Pumping Lemma CSCI 338

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof:

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=$?
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$. ?

Consider the string $s^{\prime}=x y^{?} z=$?
?
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+1}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$. ?

Consider the string $s^{\prime}=x y^{?} z=$?
?
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+1}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$. Clearly, y is all 0 's.
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+1}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
Clearly, y is all 0 's.

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+1}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$. Clearly, y is all 0 's.

For us to violate the pumping lemma, we must violate a condition for every xyz partition.

```
Pumping Lemma: Given a regular language L, \exists a
number p such that any string s \inL, with |s| \geqp,
can be divided into three pieces, s=xyz satisfying:
    1. }x\mp@subsup{y}{}{i}z\inL,\foralli\geq0
    2. }|y|>0\mathrm{ .
    3. }|xy|\leqp
```

$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+1}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.

Clearly, y is all 0 's.
Let $y=00$
For us to violate the pumping lemma, we must violate a condition for every $x y z$ partition.

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+1}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
Clearly, y is all 0 's.
Let $y=00$
$\Rightarrow x y^{0} z=$?
Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+1}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.

Clearly, y is all 0 's.
Let $y=00$
$\Rightarrow x y^{0} z=0^{p-2} 1^{p+1}$

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+1}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
Clearly, y is all 0 's.
Let $y=00$

$$
\Rightarrow x y^{0} z=0^{p-2} 1^{p+1} \in L
$$

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+1}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
Clearly, y is all 0 's.
Let $y=00$

$$
\begin{aligned}
\Rightarrow x y^{0} z & =0^{p-2} 1^{p+1} \in L \\
x y^{2} z & =?
\end{aligned}
$$

$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+1}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.

Clearly, y is all 0 's.
Let $y=00$

$$
\begin{aligned}
\Rightarrow x y^{0} z & =0^{p-2} 1^{p+1} \in L \\
x y^{2} z & =0^{p+2} 1^{p+1} \in L
\end{aligned}
$$

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s=x y z$ satisfying:

1. $x y^{i} z \in L, \forall i \geq 0$.
2. $|y|>0$.
3. $|x y| \leq p$.
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+1}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
Clearly, y is all 0 's.
Let $y=00$

$$
\begin{aligned}
\Rightarrow x y^{0} Z & =0^{p-2} 1^{p+1} \in L \\
x y^{2} z & =0^{p+2} 1^{p+1} \in L \\
x y^{3} z & =0^{p+4} 1^{p+1} \in L
\end{aligned}
$$

$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+1}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
Clearly, y is all 0 's.
Let $y=00$
$\Rightarrow x y^{0} z=0^{p-2} 1^{p+1} \in L$
$x y^{2} z=0^{p+2} 1^{p+1} \in L$ $x y^{3} z=0^{p+4} 1^{p+1} \in L$

Goal: Pick an s such that repeating y (no matter what y is) is guaranteed (at some point) to make \#0's equal \#1's
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=$?
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.

Goal: Pick an s such that repeating y (no matter what y is) is guaranteed (at some point) to make \#0's equal \#1's

$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+\alpha} . \alpha=$?
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+\alpha} . \alpha=$?
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$. $y=0^{k}$ for some $k>0$
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+\alpha} . \alpha=$?
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$. $y=0^{k}$ for some $k>0 \Rightarrow s=0^{p-k} 0^{k} 1^{p+\alpha}$
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.
Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+\alpha} . \alpha=$?
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$. $y=0^{k}$ for some $k>0 \Rightarrow s=0^{p-k} 0^{k} 1^{p+\alpha}$

Consider the string $s^{\prime}=x y^{i} Z$
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.
Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+\alpha} . \alpha=$?
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$. $y=0^{k}$ for some $k>0 \Rightarrow s=0^{p-k} 0^{k} 1^{p+\alpha}$

Consider the string $s^{\prime}=x y^{i} z=0^{p-k} 0^{i k} 1^{p+\alpha} \quad i=$?
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+\alpha} . \alpha=$?
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$. $y=0^{k}$ for some $k>0 \Rightarrow s=0^{p-k} 0^{k} 1^{p+\alpha}$

Consider the string $s^{\prime}=x y^{i} z=0^{p-k} 0^{i k} 1^{p+\alpha} \quad i=$? If \#0's = \#1's, then...

> If we can find an i such that \#0's = \#1's, we have contradicted the pumping lemma.

Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.
Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+\alpha} . \alpha=$?
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$. $y=0^{k}$ for some $k>0 \Rightarrow s=0^{p-k} 0^{k} 1^{p+\alpha}$

Consider the string $s^{\prime}=x y^{i} z=0^{p-k} 0^{i k} 1^{p+\alpha} \quad i=$?
If \#0's $=\# 1$'s, then $p+(i-1) k=p+\alpha$
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+\alpha} . \alpha=$?
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$. $y=0^{k}$ for some $k>0 \Rightarrow s=0^{p-k} 0^{k} 1^{p+\alpha}$

Consider the string $s^{\prime}=x y^{i} z=0^{p-k} 0^{i k} 1^{p+\alpha} \quad i=$?

$$
\text { If \#0's }=\# 1 \text { 's, then } p+(i-1) k=p+\alpha \Rightarrow i=\frac{\alpha}{k}+1 \text {, for } 0<k \leq p
$$

$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.
Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+\alpha} . \alpha=$?
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$. $y=0^{k}$ for some $k>0 \Rightarrow s=0^{p-k} 0^{k} 1^{p+\alpha}$

Consider the string $s^{\prime}=x y^{i} z=0^{p-k} 0^{i k} 1^{p+\alpha} \quad \boldsymbol{i}=$?
If \#0's $=\# 1$'s, then $p+(i-1) k=p+\alpha \Rightarrow i=\frac{\alpha}{k}+1$, for $0<k \leq p$.
So, α needs to be evenly divisible by k for all possible $0<k \leq p$. Let $\alpha=$?
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.
Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+\alpha} . \alpha=$?
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$. $y=0^{k}$ for some $k>0 \Rightarrow s=0^{p-k} 0^{k} 1^{p+\alpha}$

Consider the string $s^{\prime}=x y^{i} z=0^{p-k} 0^{i k} 1^{p+\alpha} \quad i=$?
If \#0's $=\# 1$'s, then $p+(i-1) k=p+\alpha \Rightarrow i=\frac{\alpha}{k}+1$, for $0<k \leq p$.
So, α needs to be evenly divisible by k for all possible $0<k \leq p$. Let $\alpha=p$!
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+p!}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$. $y=0^{k}$ for some $k>0 \Rightarrow s=0^{p-k} 0^{k} 1^{p+\alpha}$

Consider the string $s^{\prime}=x y^{i} z=0^{p-k} 0^{i k} 1^{p+\alpha} \quad i=$?
If \#0's $=\# 1$'s, then $p+(i-1) k=p+\alpha \Rightarrow i=\frac{\alpha}{k}+1$, for $0<k \leq p$.
So, α needs to be evenly divisible by k for all possible $0<k \leq p$. Let $\alpha=p$!
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+p!}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$.

$$
y=0^{k} \text { for some } k>0 \Rightarrow s=0^{p-k} 0^{k} 1^{p+p!}
$$

Consider the string $s^{\prime}=x y^{i} z=0^{p-k} 0^{i k} 1^{p+\alpha} \quad i=$?
If \#0's = \#1's, then $p+(i-1) k=p+\alpha \Rightarrow i=\frac{\alpha}{k}+1$, for $0<k \leq p$.
So, α needs to be evenly divisible by k for all possible $0<k \leq p$. Let $\alpha=p$!
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.
Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+p!}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$. $y=0^{k}$ for some $k>0 \Rightarrow s=0^{p-k} 0^{k} 1^{p+p!}$

Consider the string $s^{\prime}=x y^{i} z=0^{p-k} 0^{i k} 1^{p+\alpha} \quad i=$?
If \#0's $=\# 1$'s, then $p+(i-1) k=p+\alpha \Rightarrow i=\frac{\alpha}{k}+1$, for $0<k \leq p$.
So, α needs to be evenly divisible by k for all possible $0<k \leq p$. Let $\alpha=p$!
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.
Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+p!}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$. $y=0^{k}$ for some $k>0 \Rightarrow s=0^{p-k} 0^{k} 1^{p+p!}$

Consider the string $s^{\prime}=x y^{i} z=0^{p-k} 0^{i k} 1^{p+\alpha} \quad i=$?
If \#0's = \#1's, then $p+(i-1) k=p+\alpha \Rightarrow i=\frac{\alpha}{k}+1$, for $0<k \leq p$.
So, α needs to be evenly divisible by k for all possible $0<k \leq p$. Let $\alpha=p$!
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.
Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+p!}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$. $y=0^{k}$ for some $k>0 \Rightarrow s=0^{p-k} 0^{k} 1^{p+p!}$

Consider the string $s^{\prime}=x y^{i} z=0^{p-k} 0^{i k} 1^{p+\alpha} \quad i=p!/ k+1$
If \#0's $=\# 1$'s, then $p+(i-1) k=p+\alpha \Rightarrow i=\frac{\alpha}{k}+1$, for $0<k \leq p$.
So, α needs to be evenly divisible by k for all possible $0<k \leq p$. Let $\alpha=p$!
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+p!}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$. $y=0^{k}$ for some $k>0 \Rightarrow s=0^{p-k} 0^{k} 1^{p+p!}$

Consider the string $s^{\prime}=x y^{p!/ k^{+1} Z}$
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+p!}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$. $y=0^{k}$ for some $k>0 \Rightarrow s=0^{p-k} 0^{k} 1^{p+p!}$

Consider the string $s^{\prime}=x y^{p!/ k^{+1} z}=0^{p-k} 0\left({ }^{p!} / k+1\right) k 1^{p+p!}$
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+p!}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$. $y=0^{k}$ for some $k>0 \Rightarrow s=0^{p-k} 0^{k} 1^{p+p!}$

Consider the string $s^{\prime}=x y^{p!} / k^{+1} z=0^{p-k} 0\left({ }^{p!/ k+1) k} 1^{p+p!}\right.$
\#0's = ?
$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+p!}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$. $y=0^{k}$ for some $k>0 \Rightarrow s=0^{p-k} 0^{k} 1^{p+p!}$

Consider the string $s^{\prime}=x y^{p!/ k^{+1}} z=0^{p-k} 0\left({ }^{p!/ k+1) k} 1^{p+p!}\right.$

$$
\# 0^{\prime} s=p-k+p!+k=?
$$

$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+p!}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$. $y=0^{k}$ for some $k>0 \Rightarrow s=0^{p-k} 0^{k} 1^{p+p!}$

Consider the string $s^{\prime}=x y^{p!/ k^{+1}} z=0^{p-k} 0\left({ }^{(p!/ k+1) k} 1^{p+p!}\right.$

$$
\# 0^{\prime} \mathrm{s}=p-k+p!+k=p+p!=?
$$

$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s=0^{p} 1^{p+p!}$.
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s=x y z$. $y=0^{k}$ for some $k>0 \Rightarrow s=0^{p-k} 0^{k} 1^{p+p!}$

Consider the string $s^{\prime}=x y^{p!/ k^{+1}} z=0^{p-k} 0\left({ }^{p!/ k+1) k} 1^{p+p!}\right.$

$$
\# 0^{\prime} \mathrm{s}=p-k+p!+k=p+p!=\# 1 \text { 's }
$$

$\Rightarrow s^{\prime} \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof:

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof:

$$
0^{*} 1^{*}=?
$$

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof:

$$
0^{*} 1^{*}=\text { Bunch of } 0^{\prime} s \text { followed by a bunch of } 1 \text { 's. }
$$

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof:

$$
\begin{aligned}
& 0^{*} 1^{*}=\text { Bunch of } 0 \text { 's followed by a bunch of } 1 \text { 's. } \\
& \bar{L}=\text { ? }
\end{aligned}
$$

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof:
$0^{*} 1^{*}=$ Bunch of 0's followed by a bunch of 1's.
$\bar{L}=$ Everything that is not in L.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof:
$0^{*} 1^{*}=$ Bunch of 0 's followed by a bunch of 1 's.
$\bar{L}=$ Everything that is not in L.
$\bar{L} \cap 0^{*} 1^{*}=$?

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof:
$0^{*} 1^{*}=$ Bunch of 0^{\prime} 's followed by a bunch of 1^{\prime} 's.
$\bar{L}=$ Everything that is not in L.
$\bar{L} \cap 0^{*} 1^{*}=\left\{0^{n} 1^{n}: n \geq 0\right\}$

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.
Proof:
$0^{*} 1^{*}=$ Bunch of 0^{\prime} 's followed by a bunch of 1^{\prime} 's.
$\bar{L}=$ Everything that is not in L.
$\bar{L} \cap 0^{*} 1^{*}=\left\{0^{n} 1^{n}: n \geq 0\right\}$
$0^{*} 1^{*}$ - Regular or not?

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof:
$0^{*} 1^{*}=$ Bunch of 0's followed by a bunch of 1's.
$\bar{L}=$ Everything that is not in L.
$\bar{L} \cap 0^{*} 1^{*}=\left\{0^{n} 1^{n}: n \geq 0\right\}$
$0^{*} 1^{*}$ - Regular.

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof:

$$
\begin{aligned}
& \quad 0^{*} 1^{*}=\text { Bunch of } 0 \text { 's followed by a bunch of } 1 \text { 's. } \\
& \bar{L}=\text { Everything that is not in } L . \\
& \bar{L} \cap 0^{*} 1^{*}=\left\{0^{n} 1^{n}: n \geq 0\right\} \\
& 0^{*} 1^{*}-\text { Regular. } \\
& \left\{0^{n} 1^{n}: n \geq 0\right\} \text { - Regular or not? }
\end{aligned}
$$

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof:

$$
\begin{aligned}
& \quad 0^{*} 1^{*}=\text { Bunch of } 0 \text { 's followed by a bunch of } 1 \text { 's. } \\
& \bar{L}=\text { Everything that is not in } L . \\
& \bar{L} \cap 0^{*} 1^{*}=\left\{0^{n} 1^{n}: n \geq 0\right\} \\
& 0^{*} 1^{*}-\text { Regular. } \\
& \left\{0^{n} 1^{n}: n \geq 0\right\} \text { - Not Regular. }
\end{aligned}
$$

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof:
$0^{*} 1^{*}=$ Bunch of 0's followed by a bunch of 1's.
$\bar{L}=$ Everything that is not in L.
$\bar{L} \cap 0^{*} 1^{*}=\left\{0^{n} 1^{n}: n \geq 0\right\}$
$0^{*} 1^{*}$ - Regular.
$\left\{0^{n} 1^{n}: n \geq 0\right\}$ - Not Regular.
\bar{L} - Regular or not?

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof:
$0^{*} 1^{*}=$ Bunch of 0's followed by a bunch of 1's.
$\bar{L}=$ Everything that is not in L.
$\bar{L} \cap 0^{*} 1^{*}=\left\{0^{n} 1^{n}: n \geq 0\right\}$
$0^{*} 1^{*}$ - Regular.
$\left\{0^{n} 1^{n}: n \geq 0\right\}$ - Not Regular.
\bar{L} - Regular or not?

Regular languages are closed under:

- Complement

$$
\bar{A}=\{\omega: \omega \notin A\}
$$

- Union

$$
A \cup B=\{\omega: \omega \in A \text { or } \omega \in B\}
$$

- Intersection $A \cap B=\{\omega: \omega \in A$ and $\omega \in B\}$
- Concatenation

$$
A \circ B=\{x y: x \in A, y \in B\}
$$

- Star

$$
A^{*}=\left\{x_{1} x_{2} \ldots x_{k}: k \geq 0 \text { and each } x_{i} \in A\right\}
$$

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof:
$0^{*} 1^{*}=$ Bunch of 0's followed by a bunch of 1's.
$\bar{L}=$ Everything that is not in L.
$\bar{L} \cap 0^{*} 1^{*}=\left\{0^{n} 1^{n}: n \geq 0\right\}$

0* 1^{*} - Regular.
$\left\{0^{n} 1^{n}: n \geq 0\right\}$ - Not Regular.
\bar{L} - Not Regular.
If \bar{L} was regular, so would $0^{n} 1^{n}$ (regular \cap regular $=$ regular)

Regular languages are closed under:

- Complement

$$
\bar{A}=\{\omega: \omega \notin A\}
$$

- Union

$$
A \cup B=\{\omega: \omega \in A \text { or } \omega \in B\}
$$

- Intersection $A \cap B=\{\omega: \omega \in A$ and $\omega \in B\}$
- Concatenation

$$
A \circ B=\{x y: x \in A, y \in B\}
$$

- Star

$$
A^{*}=\left\{x_{1} x_{2} \ldots x_{k}: k \geq 0 \text { and each } x_{i} \in A\right\}
$$

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof:
$0^{*} 1^{*}=$ Bunch of 0's followed by a bunch of 1's.
$\bar{L}=$ Everything that is not in L.
$\bar{L} \cap 0^{*} 1^{*}=\left\{0^{n} 1^{n}: n \geq 0\right\}$
$0^{*} 1^{*}$ - Regular.
$\left\{0^{n} 1^{n}: n \geq 0\right\}$ - Not Regular.
\bar{L} - Not Regular.
L - Regular or not?

Pumping Lemma Example 4

Claim: The language $L=\left\{0^{m} 1^{n}: m \neq n\right\}$ is not regular.

Proof:
$0^{*} 1^{*}=$ Bunch of 0's followed by a bunch of 1's.
$\bar{L}=$ Everything that is not in L.
$\bar{L} \cap 0^{*} 1^{*}=\left\{0^{n} 1^{n}: n \geq 0\right\}$
$0^{*} 1^{*}$ - Regular.
$\left\{0^{n} 1^{n}: n \geq 0\right\}$ - Not Regular.
\bar{L} - Not Regular.
L - Not Regular.
If L was regular, so would \bar{L}

Regular languages are closed under:

- Complement

$$
\bar{A}=\{\omega: \omega \notin A\}
$$

- Union

$$
A \cup B=\{\omega: \omega \in A \text { or } \omega \in B\}
$$

- Intersection $A \cap B=\{\omega: \omega \in A$ and $\omega \in B\}$
- Concatenation

$$
A \circ B=\{x y: x \in A, y \in B\}
$$

- Star

$$
A^{*}=\left\{x_{1} x_{2} \ldots x_{k}: k \geq 0 \text { and each } x_{i} \in A\right\}
$$ (complement of regular = regular)

