Turing Machines CSCI 338

Turing Machine

- Finite automaton with unrestricted memory (tape).
- Can read from and write to memory.
- Can access any spot in memory.
- Infinite memory.
- Start configuration: start state, input on tape, r/w head far left.
- \exists states other than accept and reject.
- Accept and reject take effect immediately.

Turing Machine Formal Definition

TMs consist of:

- 1. Finite set of states, Q.
- 2. Finite input alphabet, Σ (does not blank symbol _).
- 3. Finite tape alphabet, Γ (includes $_$, $\Sigma \subset \Gamma$).
- 4. Transition function, $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$.
- 5. Start state, $q_0 \in Q$.
- 6. Accept state, $q_{accept} \in Q$.
- 7. Reject state, $q_{reject} \in Q$, where $q_{accept} \neq q_{reject}$.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

Memory initial state: input on tape, read/write head at start.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

TM M: on input ω 1. If $\omega = \varepsilon$, ?

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

TM M: on input ω 1. If $\omega = \varepsilon$, accept.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

TM M: on input ω 1. If $\omega = \varepsilon$, accept.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

TM M: on input ω

1. If $\omega = \varepsilon$, accept. Otherwise, change first a to a 1. (reject if anything else found.)

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

TM M: on input ω

1. If $\omega = \varepsilon$, accept. Otherwise, change first a to a 1. (reject if anything else found.)

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first a to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first a to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first a to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first a to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first a to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first a to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2. Reject if ?

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first *a* to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2. Reject if *c* or _____ found first.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first *a* to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2. Reject if *c* or _ found first.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first a to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2. Reject if *c* or _____ found first.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first *a* to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2. Reject if *c* or _____ found first.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first a to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2. Reject if *c* or _____ found first.
- 3. Move right to first *c* and change to a 3.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first a to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2. Reject if *c* or _____ found first.
- 3. Move right to first *c* and change to a 3.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first a to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2. Reject if *c* or _____ found first.
- 3. Move right to first *c* and change to a 3. Reject if ?

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first *a* to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2. Reject if *c* or _ found first.
- 3. Move right to first *c* and change to a 3. Reject if *a* or _ found first.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first a to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2. Reject if *c* or _ found first.
- 3. Move right to first *c* and change to a 3. Reject if *a* or _ found first.
- 4. Move back to first *a*. If it exists, ?

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first a to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2. Reject if *c* or _ found first.
- 3. Move right to first *c* and change to a 3. Reject if *a* or _ found first.
- 4. Move back to first *a*. If it exists, loop to step 1.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first *a* to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2. Reject if *c* or _ found first.
- 3. Move right to first *c* and change to a 3. Reject if *a* or _ found first.
- 4. Move back to first *a*. If it exists, loop to step 1. If not, exit loop.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first a to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2. Reject if *c* or _ found first.
- 3. Move right to first *c* and change to a 3. Reject if *a* or _ found first.
- 4. Move back to first *a*. If it exists, loop to step 1. If not, exit loop.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first *a* to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2. Reject if *c* or _ found first.
- 3. Move right to first *c* and change to a 3. Reject if *a* or _ found first.
- 4. Move back to first *a*. If it exists, loop to step 1. If not, exit loop.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first *a* to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2. Reject if *c* or _ found first.
- **3.** Move right to first *c* and change to a **3**. Reject if *a* or _____ found first.
- 4. Move back to first *a*. If it exists, loop to step 1. If not, exit loop.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first *a* to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2. Reject if *c* or _ found first.
- 3. Move right to first *c* and change to a 3. Reject if *a* or _ found first.
- 4. Move back to first *a*. If it exists, loop to step 1. If not, exit loop.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first *a* to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2. Reject if *c* or _ found first.
- 3. Move right to first *c* and change to a 3. Reject if *a* or _ found first.
- 4. Move back to first *a*. If it exists, loop to step 1. If not, exit loop.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first *a* to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2. Reject if *c* or _ found first.
- **3.** Move right to first *c* and change to a **3**. Reject if *a* or _____ found first.
- 4. Move back to first *a*. If it exists, loop to step 1. If not, exit loop.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first *a* to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2. Reject if *c* or _ found first.
- 3. Move right to first *c* and change to a 3. Reject if *a* or _ found first.
- 4. Move back to first *a*. If it exists, loop to step 1. If not, exit loop.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first *a* to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2. Reject if *c* or _ found first.
- 3. Move right to first *c* and change to a 3. Reject if *a* or _ found first.
- 4. Move back to first *a*. If it exists, loop to step 1. If not, exit loop.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first a to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2. Reject if *c* or _ found first.
- 3. Move right to first *c* and change to a 3. Reject if *a* or _ found first.
- 4. Move back to first *a*. If it exists, loop to step 1. If not, exit loop.
- 5. ?

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first *a* to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2. Reject if *c* or _ found first.
- 3. Move right to first *c* and change to a 3. Reject if *a* or _ found first.
- 4. Move back to first *a*. If it exists, loop to step 1. If not, exit loop.
- 5. Move right to verify no *b* or *c* exist. If so, reject. If not, accept.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first *a* to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2. Reject if *c* or _ found first.
- 3. Move right to first *c* and change to a 3. Reject if *a* or _ found first.
- 4. Move back to first *a*. If it exists, loop to step 1. If not, exit loop.
- 5. Move right to verify no *b* or *c* exist. If so, reject. If not, accept.

How would you use a TM's tape to see if a string is in the language $L = \{a^n b^n c^n : n \ge 0\}$?

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first *a* to a 1. (reject if anything else found.)
- 2. Move right to first *b* and change to a 2. Reject if *c* or _ found first.
- 3. Move right to first *c* and change to a 3. Reject if *a* or _ found first.
- 4. Move back to first *a*. If it exists, loop to step 1. If not, exit loop.
- 5. Move right to verify no *b* or *c* exist. If so, reject. If not, accept.

* I.e. Can solve the same problems.

Multi-tape TM

* I.e. Can solve the same problems.

Non-deterministic TM Multi-tape TM

* I.e. Can solve the same problems.

Turing Machines

Multi-tape TM Non-deterministic TM Quantum TM

* I.e. Can solve the same problems.

Turing Machines

Multi-tape TM λ -Calculus

Non-deterministic TM General Recursive Functions

Equivalent To*

* I.e. Can solve the same problems.

Quantum TM

Turing Machines

Multi-tape TM λ -Calculus

Non-deterministic TM General Recursive Functions

Quantum TM

* I.e. Can solve the same problems.

Actually, ALL computational models that allow unrestricted access to unlimited memory are equivalent to TMs (with basic assumptions)!

Church-Turing Thesis

Intuitive notion of algorithms.

Turing Machine algorithms.

Church-Turing Thesis

Intuitive notion of algorithms.

Turing Machine algorithms.

- 1. If $\omega = \varepsilon$, accept. Otherwise, change first *a* to a 1.
- 2. Move right to first *b* and change to a 2. Reject if *c* or _ found first.
- 3. Move right to first *c* and change to a 3. Reject if *a* or _ found first.
- 4. Move back to first *a*. If it exists, loop to step 1. If not, exit loop.
- 5. Move right to verify no *b* or *c* exist. If so, reject. If not, accept.

Church-Turing Thesis

Intuitive notion = Turing Machine algorithms.

