Pumping Lemma CSCI 338

<u>Claim</u>: The language $L = \{0^i 1^j : i > j\}$ is not regular.

Proof: ?

<u>Claim</u>: The language $L = \{0^i 1^j : i > j\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider s =**?**.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. ?

Consider the string $s' = xy^2 z = ?$

?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^i 1^j : i > j\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider s =**?**.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. ?

Consider the string $s' = xy^2 z = ?$

?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^i 1^j : i > j\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^{p+1}1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. ?

Consider the string $s' = xy^2 z =$?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^i 1^j : i > j\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^{p+1}1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

Consider the string $s' = xy^2 z = ?$?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^i 1^j : i > j\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^{p+1}1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k+1}0^k 1^p$

Consider the string $s' = xy^{?}z = ?$

?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^i 1^j : i > j\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^{p+1}1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k+1}0^k 1^p$

Consider the string $s' = xy^2z =$?

?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^i 1^j : i > j\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^{p+1}1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some k > 0, since $|xy| \le p$ $\Rightarrow s = 0^{p-k+1}0^k 1^p$ Consider the string $s' = xy^2z = 0^{p-k+1}0^{2k}1^p = 0^{p+k+1}1^p$

?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^i 1^j : i > j\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^{p+1}1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some k > 0, since $|xy| \le p$ $\Rightarrow s = 0^{p-k+1}0^k 1^p$ Consider the string $s' = xy^2z = 0^{p-k+1}0^{2k}1^p = 0^{p+k+1}1^p \in L$?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^i 1^j : i > j\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^{p+1}1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some k > 0, since $|xy| \le p$ $\Rightarrow s = 0^{p-k+1}0^k 1^p$ Consider the string $s' = xy^2z = 0^{p-k+1}0^{2k}1^p = 0^{p+k+1}1^p \in L$?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^i 1^j : i > j\}$ is not regular.

Proof: Suppose L is re
Consider $s = 0^{p+1}1^p$.Pumping Lemma: Given a regular language L, $\exists a$
number p such that any string $s \in L$, with $|s| \ge p$,
can be divided into three pieces, s = xyz satisfying:Since $s \in L$ and $|s| \ge$
 $y = 0^k$ for some k >
 $\Rightarrow s = 0^{p-k+1}0^k1^p$ 1. $xy^iz \in L, \forall i \ge 0$.
2. |y| > 0.
3. $|xy| \le p$.

Consider the string $s' = xy^{?}z =$?

?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^i 1^j : i > j\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^{p+1}1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k+1}0^k 1^p$

Consider the string $s' = xy^0 z =$?

?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^i 1^j : i > j\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^{p+1}1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

$$y = 0^k$$
 for some $k > 0$, since $|xy| \le p$
 $\Rightarrow s = 0^{p-k+1}0^k 1^p$

Consider the string $s' = xy^0z = 0^{p-k+1}1^p$

?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^i 1^j : i > j\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^{p+1}1^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some k > 0, since $|xy| \le p$ $\implies s = 0^{p-k+1}0^k 1^p$

Consider the string $s' = xy^0z = 0^{p-k+1}1^p$

But, $k > 0 \implies p - k + 1 \le p$. I.e. the number of 0s is not larger than the number of 1s.

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

Proof:

E.g. 1101011 is a palindrome 1001 is a palindrome 10100 is not

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider s =**?**.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. ?

Consider the string $s' = xy^2 z =$?

?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 0^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. ?

Consider the string $s' = xy^2 z =$?

?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 0^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some k > 0, since $|xy| \le p$

Consider the string $s' = xy^{?}z = ?$

?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 0^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some k > 0, since $|xy| \le p$ $\Rightarrow s = 0^{p-k}0^k0^p$ Consider the string $s' = xy^2z = ?$

?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 0^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some k > 0, since $|xy| \le p$ $\Rightarrow s = 0^{p-k}0^k0^p$ Consider the string $s' = xy^2z = ?$?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 0^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some k > 0, since $|xy| \le p$ $\Rightarrow s = 0^{p-k}0^k0^p$ Consider the string $s' = xy^2z = 0^{p-k}0^{2k}0^p$

?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 0^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some k > 0, since $|xy| \le p$ $\Rightarrow s = 0^{p-k}0^k0^p$ Consider the string $s' = xy^2z = 0^{p-k}0^{2k}0^p = 0^{2p+k}$

?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 0^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some k > 0, since $|xy| \le p$ $\Rightarrow s = 0^{p-k}0^k0^p$ Consider the string $s' = sy^2 = 0^{p-k}0^{2k}0^p = 0^{2p+k} = 0^{p}0^{k}0^p$

Consider the string $s' = xy^2z = 0^{p-k}0^{2k}0^p = 0^{2p+k} = 0^p0^k0^p$

?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 0^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some k > 0, since $|xy| \le p$ $\Rightarrow s = 0^{p-k}0^k0^p$ Consider the string $s' = xy^3z =$

?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 0^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some k > 0, since $|xy| \le p$ $\Rightarrow s = 0^{p-k}0^k0^p$ Consider the string $s' = xy^4z =$

?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 0^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some k > 0, since $|xy| \le p$ $\Rightarrow s = 0^{p-k}0^k0^p$ Consider the string $s' = xy^0z =$

?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 0^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some k > 0, since $|xy| \le p$ $\Rightarrow s = 0^{p-k}0^k0^p$ Consider the string $s' = xy^0z =$ No matter what we set i to, s' will always be a palindrome.

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 0^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some k > 0, since $|xy| \le p$ $\Rightarrow s = 0^{p-k}0^k0^p$ No matter what we set i to, s' will always be a palindrome. $s' \notin L$, which is a contradiction of the pumping lemma. Therefore, the language is not regular.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 0^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some k > 0, since $|xy| \le p$ $\Rightarrow s = 0^{p-k}0^k0^p$ Does this mean L is regular? Consider the string $s' = xy^0z =$ $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma.

Consider $s = 0^p 0^p$. Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $v = 0^k$ for some k > 0, since $|xy| \le p$ $\Rightarrow s = 0^{p-k} 0^k 0^p$ **Does this mean** *L* **is regular**? Consider the string $s' = xy^0z =$ **NO!** It could be, but perhaps we just chose a poor string s. ? \Rightarrow s' \notin L, which is a contradiction of the pumping lemma. Therefore, the language is not regular.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider s =**?**.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. ?

Consider the string $s' = xy^2 z =$?

?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 10^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. ?

Consider the string $s' = xy^2 z =$?

?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 10^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some k > 0, since $|xy| \le p$ $\Rightarrow s = 0^{p-k}0^k 10^p$ Consider the string $s' = xy^2 z = ?$

?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 10^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some k > 0, since $|xy| \le p$ $\Rightarrow s = 0^{p-k}0^k 10^p$ Consider the string $s' = xy^2z = 0^{p-k}0^{2k}10^p$

?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{w : w \in \{0,1\}^* \text{ is a palindrome}\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 10^p$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some k > 0, since $|xy| \le p$ $\Rightarrow s = 0^{p-k}0^k 10^p$ Consider the string $s' = xy^2z = 0^{p-k}0^{2k}10^p$

But, $k > 0 \implies p + k \neq p$. I.e. More 0s before the 1 than after $\Rightarrow s'$ is not a palindrome

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.