Pumping Lemma CSCI 338

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider s =**?**.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. ?

Consider the string $s' = xy^2 z =$?

?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 1^{p+1}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. ?

Consider the string $s' = xy^2 z =$?

?

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 1^{p+1}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. Clearly, y is all 0's.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+1}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. Clearly, y is all 0's.

Pumping Lemma: Given a regular language L, \exists anumber p such that any string $s \in L$, with $|s| \ge p$,can be divided into three pieces, s = xyz satisfying:1. $xy^iz \in L, \forall i \ge 0$.2. |y| > 0.3. $|xy| \le p$.

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+1}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. Clearly, y is all 0's.

For us to violate the pumping lemma, we must violate a condition for *every xyz* partition. Pumping Lemma: Given a regular language L, \exists anumber p such that any string $s \in L$, with $|s| \ge p$,can be divided into three pieces, s = xyz satisfying:1. $xy^i z \in L, \forall i \ge 0$.2. |y| > 0.3. $|xy| \le p$.

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+1}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. Clearly, y is all 0's. Let y = 00 Pumping Lemma: Given a regular language L, $\exists a$ pumper p such that any string $s \in L$ with $|s| \ge p$

For us to violate the pumping lemma, we must violate a condition for *every xyz* partition. Pumping Lemma: Given a regular language L, \exists anumber p such that any string $s \in L$, with $|s| \ge p$,can be divided into three pieces, s = xyz satisfying:1. $xy^i z \in L, \forall i \ge 0$.2. |y| > 0.3. $|xy| \le p$.

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+1}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. Clearly, y is all 0's. Let y = 00 $\Rightarrow xy^0z = ?$ $y^0z = 2$ $y^{i}z \in L, \forall i \ge 0$. y = 0. y = 0.

3. $|xy| \leq p$.

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+1}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. Clearly, y is all 0's. Let y = 00 $\Rightarrow xy^0z = 0^{p-2}1^{p+1}$ $Pumping Lemma: Given a regular language <math>L, \exists a$ number p such that any string $s \in L$, with $|s| \ge p$, can be divided into three pieces, s = xyz satisfying: $1 = xy^i z \in L \quad \forall i \ge 0$

1.
$$xy^{l}z \in L, \forall i \geq 0.$$

2.
$$|y| > 0.$$

3. $|xy| \leq p$.

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+1}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. Clearly, y is all 0's. Let y = 00 $\Rightarrow xy^0z = 0^{p-2}1^{p+1} \in L$ Pumping Lemma: Given a regular language $L, \exists a$ number p such that any string $s \in L$, with $|s| \ge p$, can be divided into three pieces, s = xyz satisfying: $1 = xy^iz \in L \quad \forall i \ge 0$

1.
$$xy^{\iota}z \in L, \forall i \geq 0.$$

2.
$$|y| > 0.$$

3. $|xy| \leq p$.

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+1}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. Clearly, y is all 0's. Let y = 00 $\Rightarrow xy^0z = 0^{p-2}1^{p+1} \in L$ $Pumping Lemma: Given a regular language <math>L, \exists a$ number p such that any string $s \in L$, with $|s| \ge p$, can be divided into three pieces, s = xyz satisfying:

1.
$$xy^i z \in L, \forall i \ge 0.$$

$$2. |y| > 0.$$

3.
$$|xy| \leq p$$
.

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

Therefore, the language is not regular.

 $xy^{2}z = ?$

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+1}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. Clearly, y is all 0's. <u>Pumping Lemma</u>: Given a regular language L, \exists a Let y = 00number p such that any string $s \in L$, with $|s| \ge p$, $\Rightarrow xy^0z = 0^{p-2}1^{p+1} \in L$

can be divided into three pieces, s = xyz satisfying:

1.
$$xy^i z \in L, \forall i \ge 0.$$

$$2. |y| > 0.$$

3. $|xy| \leq p$

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Therefore, the language is not regular.

 $xv^2z = 0^{p+2}1^{p+1} \in L$

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+1}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. Clearly, y is all 0's. Let y = 00Pumping Lemma: Given a regular language $L, \exists a$ number p such that any string $s \in L$, with $|s| \ge p$,

can be divided into three pieces, s = xyz satisfying:

1.
$$xy^i z \in L, \forall i \ge 0.$$

$$2. |y| > 0.$$

$$3. |xy| \le p.$$

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

Therefore, the language is not regular.

 $\Rightarrow xy^0z = 0^{p-2}1^{p+1} \in L$

 $xv^2z = 0^{p+2}1^{p+1} \in L$

 $xy^3z = 0^{p+4}1^{p+1} \in L$

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+1}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. Clearly, y is all 0's.

Let
$$y = 00$$

 $\Rightarrow xy^0z = 0^{p-2}1^{p+1} \in L$
 $xy^2z = 0^{p+2}1^{p+1} \in L$
 $xy^3z = 0^{p+4}1^{p+1} \in L$

Goal: Pick an *s* such that repeating *y* (no matter what *y* is) is guaranteed (at some point) to make #0's equal #1's

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider s = ?

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

<u>Goal</u>: Pick an *s* such that repeating *y* (no matter what *y* is) is guaranteed (at some point) to make #0's equal #1's

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 1^{p+\alpha}$. $\alpha = ?$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 1^{p+\alpha}$. $\alpha = ?$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some k > 0

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 1^{p+\alpha}$. $\alpha = ?$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k 1^{p+\alpha}$

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 1^{p+\alpha}$. $\alpha = ?$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k 1^{p+\alpha}$

Consider the string $s' = xy^i z$

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 1^{p+\alpha}$. $\alpha = ?$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k 1^{p+\alpha}$

Consider the string $s' = xy^i z = 0^{p-k} 0^{ik} 1^{p+\alpha}$ i = ?

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 1^{p+\alpha}$. $\alpha = ?$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k 1^{p+\alpha}$

Consider the string $s' = xy^i z = 0^{p-k} 0^{ik} 1^{p+\alpha}$ i = ?If #0's = #1's, then... If we can find an *i* such that #0's = #1's, we have contradicted the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 1^{p+\alpha}$. $\alpha = ?$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k 1^{p+\alpha}$

Consider the string $s' = xy^i z = 0^{p-k} 0^{ik} 1^{p+\alpha}$ i = ?If #0's = #1's, then $p + (i - 1)k = p + \alpha$

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 1^{p+\alpha}$. $\alpha = ?$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k 1^{p+\alpha}$

Consider the string $s' = xy^i z = 0^{p-k} 0^{ik} 1^{p+\alpha}$ i = ?If #0's = #1's, then $p + (i-1)k = p + \alpha \Rightarrow i = \frac{\alpha}{k} + 1$, for $0 < k \le p$.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 1^{p+\alpha}$. $\alpha = ?$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k 1^{p+\alpha}$

Consider the string $s' = xy^i z = 0^{p-k} 0^{ik} 1^{p+\alpha}$ i = ?If #0's = #1's, then $p + (i - 1)k = p + \alpha \Rightarrow i = \frac{\alpha}{k} + 1$, for $0 < k \le p$. So, α needs to be evenly divisible by k for all possible $0 < k \le p$. Let $\alpha = ?$ $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 1^{p+\alpha}$. $\alpha = ?$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k 1^{p+\alpha}$

Consider the string $s' = xy^i z = 0^{p-k} 0^{ik} 1^{p+\alpha}$ i = ?If #0's = #1's, then $p + (i - 1)k = p + \alpha \Rightarrow i = \frac{\alpha}{k} + 1$, for $0 < k \le p$. So, α needs to be evenly divisible by k for all possible $0 < k \le p$. Let $\alpha = p!$

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 1^{p+p!}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k 1^{p+\alpha}$

Consider the string $s' = xy^i z = 0^{p-k} 0^{ik} 1^{p+\alpha}$ i = ?If #0's = #1's, then $p + (i-1)k = p + \alpha \Rightarrow i = \frac{\alpha}{k} + 1$, for $0 < k \le p$. So, α needs to be evenly divisible by k for all possible $0 < k \le p$. Let $\alpha = p!$

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 1^{p+p!}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k 1^{p+p!}$

Consider the string $s' = xy^i z = 0^{p-k} 0^{ik} 1^{p+\alpha}$ i = ?If #0's = #1's, then $p + (i-1)k = p + \alpha \Rightarrow i = \frac{\alpha}{k} + 1$, for $0 < k \le p$. So, α needs to be evenly divisible by k for all possible $0 < k \le p$. Let $\alpha = p!$

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 1^{p+p!}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k 1^{p+p!}$

Consider the string $s' = xy^i z = 0^{p-k} 0^{ik} 1^{p+\alpha}$ i = ? If #0's = #1's, then $p + (i - 1)k = p + \alpha \Rightarrow i = \frac{\alpha}{k} + 1$, for $0 < k \le p$. So, α needs to be evenly divisible by k for all possible $0 < k \le p$. Let $\alpha = p$!

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 1^{p+p!}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k 1^{p+p!}$

Consider the string $s' = xy^i z = 0^{p-k} 0^{ik} 1^{p+\alpha}$ i = ?If #0's = #1's, then $p + (i-1)k = p + \alpha \Rightarrow i = \frac{\alpha}{k} + 1$, for $0 < k \le p$. So, α needs to be evenly divisible by k for all possible $0 < k \le p$. Let $\alpha = p!$

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 1^{p+p!}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k 1^{p+p!}$

Consider the string $s' = xy^i z = 0^{p-k} 0^{ik} 1^{p+\alpha}$ $i = \frac{p!}{k} + 1$ If #0's = #1's, then $p + (i - 1)k = p + \alpha \Rightarrow i = \frac{\alpha}{k} + 1$, for $0 < k \le p$. So, α needs to be evenly divisible by k for all possible $0 < k \le p$. Let $\alpha = p!$ $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 1^{p+p!}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k 1^{p+p!}$

Consider the string $s' = xy^{p!/_k+1}z$

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 1^{p+p!}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k 1^{p+p!}$

Consider the string $s' = xy^{p!/k+1}z = 0^{p-k}0^{\binom{p!/k+1}{k}}1^{p+p!}$

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 1^{p+p!}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k 1^{p+p!}$

Consider the string $s' = xy^{p!/k+1}z = 0^{p-k}0^{\binom{p!/k+1}{k}}1^{p+p!}$ #0's = ?

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 1^{p+p!}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k 1^{p+p!}$

Consider the string $s' = xy^{p!/k+1}z = 0^{p-k}0^{\binom{p!/k+1}{k}}1^{p+p!}$ #0's = p - k + p! + k = ?

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 1^{p+p!}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k 1^{p+p!}$

Consider the string $s' = xy^{p!/k+1}z = 0^{p-k}0^{\binom{p!/k+1}{k}}1^{p+p!}$ #0's = p - k + p! + k = p + p! = ?

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose *L* is regular. Let *p* be the number from the pumping lemma. Consider $s = 0^p 1^{p+p!}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k 1^{p+p!}$

Consider the string $s' = xy^{p!/k+1}z = 0^{p-k}0^{\binom{p!/k+1}{k}}1^{p+p!}$ #0's = p - k + p! + k = p + p! =#1's

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma. Therefore, the language is not regular.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

 0^*1^* = Bunch of 0's followed by a bunch of 1's.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

 0^*1^* = Bunch of 0's followed by a bunch of 1's. $\overline{L} = ?$

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

 0^*1^* = Bunch of 0's followed by a bunch of 1's. \overline{L} = Everything that is not in L.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

 0^*1^* = Bunch of 0's followed by a bunch of 1's. \overline{L} = Everything that is not in L. $\overline{L} \cap 0^*1^* = ?$

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

 0^*1^* = Bunch of 0's followed by a bunch of 1's. \overline{L} = Everything that is not in L. $\overline{L} \cap 0^*1^* = \{0^n1^n : n \ge 0\}$

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

 0^*1^* = Bunch of 0's followed by a bunch of 1's. \overline{L} = Everything that is not in L. $\overline{L} \cap 0^*1^* = \{0^n1^n : n \ge 0\}$

 0^*1^* - Regular or not?

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

 0^*1^* = Bunch of 0's followed by a bunch of 1's. \overline{L} = Everything that is not in L. $\overline{L} \cap 0^*1^* = \{0^n1^n : n \ge 0\}$

 0^*1^* - Regular.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

 0^*1^* = Bunch of 0's followed by a bunch of 1's. \overline{L} = Everything that is not in L. $\overline{L} \cap 0^*1^* = \{0^n1^n : n \ge 0\}$

 0^*1^* - Regular.

 $\{0^n 1^n : n \ge 0\}$ - Regular or not?

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

 0^*1^* = Bunch of 0's followed by a bunch of 1's. \overline{L} = Everything that is not in L. $\overline{L} \cap 0^*1^* = \{0^n1^n : n \ge 0\}$

 0^*1^* - Regular. $\{0^n1^n : n \ge 0\}$ - Not Regular.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

 $0^*1^* = \text{Bunch of 0's followed by a bunch of 1's.}$ $\overline{L} = \text{Everything that is not in } L.$ $\overline{L} \cap 0^*1^* = \{0^n1^n : n \ge 0\}$

 0^*1^* - Regular. $\{0^n1^n : n \ge 0\}$ - Not Regular.

 \overline{L} - Regular or not?

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

 0^*1^* = Bunch of 0's followed by a bunch of 1's. L = Everything that is not in L. $\overline{L} \cap 0^* 1^* = \{0^n 1^n : n \ge 0\}$ Regular languages are closed under: • Complement 0^*1^* - Regular. $\bar{A} = \{\omega : \omega \notin A\}$ Union Regular $\{0^n 1^n : n \ge 0\}$ - Not Regular. $A \cup B = \{ \omega \colon \omega \in A \text{ or } \omega \in B \}$ Intersection **Operations** $A \cap B = \{ \omega \colon \omega \in A \text{ and } \omega \in B \}$ Concatenation *L* - Regular or not? $A \circ B = \{xy: x \in A, y \in B\}$ Star $A^* = \{x_1 x_2 \dots x_k : k \ge 0 \text{ and each } x_i \in A\}$

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

 0^*1^* = Bunch of 0's followed by a bunch of 1's. L = Everything that is not in L. $\overline{L} \cap 0^* 1^* = \{0^n 1^n : n \ge 0\}$ Regular languages are closed under: Complement 0^*1^* - Regular. $\bar{A} = \{\omega : \omega \notin A\}$ Union Regular $\{0^n 1^n : n \ge 0\}$ - Not Regular. $A \cup B = \{ \omega \colon \omega \in A \text{ or } \omega \in B \}$ Intersection **Operations** $A \cap B = \{ \omega \colon \omega \in A \text{ and } \omega \in B \}$ Concatenation \overline{L} - Not Regular. $A \circ B = \{xy : x \in A, y \in B\}$ Star If \overline{L} was regular, so would $0^n 1^n$ $A^* = \{x_1 x_2 \dots x_k : k \ge 0 \text{ and each } x_i \in A\}$ (regular \cap regular = regular)

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

 $0^*1^* = \text{Bunch of 0's followed by a bunch of 1's.}$ $\overline{L} = \text{Everything that is not in } L.$ $\overline{L} \cap 0^*1^* = \{0^n1^n : n \ge 0\}$

 0^*1^* - Regular. $\{0^n1^n: n \ge 0\}$ - Not Regular.

- \overline{L} Not Regular.
- L Regular or not?

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

 0^*1^* = Bunch of 0's followed by a bunch of 1's. L = Everything that is not in L. $\overline{L} \cap 0^* 1^* = \{0^n 1^n : n \ge 0\}$ Regular languages are closed under: Complement 0^*1^* - Regular. $\bar{A} = \{\omega : \omega \notin A\}$ Union Regular $\{0^n 1^n : n \ge 0\}$ - Not Regular. $A \cup B = \{ \omega \colon \omega \in A \text{ or } \omega \in B \}$ Intersection **Operations** $A \cap B = \{ \omega : \omega \in A \text{ and } \omega \in B \}$ Concatenation \overline{L} - Not Regular. $A \circ B = \{xy: x \in A, y \in B\}$ Star If L was regular, so would \overline{L} *L* - Not Regular. $A^* = \{x_1 x_2 \dots x_k : k \ge 0 \text{ and each } x_i \in A\}$ (complement of regular = regular)