NP
CSCI 338
P is the set of languages that are decidable in polynomial time on a deterministic single-tape TM.
\(P \) is the set of languages that are decidable in polynomial time on a deterministic single-tape TM. To show something is in \(P \), build a polynomial time decider for it.
NP

P is the set of languages that are decidable in polynomial time on a deterministic single-tape TM.

To show something is in P, build a polynomial time decider for it.

NP

Set of languages that have polynomial time verifiers.
Vertex Cover (VC)

Vertex Cover = \{\langle G, k \rangle: G = (V, E) is a graph and k is an integer \leq |V| such that there exists some \(V' \subseteq V \) with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \) \}
Vertex Cover (VC)

Vertex Cover = \{\langle G, k \rangle: G = (V, E) \text{ is a graph and } k \text{ is an integer } \leq |V| \text{ such that there exists some } V' \subseteq V \text{ with } |V'| \leq k, \text{ such that each edge in } E \text{ contains an end point in } V' \}
Vertex Cover (VC)

Vertex Cover = \{ (G, k) : G = (V, E) is a graph and k is an integer \leq |V| such that there exists some V' \subseteq V with |V'| \leq k, such that each edge in E contains an end point in V' \}

Vertex Cover: Given graph G = (V, E) and integer k \leq |V|, is there V' \subseteq V, with |V'| \leq k, such that each edge in E contains an end point in V'?
Vertex Cover (VC)

Vertex Cover = \{ (G, k) : G = (V, E) is a graph and k is an integer \leq |V| such that there exists some V' \subseteq V with |V'| \leq k, such that each edge in E contains an end point in V' \}

Vertex Cover: Given graph G = (V, E) and integer k \leq |V|, is there V' \subseteq V, with |V'| \leq k, such that each edge in E contains an end point in V'?

Is there a VC \leq k for k = 8?
Vertex Cover (VC)

Vertex Cover = \{ (G, k): G = (V, E) is a graph and k is an integer \leq |V| such that there exists some V' \subseteq V with |V'| \leq k, such that each edge in E contains an end point in V' \}

Vertex Cover: Given graph G = (V, E) and integer k \leq |V|, is there V' \subseteq V, with |V'| \leq k, such that each edge in E contains an end point in V'?

Is there a VC \leq k for k = 8?
Vertex Cover (VC)

Vertex Cover = \{ (G, k): G = (V, E) is a graph and k is an integer \leq |V| such that there exists some \(V' \subseteq V \) with |\(V' \)| \leq k, such that each edge in \(E \) contains an end point in \(V' \) \}

Vertex Cover: Given graph \(G = (V, E) \) and integer \(k \leq |V| \), is there \(V' \subseteq V \) with |\(V' \)| \leq k, such that each edge in \(E \) contains an end point in \(V' \)?

Is there a VC \(\leq k \) for \(k = 7 \)?
Vertex Cover (VC)

Vertex Cover = \{ (G, k) : G = (V, E) is a graph and k is an integer \leq |V| such that there exists some V' \subseteq V with |V'| \leq k, such that each edge in E contains an end point in V' \}\n
Vertex Cover: Given graph G = (V, E) and integer k \leq |V|, is there V' \subseteq V, with |V'| \leq k, such that each edge in E contains an end point in V'?

Is there a VC \leq k for k = 7?
Vertex Cover (VC)

Vertex Cover = \{ (G, k) : G = (V, E) is a graph and k is an integer \leq |V| such that there exists some V' \subseteq V with |V'| \leq k, such that each edge in E contains an end point in V' \}\n
Vertex Cover: Given graph G = (V, E) and integer k \leq |V|, is there V' \subseteq V, with |V'| \leq k, such that each edge in E contains an end point in V'?

Is there a VC \leq k for k = 7?
Vertex Cover (VC)

Vertex Cover = \{(G, k): G = (V, E) is a graph and k is an integer \leq |V| such that there exists some \(V' \subseteq V\) with \(|V'| \leq k\), such that each edge in \(E\) contains an end point in \(V'\)\}\n
Vertex Cover: Given graph \(G = (V, E)\) and integer \(k \leq |V|\), is there \(V' \subseteq V\), with \(|V'| \leq k\), such that each edge in \(E\) contains an end point in \(V'\)?

Is there a VC \(\leq k\) for \(k = 6\)?
Vertex Cover (VC)

Vertex Cover = \{ (G, k) : G = (V, E) is a graph and k is an integer \leq |V| such that there exists some \(V' \subseteq V \) with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \) \}\}

Vertex Cover: Given graph \(G = (V, E) \) and integer \(k \leq |V| \), is there \(V' \subseteq V \), with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \)?

Is there a VC \(\leq k \) for \(k = 6 \)?
Vertex Cover (VC)

Vertex Cover = \{⟨G, k⟩: G = (V, E) is a graph and k is an integer ≤ |V| such that there exists some \(V' \subseteq V\) with \(|V'| \leq k\), such that each edge in \(E\) contains an end point in \(V'\)\}\n
Vertex Cover: Given graph \(G = (V, E)\) and integer \(k \leq |V|\), is there \(V' \subseteq V\), with \(|V'| \leq k\), such that each edge in \(E\) contains an end point in \(V'\)?

Is there a VC ≤ k for k = 6?
Vertex Cover (VC)

Vertex Cover = \{ (G, k) : G = (V, E) is a graph and k is an integer \leq |V| such that there exists some \ V' \subseteq V with |V'| \leq k, such that each edge in \ E \ contains an end point in \ V' \}

Vertex Cover: Given graph \ G = (V, E) and integer \ k \leq |V|, is there \ V' \subseteq V, with \ |V'| \leq k, such that each edge in \ E \ contains an end point in \ V'?

Is there a VC \leq k for k = 5?
Vertex Cover (VC)

Vertex Cover = \{ (G, k) : G = (V, E) is a graph and \(k \) is an integer \(\leq |V| \) such that there exists some \(V' \subseteq V \) with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \) \}

Vertex Cover: Given graph \(G = (V, E) \) and integer \(k \leq |V| \), is there \(V' \subseteq V \), with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \)?

Is there a VC \(\leq k \) for \(k = 5 \)?
Vertex Cover (VC)

Vertex Cover = \{ (G, k) : G = (V, E) is a graph and k is an integer ≤ |V| such that there exists some \(V' \subseteq V \) with \(|V'| \leq k\), such that each edge in \(E \) contains an end point in \(V' \) \}.

Vertex Cover: Given graph \(G = (V, E) \) and integer \(k \leq |V| \), is there \(V' \subseteq V \), with \(|V'| \leq k\), such that each edge in \(E \) contains an end point in \(V' \)?

Is there a VC \(\leq k \) for \(k = 5 \)?
Vertex Cover (VC)

Vertex Cover = \{\langle G, k \rangle: G = (V, E) is a graph and k is an integer \leq |V| such that there exists some \(V' \subseteq V \) with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \) \}\}

Vertex Cover: Given graph \(G = (V, E) \) and integer \(k \leq |V| \), is there \(V' \subseteq V \), with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \)?

Is there a VC \(\leq k \) for \(k = 4 \)?
Vertex Cover (VC)

Vertex Cover = \{ (G, k) : G = (V, E) is a graph and \(k\) is an integer \(\leq |V|\) such that there exists some \(V' \subseteq V\) with \(|V'| \leq k\), such that each edge in \(E\) contains an end point in \(V'\) \}

Vertex Cover: Given graph \(G = (V, E)\) and integer \(k \leq |V|\), is there \(V' \subseteq V\), with \(|V'| \leq k\), such that each edge in \(E\) contains an end point in \(V'\)?

Is there a VC \(\leq k\) for \(k = 4\)?
Vertex Cover (VC)

Vertex Cover = \{\langle G, k \rangle: G = (V, E) is a graph and k is an integer \leq |V| such that there exists some V' \subseteq V with |V'| \leq k, such that each edge in E contains an end point in V'\}

Vertex Cover: Given graph G = (V, E) and integer k \leq |V|, is there V' \subseteq V, with |V'| \leq k, such that each edge in E contains an end point in V'?

Is there a VC \leq k for k = 4?
Vertex Cover (VC)

Vertex Cover = \{\langle G, k \rangle: G = (V, E) is a graph and k is an integer \leq |V| such that there exists some \(V' \subseteq V \) with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \)\}

Vertex Cover: Given graph \(G = (V, E) \) and integer \(k \leq |V| \), is there \(V' \subseteq V \), with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \)?

Is there a VC \(\leq k \) for \(k = 4 \)?

Decision problem:
“Yes/No” – Is there a VC \(\leq k \)?

Optimization problem:
“Best” – What is the smallest VC?
Vertex Cover (VC)

Claim: \(VC \in NP \)

Proof:

Decider: Is \(\langle G, k \rangle \in VC \)?
Vertex Cover (VC)

Claim: VC $\in \mathcal{NP}$

Proof:

Vertex Cover: Given graph $G = (V, E)$ and integer $k \leq |V|$, is there $V' \subseteq V$, with $|V'| \leq k$, such that each edge in E contains an end point in V'?

Decider: Is $\langle G, k \rangle \in VC$?

Verifier: Is $\langle G, k \rangle \in VC$, given a candidate solution?
Vertex Cover (VC)

Claim: VC ∈ NP

Proof:

Decider: Is ⟨G, k⟩ ∈ VC?

Verifier: Is ⟨G, k⟩ ∈ VC, given a candidate solution?
Vertex Cover (VC)

Claim: VC $\in \mathcal{NP}$

Proof:

Build a polynomial time verifier.

Vertex Cover: Given graph $G = (V, E)$ and integer $k \leq |V|$, is there $V' \subseteq V$, with $|V'| \leq k$, such that each edge in E contains an end point in V'?
Vertex Cover (VC)

Claim: VC ∈ \(NP\)

Proof:

Build a polynomial time verifier.

\[M = \text{on input } \langle \langle G, k \rangle, V' \rangle, \text{ where } V' \text{ is a subset of } V. \]

1. ???.
Vertex Cover (VC)

Claim: VC ∈ 𝑁𝑃

Proof:
Build a polynomial time verifier.

\[M = \text{on input } \langle \langle G, k \rangle, V' \rangle, \text{ where } V' \text{ is a subset of } V. \]
1. Test if \(|V'| \leq k \), reject if not.
Vertex Cover (VC)

Claim: \(VC \in NP \)

Proof:
Build a polynomial time verifier.

\[M = \text{on input } \langle \langle G, k \rangle, V' \rangle, \text{ where } V' \text{ is a subset of } V. \]

1. Test if \(|V'| \leq k\), reject if not.
2. ???
Vertex Cover (VC)

Claim: VC ∈ NP

Proof:

Build a polynomial time verifier.

\[M = \text{on input } \langle G, k \rangle, V' \rangle, \text{ where } V' \text{ is a subset of } V. \]

1. Test if \(|V'| \leq k\), reject if not.
2. For each edge \(e = (a, b)\) in \(E\),
 2.1 ??
Vertex Cover (VC)

Claim: VC ∈ NP

Proof:

Build a polynomial time verifier.

\[M = \text{on input } \langle G, k \rangle, V' \rangle, \text{ where } V' \text{ is a subset of } V. \]

1. Test if \(|V'| \leq k \), reject if not.
2. For each edge \(e = (a, b) \) in \(E \),
 2.1 Test if \(a \in V' \) or \(b \in V' \), ???.
Vertex Cover (VC)

Claim: $\text{VC} \in \mathcal{N}P$

Proof:

Build a polynomial time verifier.

\[
M = \text{on input } \langle \langle G, k \rangle, V' \rangle, \text{ where } V' \text{ is a subset of } V.
\]

1. Test if $|V'| \leq k$, **reject** if not.
2. For each edge $e = (a, b)$ in E,
 2.1 Test if $a \in V'$ or $b \in V'$, **reject** if neither.

Vertex Cover: Given graph $G = (V, E)$ and integer $k \leq |V|$, is there $V' \subseteq V$, with $|V'| \leq k$, such that each edge in E contains an end point in V'?
Vertex Cover (VC)

Claim: VC ∈ NP

Proof:

Build a polynomial time verifier.

\[M = \text{on input } \langle \langle G, k \rangle, V' \rangle, \text{ where } V' \text{ is a subset of } V. \]

1. Test if \(|V'| \leq k\), reject if not.
2. For each edge \(e = (a, b)\) in \(E\),
 2.1 Test if \(a \in V'\) or \(b \in V'\), reject if neither.
3. ???.
Vertex Cover (VC)

Claim: VC ∈ NP

Proof:

Build a polynomial time verifier.

\[M = \text{on input } \langle \langle G, k \rangle, V' \rangle, \text{ where } V' \text{ is a subset of } V. \]

1. Test if \(|V'| \leq k\), reject if not.
2. For each edge \(e = (a, b)\) in \(E\),
 2.1 Test if \(a \in V'\) or \(b \in V'\), reject if neither.
3. accept.
Vertex Cover (VC)

Claim: VC ∈ NP

Proof:

Build a polynomial time verifier.

$\mathcal{M} = \text{on input } \langle G, k, V' \rangle$, where V' is a subset of V.

$O(\cdot) \rightarrow 1. \text{ Test if } |V'| \leq k, \text{ reject if not.}$

2. For each edge $e = (a, b)$ in E,
 2.1 Test if $a \in V'$ or $b \in V'$, reject if neither.

3. accept.
Vertex Cover (VC)

Claim: VC ∈ NP

Proof:
Build a polynomial time verifier.

$|V| = n.$

$M = \text{on input } \langle G, k, V' \rangle, \text{ where } V' \text{ is a subset of } V.$

$O(1)$

1. Test if $|V'| \leq k$, reject if not.
2. For each edge $e = (a, b)$ in E,
 2.1 Test if $a \in V'$ or $b \in V'$, reject if neither.
3. accept.
Vertex Cover (VC)

Claim: \(VC \in NP \)

Proof:

Build a polynomial time verifier.

\(|V| = n. \)

\(M = \) on input \(\langle G, k \rangle, V' \rangle \), where \(V' \) is a subset of \(V \).

\(O(1) \rightarrow 1. \) Test if \(|V'| \leq k \), reject if not.

\(O(?) \rightarrow 2. \) For each edge \(e = (a, b) \) in \(E \),

2.1 Test if \(a \in V' \) or \(b \in V' \), reject if neither.

3. accept.
Vertex Cover (VC)

Claim: VC $\in \mathbb{NP}$

Proof:

Build a polynomial time verifier.

M on input $G = (V, E)$, $k \leq |V|$, V', where V' is a subset of V.

1. Test if $|V'| \leq k$, reject if not.

2. For each edge $e = (a, b)$ in E,
 2.1 Test if $a \in V'$ or $b \in V'$, reject if neither.

3. accept.

Vertex Cover: Given graph $G = (V, E)$ and integer $k \leq |V|$, is there $V' \subseteq V$, with $|V'| \leq k$, such that each edge in E contains an end point in V'?

At most, how many edges are in a graph with n vertices?

$|V| = O(1)$

What graph has the most number of edges?

Complete graph (every pair of vertices have an edge).

How many edges does a complete graph with n vertices have?

$O(?)$

How many edges leave each vertex? $n - 1$

How much does that all add up to? $n(n - 1)$

Did we double count any edges? Yes

So how many edges are there? $\frac{n(n-1)}{2} \in O(n^2)$
Claim: VC ∈ NP

Proof:

Build a polynomial time verifier.

\[|V| = n. \]

\[M = \text{on input } \langle \langle G, k \rangle, V' \rangle, \text{ where } V' \text{ is a subset of } V. \]

\[O(1) \rightarrow 1. \text{ Test if } |V'| \leq k, \text{ reject if not.} \]

\[O(n^2) \rightarrow 2. \text{ For each edge } e = (a, b) \text{ in } E, \]

\[\quad 2.1 \text{ Test if } a \in V' \text{ or } b \in V', \text{ reject if neither.} \]

\[3. \text{ accept.} \]
Vertex Cover (VC)

Claim: VC ∈ NP

Proof:

Build a polynomial time verifier.

\[|V| = n. \]

\[M = \text{on input } \langle G, k \rangle, V', \text{ where } V' \text{ is a subset of } V. \]

\[\mathcal{O}(1) \rightarrow 1. \text{ Test if } |V'| \leq k, \text{ reject if not.} \]

\[\mathcal{O}(n^2) \rightarrow 2. \text{ For each edge } e = (a, b) \text{ in } E, \]

\[\mathcal{O}(?) \rightarrow 2.1 \text{ Test if } a \in V' \text{ or } b \in V', \text{ reject if neither.} \]

\[3. \text{ accept.} \]
Vertex Cover (VC)

Claim: VC ∈ NP

Proof:

Build a polynomial time verifier.

|V| = n. M = on input 〈(G, k), V’〉, where V’ is a subset of V.

\[O(1)\rightarrow 1. \text{Test if } |V'| \leq k, \text{ reject if not.}\]

\[O(n^2)\rightarrow 2. \text{For each edge } e = (a, b) \text{ in } E,\]

\[O(n)\rightarrow 2.1 \text{Test if } a \in V' \text{ or } b \in V', \text{ reject if neither.}\]

3. accept.
Vertex Cover (VC)

Claim: VC ∈ NP

Proof:
Build a polynomial time verifier.

|V| = n.

\[M = \text{on input } \langle \langle G, k \rangle, V' \rangle, \text{ where } V' \text{ is a subset of } V. \]

\[O(1) \rightarrow 1. \text{ Test if } |V'| \leq k, \text{ reject if not.} \]

\[O(n^2) \rightarrow 2. \text{ For each edge } e = (a, b) \text{ in } E, \]

\[O(n) \rightarrow 2.1 \text{ Test if } a \in V' \text{ or } b \in V', \text{ reject if neither.} \]

\[O(?) \rightarrow 3. \text{ accept.} \]
Vertex Cover (VC)

Claim: VC ∈ NP

Proof:
Build a polynomial time verifier.

\[|V| = n. \]
\[M = \text{on input } \langle \langle G, k \rangle, V' \rangle, \text{ where } V' \text{ is a subset of } V. \]

\[O(1) \rightarrow 1. \text{ Test if } |V'| \leq k, \text{ reject if not.} \]

\[O(n^2) \rightarrow 2. \text{ For each edge } e = (a, b) \text{ in } E, \]

\[O(n) \rightarrow 2.1 \text{ Test if } a \in V' \text{ or } b \in V', \text{ reject if neither.} \]

\[O(1) \rightarrow 3. \text{ accept.} \]
Vertex Cover (VC)

Claim: \(VC \in NP \)

Proof:

Build a polynomial time verifier.

\(|V| = n. \)

\(M = \) on input \(\langle G, k \rangle, V' \rangle \), where \(V' \) is a subset of \(V \).

\[O(1) \rightarrow 1. \) Test if \(|V'| \leq k \), reject if not.

\[O(n^2) \rightarrow 2. \) For each edge \(e = (a, b) \) in \(E \),

\[O(n) \rightarrow 2.1 \) Test if \(a \in V' \) or \(b \in V' \), reject if neither.

\[O(1) \rightarrow 3. \) accept.

For \(|V| = n \), \(M \) runs in \(O(n^3) \) time, therefore \(VC \in NP \).
NP

P is the set of languages that are decidable in polynomial time on a deterministic single-tape TM.

To show something is in P, build a polynomial time decider for it.

NP is the set of languages that have polynomial time verifiers.
\mathbf{NP}

\mathbf{P} is the set of languages that are decidable in polynomial time on a deterministic single-tape TM.

To show something is in \mathbf{P}, build a polynomial time decider for it.

$\mathbf{NP} \begin{cases} \text{Set of languages that have polynomial time verifiers.} \\
\text{Set of languages that are decidable by nondeterministic polynomial time TMs.} \end{cases}$
NP is the set of languages that are decidable in polynomial time on a deterministic single-tape TM.

To show something is in P, build a polynomial time decider for it.

Set of languages that have polynomial time verifiers.

Set of languages that are decidable by nondeterministic polynomial time TMs.

Nondeterministic polynomial time decider:

1. Pick a potential solution.
2. Verify its correctness.
Vertex Cover (VC)

Claim: $VC \in NP$

Proof:

$M = \text{on input } \langle G, k, V' \rangle$, where V' is a subset of V.

1. Test if $|V'| \leq k$, reject if not.
2. For each edge $e = (a, b)$ in E,
 2.1 Test if $a \in V'$ or $b \in V'$,
 reject if neither.
3. accept.
Vertex Cover (VC)

Claim: VC ∈ NP

Proof:

\[
M = \text{on input } \langle G, k \rangle, \text{ where } V' \text{ is a subset of } V. \\
1. \text{ Test if } |V'| \leq k, \text{ reject if not.} \\
2. \text{ For each edge } e = (a, b) \text{ in } E, \\
 2.1 \text{ Test if } a \in V' \text{ or } b \in V', \\
 \text{ reject if neither.} \\
3. \text{ accept.}
\]

Vertex Cover: Given graph \(G = (V, E) \) and integer \(k \leq |V| \), is there \(V' \subseteq V \), with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \)?
P versus NP

P is the set of languages that are decidable in polynomial time on a deterministic single-tape TM.

To show something is in P, build a polynomial time decider for it.

NP is the set of languages that have polynomial time verifiers.

Set of languages that are decidable by nondeterministic polynomial time TMs.

To show something is in NP, build a polynomial time verifier (or nondeterministic decider) for it.
P versus NP

$P \overset{?}{=} NP$

Solvable in polynomial time

Verifiable in polynomial time
P versus NP

Can all problems that are verifiable in polynomial time be solved in polynomial time?
Independent Set (IS)

Independent Set: Given a graph $G = (V, E)$ and integer $k \leq |V|$, is there a subset V' of size $\geq k$, such that no two vertices $\in V'$ are adjacent?
Independent Set (IS)

Independent Set: Given a graph $G = (V, E)$ and integer $k \leq |V|$, is there a subset V' of size $\geq k$, such that no two vertices $\in V'$ are adjacent?

Is there an IS $\leq k$ for $k = 1$?
Independent Set (IS)

Independent Set: Given a graph $G = (V, E)$ and integer $k \leq |V|$, is there a subset V' of size $\geq k$, such that no two vertices $\in V'$ are adjacent?

Is there an IS $\leq k$ for $k = 1$?

Yes! Any vertex by itself is an IS!
Independent Set (IS)

Independent Set: Given a graph $G = (V, E)$ and integer $k \leq |V|$, is there a subset V' of size $\geq k$, such that no two vertices $\in V'$ are adjacent?

What is the optimal (i.e., largest) independent set?
Independent Set (IS)

Independent Set: Given a graph $G = (V, E)$ and integer $k \leq |V|$, is there a subset V' of size $\geq k$, such that no two vertices $\in V'$ are adjacent?

What is the optimal (i.e., largest) independent set?
Claim: IS \(\in NP\)

Proof:

Independent Set (IS)

Independent Set: Given a graph \(G = (V, E)\) and integer \(k \leq |V|\), is there \(V' \subseteq V\), with \(|V'| \geq k\), such that no two vertices \(\in V'\) are adjacent?
Independent Set (IS)

Claim: \(\text{IS} \in \mathcal{NP} \)

Proof:

Build a polynomial time verifier.

\[M = \text{on input } \langle \langle G, k \rangle, ?? \rangle \]
Independent Set (IS)

Claim: IS ∈ \(NP\)

Proof:

Build a polynomial time verifier.

\[M = \text{on input } \langle G, k \rangle, V', \text{ where } V' \text{ is a subset of } V. \]
Independent Set (IS)

Claim: IS ∈ NP

Proof:

Build a polynomial time verifier.

\[M = \text{on input } \langle G, k, V' \rangle, \text{ where } V' \text{ is a subset of } V. \]

1. ????
Independent Set (IS)

Claim: IS $\in \mathcal{NP}$

Proof:
Build a polynomial time verifier.

$M = \text{on input } \langle (G, k), V' \rangle, \text{ where } V' \subseteq V.$

1. Test if $|V'| \geq k$, reject if not.

2. ???
Independent Set (IS)

Claim: $\text{IS} \in \mathcal{NP}$

Proof:

Build a polynomial time verifier.

$$M = \text{on input } \langle \langle G, k \rangle, V' \rangle, \text{ where } V' \text{ is a subset of } V.$$

1. Test if $|V'| \geq k$, reject if not.
2. For each pair of vertices v_1, v_2 in V',

 2.1 ???
Independent Set (IS)

Claim: IS ∈ NP

Proof:

Build a polynomial time verifier.

\[M = \text{on input } \langle (G, k), V' \rangle, \text{ where } V' \text{ is a subset of } V. \]

1. Test if \(|V'| \geq k\), reject if not.
2. For each pair of vertices \(v_1, v_2\) in \(V'\),
 2.1 Test if \((v_1, v_2) \in E\) and reject if it is.
3. ???

Independent Set: Given a graph \(G = (V, E)\) and integer \(k \leq |V|\), is there \(V' \subseteq V\), with \(|V'| \geq k\), such that no two vertices \(\in V'\) are adjacent?
Independent Set (IS)

Claim: IS ∈ NP

Proof:

Build a polynomial time verifier.

\[M = \text{on input } \langle (G, k), V' \rangle, \text{ where } V' \text{ is a subset of } V. \]

1. Test if \(|V'| \geq k\), reject if not.

2. For each pair of vertices \(v_1, v_2\) in \(V'\),

 2.1 Test if \((v_1, v_2) \in E\) and reject if it is.

3. accept.
Independent Set (IS)

Claim: IS ∈ \(NP \)

Proof:

Build a polynomial time verifier.

\(|V| = n. \)

\(M = \) on input \(\langle G, k \rangle, V' \), where \(V' \) is a subset of \(V \).

\(O(\cdot) \)

1. Test if \(|V'| \geq k \), reject if not.

2. For each pair of vertices \(v_1, v_2 \) in \(V' \),

 2.1 Test if \((v_1, v_2) \in E \) and reject if it is.

3. accept.
Independent Set (IS)

Claim: IS \(\in\) \(N_P\)

Proof:

Build a polynomial time verifier.

\(M = \text{on input } \langle G, k, V' \rangle, \text{ where } V' \text{ is a subset of } V.\)

\(O(1)\)

1. Test if \(|V'| \geq k\), reject if not.

2. For each pair of vertices \(v_1, v_2\) in \(V'\),

 2.1 Test if \((v_1, v_2) \in E\) and reject if it is.

3. accept.
Independent Set (IS)

Claim: IS ∈ \(NP\)

Proof:

Build a polynomial time verifier.

\(|V| = n.\)

\(M = \) on input \(\langle G, k \rangle, V' \rangle\), where \(V'\) is a subset of \(V\).

\(O(1)\) → 1. Test if \(|V'| \geq k\), reject if not.

\(O(?)\) → 2. For each pair of vertices \(v_1, v_2\) in \(V'\),

2.1 Test if \((v_1, v_2) \in E\) and reject if it is.

3. accept.
Independent Set (IS)

Claim: IS $\in \mathcal{NP}$

Proof:

Build a polynomial time verifier.

$|V| = n.$ $M =$ on input $\langle G, k \rangle, V'$, where V' is a subset of V.

$O(1) \rightarrow$ 1. Test if $|V'| \geq k$, reject if not.

$O(n^2) \rightarrow$ 2. For each pair of vertices v_1, v_2 in V',

2.1 Test if $(v_1, v_2) \in E$ and reject if it is.

3. accept.

Independent Set: Given a graph $G = (V, E)$ and integer $k \leq |V|$, is there $V' \subseteq V$, with $|V'| \geq k$, such that no two vertices $\in V'$ are adjacent?
Independent Set (IS)

Claim: IS ∈ \(NP\)

Proof:

Build a polynomial time verifier.

|\(|V| = n. M = \text{on input } \langle(G, k), V'\rangle, \text{ where } V' \text{ is a subset of } V.\)

\(O(1)\) 1. Test if |\(V'\)| ≥ \(k\), \texttt{reject} if not.

\(O(n^2)\) 2. For each pair of vertices \(v_1, v_2\) in \(V'\),

\(O(\cdot)\) 2.1 Test if \((v_1, v_2) \in E\) and \texttt{reject} if it is.

3. \texttt{accept}.
Independent Set (IS)

Claim: IS ∈ \(NP \)

Proof:

Build a polynomial time verifier.

\[|V| = n. \]

\[M = \text{on input } \langle G, k \rangle, V' \rangle, \text{ where } V' \text{ is a subset of } V. \]

\[O(1) \rightarrow 1. \text{ Test if } |V'| \geq k, \text{ reject if not.} \]

\[O(n^2) \rightarrow 2. \text{ For each pair of vertices } v_1, v_2 \text{ in } V', \]

\[O(n^2) \rightarrow 2.1 \text{ Test if } (v_1, v_2) \in E \text{ and reject if it is.} \]

\[3. \text{ accept.} \]
Independent Set (IS)

Claim: IS ∈ NP

Proof:
Build a polynomial time verifier.

\[|V| = n. \]

\[M = \text{on input } \langle G, k \rangle, V' \rangle, \text{ where } V' \text{ is a subset of } V. \]

\[O(1) \rightarrow 1. \text{ Test if } |V'| \geq k, \text{ reject if not.} \]

\[O(n^2) \rightarrow 2. \text{ For each pair of vertices } v_1, v_2 \text{ in } V', \]

\[O(n^2) \rightarrow 2.1 \text{ Test if } (v_1, v_2) \in E \text{ and reject if it is.} \]

\[O(?) \rightarrow 3. \text{ accept.} \]
Independent Set (IS)

Claim: IS $\in \mathcal{NP}$

Proof:

Build a polynomial time verifier.

$|V| = n$. $M = on input \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of V.

$O(1) \rightarrow 1. \) Test if $|V'| \geq k$, reject if not.

$O(n^2) \rightarrow 2. \) For each pair of vertices v_1, v_2 in V',

$O(n^2) \rightarrow 2.1 \) Test if $(v_1, v_2) \in E$ and reject if it is.

$O(1) \rightarrow 3. \) accept.
Independent Set (IS)

Claim: IS ∈ NP

Proof:

Build a polynomial time verifier.

\[|V| = n. \]

\[M = \text{on input } \langle \langle G, k \rangle, V' \rangle, \text{ where } V' \text{ is a subset of } V. \]

1. Test if \(|V'| \geq k\), reject if not.

2. For each pair of vertices \(v_1, v_2\) in \(V'\),

2.1 Test if \((v_1, v_2) \in E\) and reject if it is.

3. accept.

For \(|V| = n\), M runs in \(O(n^4)\) time, therefore IS ∈ NP.