Decidability CSCI 338

Claim: $E_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } L(A) = \emptyset\}$ is decidable.

Proof:

?

Claim: $E_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } L(A) = \emptyset\}$ is decidable.

Proof:

 $M_3 = \text{on input } \langle A \rangle$

1. Mark start state of *A*.

Claim: $E_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } L(A) = \emptyset\}$ is decidable.

Proof:

- $M_3 = \text{on input } \langle A \rangle$
 - 1. Mark start state of *A*.
 - 2. Mark any state with transition coming from marked state.

Claim: $E_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } L(A) = \emptyset\}$ is decidable.

Proof:

- $M_3 = \text{on input } \langle A \rangle$
 - 1. Mark start state of *A*.
 - 2. Mark any state with transition coming from marked state.
 - 3. Repeat 2 until no new states are marked.

Claim: $E_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } L(A) = \emptyset\}$ is decidable.

Proof:

 $M_3 = \text{on input } \langle A \rangle$

- 1. Mark start state of *A*.
- 2. Mark any state with transition coming from marked state.
- 3. Repeat 2 until no new states are marked.
- 4. ???? , <u>accept</u>. Otherwise, <u>reject</u>.

Claim: $E_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } L(A) = \emptyset\}$ is decidable.

Proof:

- $M_3 = \text{on input } \langle A \rangle$
 - 1. Mark start state of *A*.
 - 2. Mark any state with transition coming from marked state.
 - 3. Repeat 2 until no new states are marked.
 - 4. If no accept states are marked, <u>accept</u>. Otherwise, <u>reject</u>.

Claim: $E_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } L(A) = \emptyset\}$ is decidable.

Proof:

 $M_3 = \text{on input } \langle A \rangle$

1. Mark start state of *A*.

- 2. Mark any state with transition coming from marked state.
- 3. Repeat 2 until no new states are marked.
- 4. If no accept states are marked, <u>accept</u>. Otherwise, <u>reject</u>.

 M_3 is a decider since at least one state must be added for step 2 to repeat, and there are a finite number of states.

Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

Proof:

?

Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

Proof:

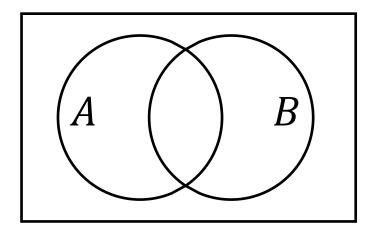
What if we tried to use E_{DFA} somehow?

Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

Proof:

What if we tried to use E_{DFA} somehow?

If L(A) = L(B), what would be empty?

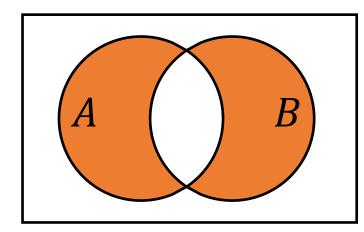


Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

Proof:

What if we tried to use E_{DFA} somehow?

If L(A) = L(B), what would be empty? The part of L(A) not in L(B) and the part of L(B) not in L(A).

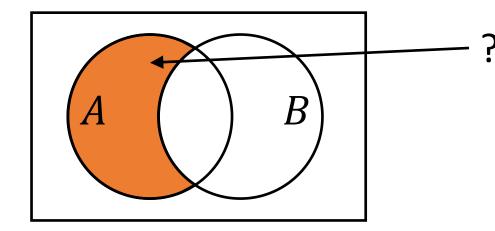


Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

Proof:

What if we tried to use E_{DFA} somehow?

If L(A) = L(B), what would be empty? The part of L(A) not in L(B) and the part of L(B) not in L(A).

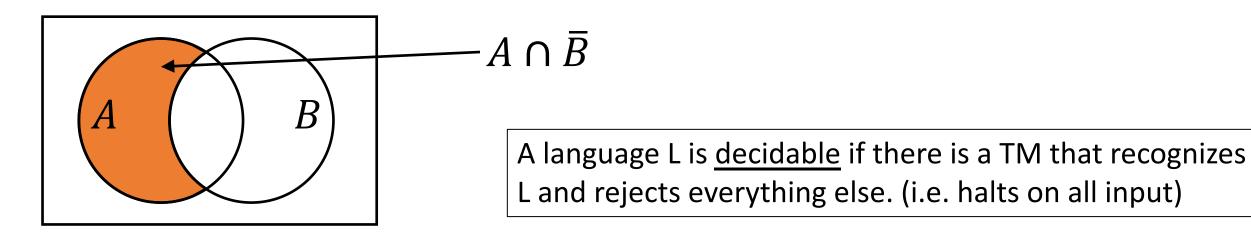


Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

Proof:

What if we tried to use E_{DFA} somehow?

If L(A) = L(B), what would be empty? The part of L(A) not in L(B) and the part of L(B) not in L(A).

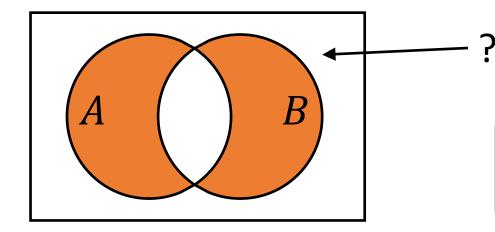


Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

Proof:

What if we tried to use E_{DFA} somehow?

If L(A) = L(B), what would be empty? The part of L(A) not in L(B) and the part of L(B) not in L(A).

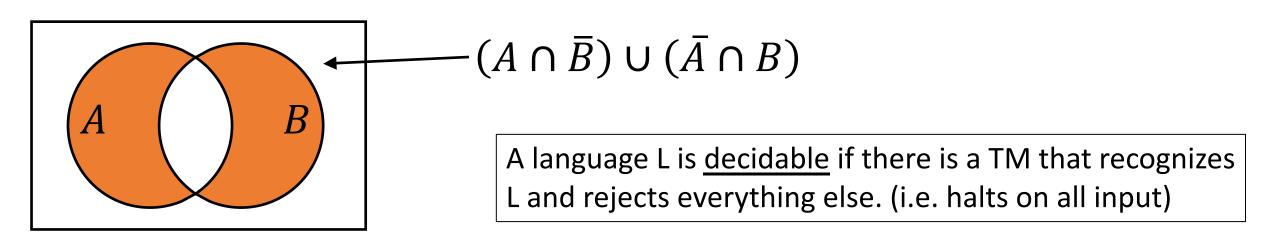


Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

Proof:

What if we tried to use E_{DFA} somehow?

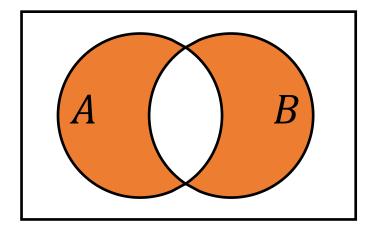
If L(A) = L(B), what would be empty? The part of L(A) not in L(B) and the part of L(B) not in L(A).



Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

Proof:

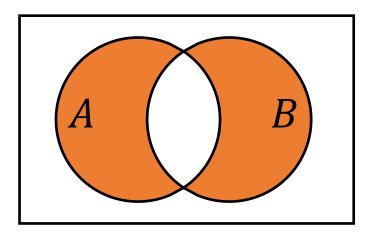
 $M_4 = \text{on input } \langle A, B \rangle$



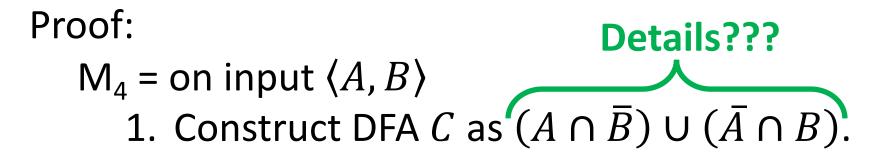
Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

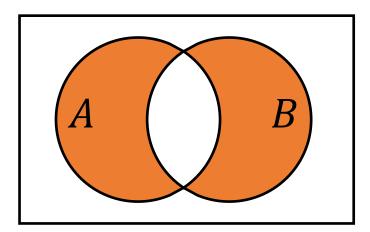
Proof:

M_4 = on input $\langle A, B \rangle$ 1. Construct DFA *C* as $(A \cap \overline{B}) \cup (\overline{A} \cap B)$.



Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

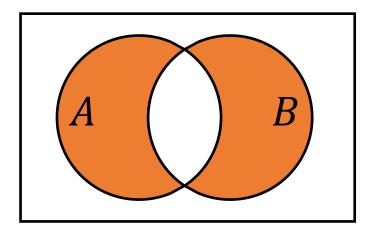




Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

Proof:

M₄ = on input $\langle A, B \rangle$ 1. Construct DFA *C* as $(A \cap \overline{B}) \cup (\overline{A} \cap B)$. 2. Run *E*_{DFA} Decider on $\langle C \rangle$.

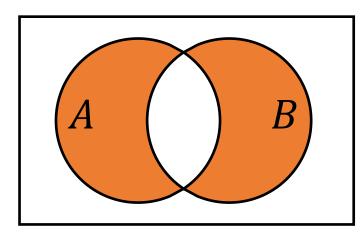


Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

Proof:

 $M_4 = \text{on input } \langle A, B \rangle$

- 1. Construct DFA C as $(A \cap \overline{B}) \cup (\overline{A} \cap B)$.
- 2. Run E_{DFA} Decider on $\langle C \rangle$.
- 3. Accept/Reject?

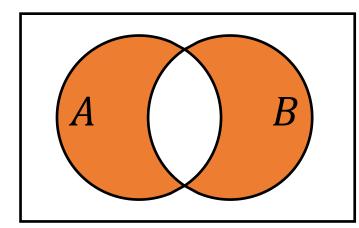


Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

Proof:

 $M_4 = \text{on input } \langle A, B \rangle$

- 1. Construct DFA C as $(A \cap \overline{B}) \cup (\overline{A} \cap B)$.
- 2. Run E_{DFA} Decider on $\langle C \rangle$.
- 3. If Decider accepts, <u>accept</u>. If Decider rejects, <u>reject</u>.



 M_4 is a decider since constructing C halts and the E_{DFA} Decider is a decider.

$INFINITE_{DFA}$

Claim: $INFINITE_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } |L(A)| = \infty\}$ is decidable.

Proof:

?