Pumping Lemma CSCI 338

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: ?

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: Suppose L is regular.

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: Suppose L is regular.
Then, L must abide by the pumping lemma.

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: Suppose L is regular.
Then, L must abide by the pumping lemma. l.e. There must be some number \boldsymbol{p}...

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: Suppose L is regular.
Then, L must abide by the pumping lemma. I.e. There must be some number p such that any string $s \in L$, with $|s| \geq p, \ldots$

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: Suppose L is regular.
Then, L must abide by the pumping lemma. I.e. There must be some number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z \ldots$

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: Suppose L is regular.
Then, L must abide by the pumping lemma. I.e. There must be some number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying the three conditions.

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Then, L must abide by the pumping lemma. I.e. There must be some number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying the three conditions.

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Now, we need some appropriate string ($s \in L$ and $|s| \geq p$) that will break condition 1 when we allow multiple y^{\prime} s.

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.

To break condition 1, we need to learn more about y

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
$y=0^{k}$ for some $k>0$, since?

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
$y=0^{k}$ for some $k>0$, since $|x y| \leq p$

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
$y=0^{k}$ for some $k>0$, since $|x y| \leq p$

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
$y=0^{k}$ for some $k>0$, since $|x y| \leq p$

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
$y=0^{k}$ for some $k>0$, since $|x y| \leq p$

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
$y=0^{k}$ for some $k>0$, since $|x y| \leq p$

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
$y=0^{k}$ for some $k>0$, since $|x y| \leq p$

$$
|x y|=p+1>p
$$

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
$y=0^{k}$ for some $k>0$, since $|x y| \leq p$

There is no possible way to partition s into $x y z$ where both:

$$
|x y|=p+1>p
$$

1. $|x y| \leq p$
2. y has 1 s in it.

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.
Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
$y=0^{k}$ for some $k>0$, since $|x y| \leq p$

Since $|x y| \leq p, y$ must be in the first p characters of every string. Since the first p characters of this string are all $0, y$ must contain

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$. all 0 s .

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
$y=0^{k}$ for some $k>0$, since $|x y| \leq p$
$\Rightarrow s=0^{p-k} 0^{k} 1^{p}$

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
$y=0^{k}$ for some $k>0$, since $|x y| \leq p$
$\Rightarrow s=0^{p-k} 0^{k} 1^{p}$
Consider the string $s^{\prime}=x y^{2} z$

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
$y=0^{k}$ for some $k>0$, since $|x y| \leq p$
$\Rightarrow s=0^{p-k} 0^{k} 1^{p}$
Consider the string $s^{\prime}=x y^{2} z=0^{p-k} 0^{2 k} 1^{p}$

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
$y=0^{k}$ for some $k>0$, since $|x y| \leq p$
$\Rightarrow s=0^{p-k} 0^{k} 1^{p}$
Consider the string $s^{\prime}=x y^{2} z=0^{p-k} 0^{2 k} 1^{p}$

?

$\Rightarrow s^{\prime} \notin L$.

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
$y=0^{k}$ for some $k>0$, since $|x y| \leq p$
$\Rightarrow s=0^{p-k} 0^{k} 1^{p}$
Consider the string $s^{\prime}=x y^{2} z=0^{p-k} 0^{2 k} 1^{p}$
But, the number of zeros $=p-k+2 k=p+k>$ number of ones $=p$.
$\Rightarrow s^{\prime} \notin L$.

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: Suppos I ic racular 1 at n ho tho number from tho numninalamma Consider $s=\frac{\text { Pumping Lemma: Given a regular language } L, \exists \text { a }}{\text { number } p \text { such thatany string } s \in L \text {. with }|s| \geq p, ~}$ Since $s \in L$ an can be divided into threepies, $s=$ satisfying: = xyz. $y=0^{k}$ for sor 1. $x y^{i} z \in L, \forall i \geq 0$.
$\Rightarrow s=0^{p-k} C \quad$ 2. $|y|>0$.
Consider the s 3. $|x y| \leq p$.
But, the number of zeros $=p-k+2 k=p+k>$ number of ones $=p$.
$\Rightarrow s^{\prime} \notin L$. But the pumping lemma said this should work for every string in L !

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
$y=0^{k}$ for some $k>0$, since $|x y| \leq p$
$\Rightarrow s=0^{p-k} 0^{k} 1^{p}$
Consider the string $s^{\prime}=x y^{2} z=0^{p-k} 0^{2 k} 1^{p}$
But, the number of zeros $=p-k+2 k=p+k>$ number of ones $=p$.
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.

Pumping Lemma Example 1

Claim: The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
$y=0^{k}$ for some $k>0$, since $|x y| \leq p$
$\Rightarrow s=0^{p-k} 0^{k} 1^{p}$
Consider the string $s^{\prime}=x y^{2} z=0^{p-k} 0^{2 k} 1^{p}$
But, the number of zeros $=p-k+2 k=p+k>$ number of ones $=p$.
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

DFA/NFA Limitations

Pumping Lemma Proof Blueprint

Claim: Some language L is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=$?
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$. ?

Consider the string $s^{\prime}=x y^{?} z=$?
?
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Proof Blueprint

Claim: Some language L is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=? .1$ - Select \mathbf{s} that will work with $\boldsymbol{s} \in \boldsymbol{L}$ and $|\boldsymbol{s}| \geq \boldsymbol{p}$
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$. ?

Consider the string $s^{\prime}=x y^{?} z=$?
?
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Proof Blueprint

Claim: Some language L is not regular.
Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=$? .1 - Select \boldsymbol{s} that will work with $\boldsymbol{s} \in \boldsymbol{L}$ and $|\boldsymbol{s}| \geq \boldsymbol{p}$
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
? $\mathbf{2}$ - Find some conditions that \boldsymbol{y} must meet

Consider the string $s^{\prime}=x y^{?} z=$?
?
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Proof Blueprint

Claim: Some language L is not regular.
Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=? .1$ - Select \boldsymbol{s} that will work with $\boldsymbol{s} \in \boldsymbol{L}$ and $|\boldsymbol{s}| \geq \boldsymbol{p}$
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
? $\mathbf{2}$ - Find some conditions that \boldsymbol{y} must meet
3 - Select an i (number of times to repeat y)
Consider the string $s^{\prime}=x y^{?} z=$?
?
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Proof Blueprint

Claim: Some language L is not regular.
Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=$? .1 - Select \boldsymbol{s} that will work with $\boldsymbol{s} \in \boldsymbol{L}$ and $|\boldsymbol{s}| \geq \boldsymbol{p}$
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
? 2 - Find some conditions that y must meet
3 - Select an \boldsymbol{i} (number of times to repeat \boldsymbol{y})
Consider the string $s^{\prime}=x y^{?} z=? \sqrt{4-\text { Show what } \boldsymbol{s}^{\prime} \text { equals }}$
?
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Proof Blueprint

Claim: Some language L is not regular.
Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=$? .1 - Select \boldsymbol{s} that will work with $\boldsymbol{s} \in \boldsymbol{L}$ and $|\boldsymbol{s}| \geq \boldsymbol{p}$
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
? 2 - Find some conditions that y must meet
3 - Select an i (number of times to repeat y)
Consider the string $s^{\prime}=x y^{?} z=? \sqrt{4-\text { Show what } \boldsymbol{s}^{\prime} \text { equals }}$
? 5 - Show \boldsymbol{s}^{\prime} is not in L
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

