Undecidability

CSCI 338
Claim: $EQ_{TM} = \{\langle M, N \rangle: M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

$S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_1 on input $\langle x \rangle$:
 1. accept.
2. Construct TM M_2 on input $\langle y \rangle$:
 1. Run N on ω and accept if N does.
3. Run H on $\langle M_1, M_2 \rangle$.
4. If H accepts, accept. If H rejects, reject.

If N accepts ω, then M_1 and M_2 have the same language (Σ^*). If N does not accept ω, then they have different languages. Thus S decides A_{TM}. (bad!)
Claim: $EQ_{TM} = \{\langle M, N \rangle: M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM}:

$S = \text{on input } \langle P \rangle$

1.

To show EQ_{TM} is undecidable, use it to decide E_{TM}.
Claim: $EQ_{TM} = \{\langle M, N \rangle: M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM}:

1. We have a way (H) to test if two TMs have the same language. How could we use that to test if a TM’s language is empty?

Plan:?
Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM}:

$S = \text{on input } \langle P \rangle$

1. We have a way (H) to test if two TMs have the same language. How could we use that to test if a TM’s language is empty?

Plan: Make a TM with an empty language and use H to compare it to input to E_{TM}.
Claim: $EQ_{TM} = \{\langle M, N \rangle: M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM}:

$S = \text{ on input } \langle P \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. reject.
\[EQ_{TM} \]

Claim: \(EQ_{TM} = \{ \langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N) \} \) is undecidable.

Proof: Suppose \(EQ_{TM} \) is decidable and let TM \(H \) be its decider.

Build a TM \(S \) that decides \(E_{TM} \):

\[S = \text{on input } \langle P \rangle \]

1. Construct TM \(M_2 \) on input \(\langle x \rangle \):
 1. reject.
Claim: $EQ_{TM} = \{\langle M, N \rangle: M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM}:

$S = \text{on input } \langle P \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. reject.

\[L(M_2) = \emptyset \]
Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM}:

$S = \text{on input } \langle P \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

 1. reject.

2. ?
Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM}:

$S = \text{on input } \langle P \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. reject.

2. Run H on $\langle P, M_2 \rangle$.
EQ\textsubscript{TM}

Claim: $EQ_{TM} = \{\langle M, N \rangle: M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM}:

$S = \text{on input } \langle P \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. reject.
2. Run H on $\langle P, M_2 \rangle$.
3. If H accepts, ____
 If H rejects, ____.
EQ_{TM}

Claim: $EQ_{TM} = \{\langle M, N \rangle: M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM}:

$S = \text{on input } \langle P \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. reject.
 2. Run H on $\langle P, M_2 \rangle$.
 3. If H accepts, accept. If H rejects, reject.
EQ_{TM}

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM}:

S = on input $\langle P \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. reject.
2. Run H on $\langle P, M_2 \rangle$.
3. If H accepts, accept. If H rejects, reject.

If...?
Claim: $EQ_{TM} = \{\langle M, N \rangle: M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM}:

$S = \text{on input } \langle P \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. reject.
 2. Run H on $\langle P, M_2 \rangle$.
 3. If H accepts, accept. If H rejects, reject.

If $L(P) = \emptyset$, ...?
Claim: $EQ_{TM} = \{\langle M, N \rangle: M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM}:

$S = \text{on input } \langle P \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. reject.
2. Run H on $\langle P, M_2 \rangle$.
3. If H accepts, accept. If H rejects, reject.

If $L(P) = \emptyset$, M_2 and P will have the same language (since $L(M_2) = \emptyset$) and...?
EQ_{TM}

Claim: $EQ_{TM} = \{(M, N): M, N$ are TMs and $L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM}:

$S = \text{on input } \langle P \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. reject.

2. Run H on $\langle P, M_2 \rangle$.

3. If H accepts, accept. If H rejects, reject.

If $L(P) = \emptyset$, M_2 and P will have the same language (since $L(M_2) = \emptyset$) and S will accept.
Claim: $EQ_{TM} = \{\langle M, N \rangle: M, N \text{ are TMs and } L(M) = L(N) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM}:

$S = \text{on input } \langle P \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. reject.
2. Run H on $\langle P, M_2 \rangle$.
3. If H accepts, accept. If H rejects, reject.

If $L(P) = \emptyset$, M_2 and P will have the same language (since $L(M_2) = \emptyset$) and S will accept. If $L(P) \neq \emptyset$, ...?
Claim: $EQ_{TM} = \{\langle M, N \rangle: M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM}:

$S = \text{on input } \langle P \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. reject.
2. Run H on $\langle P, M_2 \rangle$.
3. If H accepts, accept. If H rejects, reject.

If $L(P) = \emptyset$, M_2 and P will have the same language (since $L(M_2) = \emptyset$) and S will accept. If $L(P) \neq \emptyset$, M_2 and P will not have the same language and...?
Claim: $EQ_{TM} = \{\langle M, N \rangle: M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM}:

$S = \text{on input } \langle P \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. reject.

2. Run H on $\langle P, M_2 \rangle$.
3. If H accepts, accept. If H rejects, reject.

If $L(P) = \emptyset$, M_2 and P will have the same language (since $L(M_2) = \emptyset$) and S will accept. If $L(P) \neq \emptyset$, M_2 and P will not have the same language and S will reject.
Claim: $EQ_{TM} = \{\langle M, N \rangle: M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM}:

$S = \text{on input } \langle P \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. reject.
2. Run H on $\langle P, M_2 \rangle$.
3. If H accepts, accept. If H rejects, reject.

If $L(P) = \emptyset$, M_2 and P will have the same language (since $L(M_2) = \emptyset$) and S will accept. If $L(P) \neq \emptyset$, M_2 and P will not have the same language and S will reject. Therefore, S is a decider for E_{TM}, which is a contradiction, so EQ_{TM} is undecidable.
Claim: $REGULAR_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof:
REGULAR_{TM}

Claim: \(\text{REGULAR}_{TM} = \{ \langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \} \) is undecidable.

Proof: Suppose \(\text{REGULAR}_{TM} \) is decidable and let TM \(H \) be its decider.
Claim: \(\text{REGULAR}_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular}\} \) is undecidable.

Proof: Suppose \(\text{REGULAR}_{TM} \) is decidable and let TM \(H \) be its decider.

Build a TM \(S \) that decides \(A_{TM} \):

\[
S = \text{on input } \langle N, \omega \rangle
\]

1. To show \(\text{REGULAR}_{TM} \) is undecidable, use it to decide \(A_{TM} \).
Claim: $\text{REGULAR}_{TM} = \{ \langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose REGULAR_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

$S = \text{on input } \langle N, \omega \rangle$

1. Plan: Build a TM whose language is regular if N accepts ω and not regular if N does not accept ω.
Claim: $\text{REGULAR}_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose REGULAR_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

$S = \text{ on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

 $L(M_2)$ is regular ⇐ N accepts ω

Plan: Build a TM whose language is regular if N accepts ω and not regular if N does not accept ω.
REGULAR_{TM}

Claim: $\text{REGULAR}_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose REGULAR_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

$S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. If $x \in \{ ?? ? ? \}$, accept.
 2. If $x \notin \{ ?? ? ? \}$, run N on ω and accept if N does.

Plan: Build a TM whose language is regular if N accepts ω and not regular if N does not accept $\omega.$
\textbf{REGULAR}_{TM}

Claim: \(REGULAR_{TM} = \{ \langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \} \) is undecidable.

Proof: Suppose \(REGULAR_{TM} \) is decidable and let TM \(H \) be its decider.

Build a TM \(S \) that decides \(A_{TM} \):

\[
S = \text{on input } \langle N, \omega \rangle
\]

1. Construct TM \(M_2 \) on input \(\langle x \rangle \):
 1. If \(x \in \{0^n1^n : n \geq 0\} \), accept.
 2. If \(x \notin \{0^n1^n : n \geq 0\} \), run \(N \) on \(\omega \) and accept if \(N \) does.

\(L(M_2) \) is regular \(\iff \) \(N \) accepts \(\omega \)

Plan: Build a TM whose language is regular if \(N \) accepts \(\omega \) and not regular if \(N \) does not accept \(\omega \).
Claim: $REGULAR_{TM} = \{\langle M \rangle: M$ is a TM and $L(M)$ is regular$\}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

$S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. If $x \in \{0^n1^n: n \geq 0\}$, accept.
 2. If $x \notin \{0^n1^n: n \geq 0\}$, run N on ω and accept if N does.

Plan: Build a TM whose language is regular if N accepts ω and not regular if N does not accept ω.
Claim: $\text{REGULAR}_{TM} = \{ \langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose REGULAR_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

$S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. If $x \in \{0^n1^n : n \geq 0\}$, accept.
 2. If $x \notin \{0^n1^n : n \geq 0\}$, run N on ω and accept if N does.

$L(M_2) = 0^n1^n \text{ or } \Sigma^*$

Plan: Build a TM whose language is regular if N accepts ω and not regular if N does not accept $\omega.$
REGULAR_TM

Claim: \(\text{REGULAR}_TM = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \} \) is undecidable.

Proof: Suppose \(\text{REGULAR}_TM \) is decidable and let TM \(H \) be its decider.

Build a TM \(S \) that decides \(A_TM \):

\[S = \text{on input } \langle N, \omega \rangle\]

1. Construct TM \(M_2 \) on input \(\langle x \rangle \):

 1. If \(x \in \{0^n1^n : n \geq 0\} \), accept.

 2. If \(x \notin \{0^n1^n : n \geq 0\} \), run \(N \) on \(\omega \) and accept if \(N \) does.

2. ?
Claim: $\text{REGULAR}_TM = \{\langle M \rangle: M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose REGULAR_TM is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

$S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. If $x \in \{0^n1^n: n \geq 0\}$, accept.
 2. If $x \notin \{0^n1^n: n \geq 0\}$, run N on ω and accept if N does.

2. Run H on $\langle M_2 \rangle$.

REGULAR_TM
Claim: $REGULAR_{TM} = \{ \langle M \rangle : M$ is a TM and $L(M)$ is regular$\}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

$S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. If $x \in \{0^n1^n : n \geq 0\}$, accept.
 2. If $x \notin \{0^n1^n : n \geq 0\}$, run N on ω and accept if N does.

2. Run H on $\langle M_2 \rangle$.

3. If H accepts, accept. If H rejects, reject.
REGULAR_{TM}

Claim: $\text{REGULAR}_{TM} = \{\langle M \rangle: M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose REGULAR_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

$S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. If $x \in \{0^n1^n: n \geq 0\}$, accept.
 2. If $x \notin \{0^n1^n: n \geq 0\}$, run N on ω and accept if N does.
2. Run H on $\langle M_2 \rangle$.
3. If H accepts, accept. If H rejects, reject.

If N accepts ω, $L(M_2) = \Sigma^*$ (regular).
REGULAR\textsubscript{TM}

Claim: $\text{REGULAR}_{\text{TM}} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular}\}$ is undecidable.

Proof: Suppose $\text{REGULAR}_{\text{TM}}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

$S =$ on input $\langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. If $x \in \{0^n1^n : n \geq 0\}$, accept.
 2. If $x \notin \{0^n1^n : n \geq 0\}$, run N on ω and accept if N does.
2. Run H on $\langle M_2 \rangle$.
3. If H accepts, accept. If H rejects, reject.

If N accepts ω, $L(M_2) = \Sigma^*$ (regular). If N does not accept ω, $L(M_2) = \{0^n1^n : n \geq 0\}$ (not regular).
REGULAR$_{TM}$

Claim: $REGULAR_{TM} = \{\langle M \rangle : M$ is a TM and $L(M)$ is regular$\}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

$S =$ on input $\langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. If $x \in \{0^n1^n : n \geq 0\}$, accept.
 2. If $x \notin \{0^n1^n : n \geq 0\}$, run N on ω and accept if N does.

2. Run H on $\langle M_2 \rangle$.

3. If H accepts, accept. If H rejects, reject.

If N accepts ω, $L(M_2) = \Sigma^*$ (regular). If N does not accept ω, $L(M_2) = \{0^n1^n : n \geq 0\}$ (not regular). So, deciding if $L(M_2)$ is regular will determine if N accepts ω.
Claim: $REGULAR_{TM} = \{ \langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

$$S = \text{on input } \langle N, \omega \rangle$$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. If $x \in \{0^n1^n : n \geq 0\}$, accept.
 2. If $x \notin \{0^n1^n : n \geq 0\}$, run N on ω and accept if N does.
2. Run H on $\langle M_2 \rangle$.
3. If H accepts, accept. If H rejects, reject.

If N accepts ω, $L(M_2) = \Sigma^*$ (regular). If N does not accept ω, $L(M_2) = \{0^n1^n : n \geq 0\}$ (not regular). So, deciding if $L(M_2)$ is regular will determine if N accepts ω. Therefore, S is a decider for A_{TM}, so $REGULAR_{TM}$ is undecidable.
When in doubt use A_{TM} !!!
Unrecognizable Language

Claim: A language is decidable \iff it and its complement are Turing-recognizable.

Proof:
Claim: A language is decidable \iff it and its complement are Turing-recognizable.

Proof: \Rightarrow If a language is decidable, its complement is also decidable (just reverse accept/reject conditions) and decidable languages are recognizable.

Given decider T for A, make decider for \bar{A}:

$M = \text{on input } \omega$

1. Run T on ω.
2. If T accepts, reject. If T rejects, accept.
Unrecognizable Language

Claim: A language is decidable ⇔ it and its complement are Turing-recognizable.

Proof: ⇒ If a language is decidable, its complement is also decidable (just reverse accept/reject conditions) and decidable languages are recognizable.

⇐ If A and \overline{A} are both Turing-recognizable, let M_1 and M_2 be recognizers for A and \overline{A}.
Unrecognizable Language

Claim: A language is decidable \iff it and its complement are Turing-recognizable.

Proof: \implies If a language is decidable, its complement is also decidable (just reverse accept/reject conditions) and decidable languages are recognizable.

\impliedby If A and \overline{A} are both Turing-recognizable, let M_1 and M_2 be recognizers for A and \overline{A}. Consider the following TM:

$$M = \text{on input } \omega$$

1. Run both M_1 and M_2 on ω in parallel (alternate instructions).
2. If M_1 accepts, accept. If M_2 accepts, reject.
Unrecognizable Language

Claim: A language is decidable \iff it and its complement are Turing-recognizable.

Proof: \implies If a language is decidable, its complement is also decidable (just reverse accept/reject conditions) and decidable languages are recognizable.

\impliedby If A and \overline{A} are both Turing-recognizable, let M_1 and M_2 be recognizers for A and \overline{A}. Consider the following TM:

$M =$ on input ω
1. Run both M_1 and M_2 on ω in parallel (alternate instructions).
2. If M_1 accepts, accept. If M_2 accepts, reject.

Since $\omega \in A$ or \overline{A}, M_1 or M_2 must accept (halts on input). Thus, M is a decider for A.
Unrecognizable Language

Claim: $\overline{HALT_{TM}} = \{\langle M, \omega \rangle: M \text{ is a TM and } M \text{ does not halt on } \omega \}$ is not Turing-recognizable.

Proof:
Unrecognizable Language

Claim: \(\overline{HALT}_{TM} = \{ \langle M, \omega \rangle : M \text{ is a TM and } M \text{ does not halt on } \omega \} \) is not Turing-recognizable.

Proof: Suppose \(\overline{HALT}_{TM} \) was Turing-recognizable. Let \(T \) be its recognizer (i.e., \(???? \)).
Unrecognizable Language

Claim: \(\overline{HALT_{TM}} = \{\langle M, \omega \rangle: M \text{ is a TM and } M \text{ does not halt on } \omega \} \) is not Turing-recognizable.

Proof: Suppose \(\overline{HALT_{TM}} \) was Turing-recognizable. Let \(T \) be its recognizer (i.e., \(T \) will accept if a TM does not halt on some input).
Unrecognizable Language

Claim: $\text{HALT}_{TM} = \{\langle M, \omega \rangle: M \text{ is a TM and } M \text{ does not halt on } \omega \}$ is not Turing-recognizable.

Proof: Suppose HALT_{TM} was Turing-recognizable. Let T be its recognizer (i.e., T will accept if a TM does not halt on some input).

Consider S on $\langle M, \omega \rangle$:
Unrecognizable Language

Claim: $\text{HALT}_{TM} = \{\langle M, \omega \rangle: M \text{ is a TM and } M \text{ does not halt on } \omega \}$ is not Turing-recognizable.

Proof: Suppose HALT_{TM} was Turing-recognizable. Let T be its recognizer (i.e., T will accept if a TM does not halt on some input).

Consider S on $\langle N, \omega \rangle$:
1. Run N on ω.
2. accept.
Unrecognizable Language

Claim: $\overline{HALT_{TM}} = \{\langle M, \omega \rangle: M$ is a TM and M does not halt on $\omega \}$ is not Turing-recognizable.

Proof: Suppose $\overline{HALT_{TM}}$ was Turing-recognizable. Let T be its recognizer (i.e., T will accept if a TM does not halt on some input).

Consider S on $\langle N, \omega \rangle$:
1. Run N on ω.
2. accept.

???
Unrecognizable Language

Claim: $\text{HALT}_{TM} = \{\langle M, \omega \rangle: M \text{ is a TM and } M \text{ does not halt on } \omega \}$ is not Turing-recognizable.

Proof: Suppose HALT_{TM} was Turing-recognizable. Let T be its recognizer (i.e., T will accept if a TM does not halt on some input).

Consider S on $\langle N, \omega \rangle$:
1. Run N on ω.
2. accept.

HALT_{TM} recognizer!
Unrecognizable Language

Claim: $\overline{HALT_{TM}} = \{\langle M, \omega \rangle: M \text{ is a TM and } M \text{ does not halt on } \omega \}$ is not Turing-recognizable.

Proof: Suppose $\overline{HALT_{TM}}$ was Turing-recognizable. Let T be its recognizer (i.e., T will accept if a TM does not halt on some input).

Consider S on $\langle N, \omega \rangle$:
1. Run N on ω.
2. accept.

Consider V on $\langle N, \omega \rangle$: $\overline{HALT_{TM}}$ recognizer!
Unrecognizable Language

Claim: $\overline{\text{HALT}_{TM}} = \{\langle M, \omega \rangle: M \text{ is a TM and } M \text{ does not halt on } \omega \}$ is not Turing-recognizable.

Proof: Suppose $\overline{\text{HALT}_{TM}}$ was Turing-recognizable. Let T be its recognizer (i.e., T will accept if a TM does not halt on some input).

Consider S on $\langle N, \omega \rangle$:
1. Run N on ω.
2. accept.

Consider V on $\langle N, \omega \rangle$:
1. Run T on $\langle N, \omega \rangle$ and run S on $\langle N, \omega \rangle$ in parallel.
Unrecognizable Language

Claim: $\overline{\text{HALT}_{TM}} = \{\langle M, \omega \rangle : M$ is a TM and M does not halt on $\omega \}$ is not Turing-recognizable.

Proof: Suppose $\overline{\text{HALT}_{TM}}$ was Turing-recognizable. Let T be its recognizer (i.e., T will accept if a TM does not halt on some input).

Consider S on $\langle N, \omega \rangle$:
1. Run N on ω.
2. accept.

Consider V on $\langle N, \omega \rangle$:
1. Run T on $\langle N, \omega \rangle$ and run S on $\langle N, \omega \rangle$ in parallel.
2. If T accepts, reject. If S accepts, accept.
Unrecognizable Language

Claim: $\overline{HALT_{TM}} = \{\langle M, \omega \rangle: M \text{ is a TM and } M \text{ does not halt on } \omega \}$ is not Turing-recognizable.

Proof: Suppose $\overline{HALT_{TM}}$ was Turing-recognizable. Let T be its recognizer (i.e., T will accept if a TM does not halt on some input).

Consider S on $\langle N, \omega \rangle$:
1. Run N on ω.
2. accept.

$\overline{HALT_{TM}}$ recognizer!

Consider V on $\langle N, \omega \rangle$:
1. Run T on $\langle N, \omega \rangle$ and run S on $\langle N, \omega \rangle$ in parallel.
2. If T accepts, reject. If S accepts, accept.
Unrecognizable Language

Claim: $\text{HALT}_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ does not halt on } \omega \}$ is not Turing-recognizable.

Proof: Suppose HALT_{TM} was Turing-recognizable. Let T be its recognizer (i.e., T will accept if a TM does not halt on some input).

Consider S on $\langle N, \omega \rangle$:
1. Run N on ω.
2. accept.

Consider V on $\langle N, \omega \rangle$:
1. Run T on $\langle N, \omega \rangle$ and run S on $\langle N, \omega \rangle$ in parallel.
2. If T accepts, reject. If S accepts, accept.
Unrecognizable Language

Claim: $\overline{HALT_{TM}} = \{\langle M, \omega \rangle: M \text{ is a TM and } M \text{ does not halt on } \omega \}$ is not Turing-recognizable.

Proof:

A language is decidable \iff it and its complement are Turing-recognizable.
Unrecognizable Language

Claim: $\overline{\text{HALT}_{TM}} = \{\langle M, \omega \rangle: M \text{ is a TM and } M \text{ does not halt on } \omega \}$ is not Turing-recognizable.

Proof: HALT_{TM} is not decidable
Unrecognizable Language

Claim: \(\overline{HALT_{TM}} = \{\langle M, \omega \rangle: M \text{ is a TM and } M \text{ does not halt on } \omega \}\) is not Turing-recognizable.

Proof: \(HALT_{TM}\) is not decidable \(\Rightarrow\) \(HALT_{TM}\) and \(\overline{HALT_{TM}}\) cannot both be Turing-recognizable (otherwise \(HALT_{TM}\) would be decidable).

A language is decidable \(\iff\) it and its complement are Turing-recognizable.
Unrecognizable Language

Claim: $\overline{HALT_{TM}} = \{\langle M, \omega \rangle: M \text{ is a TM and } M \text{ does not halt on } \omega \}$ is not Turing-recognizable.

Proof: $HALT_{TM}$ is not decidable \implies $HALT_{TM}$ and $\overline{HALT_{TM}}$ cannot both be Turing-recognizable (otherwise $HALT_{TM}$ would be decidable). Since $HALT_{TM}$ is Turing-recognizable, $\overline{HALT_{TM}}$ cannot be Turing-recognizable.

A language is decidable \iff it and its complement are Turing-recognizable.
Computability Hierarchy

- Regular
- Context-Free
- Turing-recognizable
- decidable
- Turing-

\(\text{HALT}_{TM} \)
Beyond Decidability

What if $HALT_{TM}$ were “decidable”?
Beyond Decidability

What if $HALT_{TM}$ were “decidable”?

Goldbach’s Conjecture:
• 280-year-old open problem.
• Every integer ≥ 2 is sum of two primes.
Beyond Decidability

What if $HALT_{TM}$ were “decidable”?

Goldbach’s Conjecture:
- 280-year-old open problem.
- Every integer ≥ 2 is sum of two primes.

Consider G on $\langle x \rangle$:
1. For $n = 2$, check each pair of prime number $< n$.
2. If no pair sums to n, reject.
3. Increment n and loop to step 1.
public boolean G() {
 int i = 2;
 while (true) {
 boolean found = false;
 for (int n = 1; n < i; n++) {
 for (int m = 1; m < i; m++) {
 if (isPrime(n) && isPrime(m) && m + n == i) {
 found = true;
 }
 }
 }
 if (!found) {
 return false;
 }
 i++;
 }
}
Beyond Decidability

What if $HALT_{TM}$ were “decidable”?

Goldbach’s Conjecture:
- 280-year-old open problem.
- Every integer ≥ 2 is sum of two primes.

Consider G on $\langle x \rangle$:
1. For $n = 2$, check each pair of prime number $< n$.
2. If no pair sums to n, reject.
3. Increment n and loop to step 1.

What does it mean if G halts?
What does it mean if G does not halt?
Beyond Decidability

What if $HALT_{TM}$ were “decidable”?

Goldbach’s Conjecture:
- 280-year-old open problem.
- Every integer ≥ 2 is sum of two primes.

Consider G on $\langle x \rangle$:
1. For $n = 2$, check each pair of prime number $< n$.
2. If no pair sums to n, reject.
3. Increment n and loop to step 1.

What does it mean if G halts? **Goldbach’s conjecture is false!**
What does it mean if G does not halt? **Goldbach’s conjecture is true!**
Beyond Decidability

What if $HALT_{TM}$ were “decidable”?

Goldbach’s Conjecture:
- 280-year-old open problem.
- Every integer ≥ 2 is sum of two primes.

Consider G on $\langle x \rangle$:
1. For $n = 2$, check each pair of prime number $< n$.
2. If no pair sums to n, reject.
3. Increment n and loop to step 1.

What does it mean if G halts? Goldbach’s conjecture is false!
What does it mean if G does not halt? Goldbach’s conjecture is true!

Turns out you can do this for lots of open problems over natural numbers (twin prime conjecture,...)