. Let \(p \) be the number from the pumping lemma.

Consider \(s = 0^p1^p \).

Since \(s \in L \) and \(|s| \geq p \), the conditions of the pumping lemma must hold for \(s = xyz \).

\(y = 0^k \) for some \(k > 0 \),

since \(|xy| \leq p \)

\[
\begin{align*}
 s &= \underbrace{000 \ldots 00}_{p} \underbrace{11 \ldots 11}_{p} \\
 &= xy \underbrace{11 \ldots 11}_{p} \\
 &= x \underbrace{00 \ldots 00}_{p} \underbrace{11 \ldots 11}_{p}
\end{align*}
\]
Claim: The language \(L = \{0^n1^n: n \geq 0\} \) is not regular.

Proof: Suppose \(L \) is regular. Let \(p \) be the number from the pumping lemma.

Consider \(s = 0^p1^p \).

Since \(s \in L \) and \(|s| \geq p \), the conditions of the pumping lemma must hold for \(s = xyz \).

\(y = 0^k \) for some \(k > 0 \),

since \(|xy| \leq p \)

\[
\begin{align*}
\textbf{s} &= \underbrace{000 \ldots 001}_{p} |1 \ldots 111_{p} \\
\textbf{x} &\quad \textbf{y} \quad \textbf{z}
\end{align*}
\]
Pumping Lemma Example 1

Claim: The language \(L = \{0^n1^n : n \geq 0\} \) is not regular.

Proof: Suppose \(L \) is regular. Let \(p \) be the number from the pumping lemma.

Consider \(s = 0^p1^p \).

Since \(s \in L \) and \(|s| \geq p \), the conditions of the pumping lemma must hold for \(s = xyz \).

\(y = 0^k \) for some \(k > 0 \),

since \(|xy| \leq p \)

\[s = \overbrace{000 \ldots 0011 \ldots 111}^{p} \]

\[x \quad y \quad z \]

\[|xy| = p + 1 > p \]
Claim: The language $L = \{0^n1^n : n \geq 0\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s = 0^p1^p$.

Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s = xyz$.

$y = 0^k$ for some $k > 0$,
since $|xy| \leq p$

There is no possible way to partition s into xyz where both:

1. $|xy| \leq p$
2. y has 1s in it.

$$s = \underbrace{000 \ldots 0011 \ldots 111}_x \underbrace{00 \ldots 00}_{y} \underbrace{11 \ldots 11}_{z}$$

$|xy| = p + 1 > p$
Pumping Lemma Example 1

Claim: The language \(L = \{0^n1^n: n \geq 0\} \) is not regular.

Proof: Suppose \(L \) is regular. Let \(p \) be the number from the pumping lemma.

Consider \(s = 0^p1^p \).

Since \(s \in L \) and \(|s| \geq p \), the conditions of the pumping lemma must hold for \(s = xyz \).

\(y = 0^k \) for some \(k > 0 \), since \(|xy| \leq p \).

Since \(|xy| \leq p \), \(y \) must be in the first \(p \) characters of every string. Since the first \(p \) characters of this string are all 0, \(y \) must contain all 0s.

Pumping Lemma: Given a regular language \(L \), \(\exists \) a number \(p \) such that any string \(s \in L \), with \(|s| \geq p \), can be divided into three pieces, \(s = xyz \) satisfying:

1. \(xy^iz \in L, \forall i \geq 0 \).
2. \(|y| > 0 \).
3. \(|xy| \leq p \).
Pumping Lemma Example 1

Claim: The language $L = \{0^n1^n: n \geq 0\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s = 0^p1^p$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s = xyz$.
$y = 0^k$ for some $k > 0$, since $|xy| \leq p$
$\Rightarrow s = 0^{p-k}0^k1^p$
Claim: The language $L = \{0^n1^n: n \geq 0\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p1^p$.

Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s = xyz$.

$y = 0^k$ for some $k > 0$, since $|xy| \leq p$

$\Rightarrow s = 0^{p-k}0^k1^p$

Consider the string $s' = xy^2z$
Pumping Lemma Example 1

Claim: The language $L = \{0^n1^n : n \geq 0\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p1^p$.

Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s = xyz$.

$y = 0^k$ for some $k > 0$, since $|xy| \leq p$

$\implies s = 0^{p-k}0^k1^p$

Consider the string $s' = xy^2z = 0^{p-k}0^{2k}1^p$
Pumping Lemma Example 1

Claim: The language \(L = \{0^n1^n : n \geq 0\}\) is not regular.

Proof: Suppose \(L\) is regular. Let \(p\) be the number from the pumping lemma. Consider \(s = 0^p1^p\).

Since \(s \in L\) and \(|s| \geq p\), the conditions of the pumping lemma must hold for \(s = xyz\).

\(y = 0^k\) for some \(k > 0\), since \(|xy| \leq p\)

\[\Rightarrow s = 0^{p-k}0^k1^p\]

Consider the string \(s' = xy^2z = 0^{p-k}0^{2k}1^p\)

\[\Rightarrow s' \notin L.\]
Pumping Lemma Example 1

Claim: The language \(L = \{0^n1^n: n \geq 0\} \) is not regular.

Proof: Suppose \(L \) is regular. Let \(p \) be the number from the pumping lemma.

Consider \(s = 0^p1^p \).

Since \(s \in L \) and \(|s| \geq p \), the conditions of the pumping lemma must hold for \(s = xyz \).

\(y = 0^k \) for some \(k > 0 \), since \(|xy| \leq p \)
\(\Rightarrow s = 0^{p-k}0^k1^p \)

Consider the string \(s' = xy^2z = 0^{p-k}0^{2k}1^p \)

But, the number of zeros = \(p - k + 2k = p + k \) > number of ones = \(p \).
\(\Rightarrow s' \notin L \).
Claim: The language $L = \{0^n1^n : n \geq 0\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma. Consider $s = 0^p1^p$. Since $s \in L$ and $s \geq p$, the conditions of the pumping lemma must hold for $s = xyz$.

$y = 0^k$ for some $k > 0$, $\Rightarrow s = 0^{p-k}0^k1^p$.

Consider the string $s' = x'y'z = 0^{p-k}0^k1^{p-k}$.

But, the number of zeros $= p - k + 2k = p + k >$ number of ones $= p$.

$\Rightarrow s' \notin L$. But the pumping lemma said this should work for every string in L!
Pumping Lemma Example 1

Claim: The language $L = \{0^n1^n: n \geq 0\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p1^p$.

Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s = xyz$.

$y = 0^k$ for some $k > 0$, since $|xy| \leq p$

$\Rightarrow s = 0^{p-k}0^k1^p$

Consider the string $s' = xy^2z = 0^{p-k}0^{2k}1^p$

But, the number of zeros $= p - k + 2k = p + k >$ number of ones $= p$.

$\Rightarrow s' \not\in L$, which is a contradiction of the pumping lemma.
Pumping Lemma Example 1

Claim: The language \(L = \{0^n1^n: n \geq 0\} \) is not regular.

Proof: Suppose \(L \) is regular. Let \(p \) be the number from the pumping lemma.

Consider \(s = 0^p1^p \).

Since \(s \in L \) and \(|s| \geq p \), the conditions of the pumping lemma must hold for \(s = xyz \).

\[y = 0^k \text{ for some } k > 0, \text{ since } |xy| \leq p \]

\[\Rightarrow s = 0^{p-k}0^k1^p \]

Consider the string \(s' = xy^2z = 0^{p-k}0^{2k}1^p \)

But, the number of zeros \(= p - k + 2k = p + k \) > number of ones \(= p \).

\[\Rightarrow s' \notin L, \text{ which is a contradiction of the pumping lemma.} \]

Therefore, the language is not regular.
DFA/NFA Limitations

\[\{0^n1^n : n \geq 0\} \]

All Languages

Regular Languages
Pumping Lemma Proof Blueprint

Claim: Some language L is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = ?$. Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s = xyz$.

Consider the string $s' = xy^2z = ?$

$\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Therefore, the language is not regular.
Pumping Lemma Proof Blueprint

Claim: Some language L is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s = ?$. \textbf{1 - Select s that will work with $s \in L$ and $|s| \geq p$}
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s = xyz$.

Consider the string $s' = xy^2z = ?$

$\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.
Pumping Lemma Proof Blueprint

Claim: Some language L is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = ?$. 1 – **Select s that will work with $s \in L$ and $|s| \geq p$**

Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s = xyz$.

? 2 – **Find some conditions that y must meet**

Consider the string $s' = x y^2 z = ?$

?

$\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Therefore, the language is not regular.
Pumping Lemma Proof Blueprint

Claim: Some language L is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = \ ?$. 1 – Select s that will work with $s \in L$ and $|s| \geq p$

Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s = xyz$.

2 – Find some conditions that y must meet

Consider the string $s' = x y^i z = \ ?$

$\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Therefore, the language is not regular.
Pumping Lemma Proof Blueprint

Claim: Some language L is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma. Consider $s = \square$. Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s = xyz$.

1 – Select s that will work with $s \in L$ and $|s| \geq p$

2 – Find some conditions that y must meet

3 – Select an i (number of times to repeat y)

Consider the string $s' = xy^iz = \square$.

4 – Show what s' equals

$\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Therefore, the language is not regular.
Pumping Lemma Proof Blueprint

Claim: Some language \(L \) is not regular.

Proof: Suppose \(L \) is regular. Let \(p \) be the number from the pumping lemma.

Consider \(s = \)?.
1 – Select \(s \) that will work with \(s \in L \) and \(|s| \geq p \)

Since \(s \in L \) and \(|s| \geq p \), the conditions of the pumping lemma must hold for \(s = xyz \).

2 – Find some conditions that \(y \) must meet

Consider the string \(s' = x y^i z = \)?
3 – Select an \(i \) (number of times to repeat \(y \))

\(4 – \) Show what \(s' \) equals

5 – Show \(s' \) is not in \(L \)

\(\Rightarrow s' \notin L \), which is a contradiction of the pumping lemma.

Therefore, the language is not regular.