Pumping Lemma

Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \ge p$, can be divided into three pieces, s = xyz satisfying:

- 1. $xy^i z \in L, \forall i \ge 0.$
- 2. |y| > 0.
- 3. $|xy| \leq p$.

Proof Blueprint

Claim: The language L = <some language> is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = \langle \text{TODO} \rangle$: Select s that will work with $s \in L$ and $|s| \ge p >$. Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

<TODO: Find conditions on what y must equal>

Consider the string $s' = xy^{<\text{TODO: Select }i>}z = <\text{TODO: Show what }s' \text{ equals>}$

<TODO: Show s' is not in L>

 \Rightarrow s' ∉ L, which is a contradiction of the pumping lemma. Therefore, the language is not regular.