NP-Complete
CSCI 338
Vertex Cover (VC)

Vertex Cover: Given graph $G = (V, E)$ and integer $k \leq |V|$, is there $V' \subseteq V$, with $|V'| \leq k$, such that each edge in E contains an end point in V'?
Independent Set (IS)

Independent Set: Given a graph $G = (V, E)$ and integer $k \leq |V|$, is there a subset V' of size $\geq k$, such that no two vertices $\in V'$ are adjacent?
SAT & 3SAT

\[\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor x_2) \land (\overline{x_1} \lor x_2 \lor x_2) \]

\(\phi \) is a formula with clauses composed of Boolean variables connected by ORs, and clauses connected by ANDs.
SAT & 3SAT

\[\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2) \]

\(\phi \) is a formula with clauses composed of Boolean variables connected by ORs, and clauses connected by ANDs.
SAT & 3SAT

\[\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2) \]

\(\phi \) is a formula with clauses composed of Boolean variables connected by ORs, and clauses connected by ANDs.
\[\phi = (x_1 \lor x_1 \lor x_2) \land (x_1 \lor \overline{x_2} \lor x_2) \land (\overline{x_1} \lor x_2 \lor x_2) \]

\(\phi \) is a formula with clauses composed of Boolean variables connected by ORs, and clauses connected by ANDs.
\[\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor x_2) \land (x_1 \lor x_2 \lor x_2) \]

\(\phi \) is a formula with clauses composed of Boolean variables connected by ORs, and clauses connected by ANDs.

(called conjunctive normal form – CNF)
SAT & 3SAT

\[\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor x_2 \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2) \]

\(\phi \) is a formula with clauses composed of Boolean variables connected by ORs, and clauses connected by ANDs.

Can you set the variables to **true** or **false** so that \(\phi \) evaluates to **true**?
SAT & 3SAT

\[\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_2) \land (\overline{x}_1 \lor x_2 \lor x_2) \]

\[x_1 = false \]
\[x_2 = true \]
$ SAT \ & \ 3SAT$

$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

$$\downarrow \downarrow \downarrow$$

$$(F \lor F \lor T) \quad (T \lor F \lor F) \quad (T \lor T \lor T)$$

$x_1 = false$

$x_2 = true$
SAT & 3SAT

\[\phi = (x_1 \lor x_1 \lor x_2) \land (x_1 \lor x_2 \lor x_2) \land (x_1 \lor x_2 \lor x_2) \]

\[(F \lor F \lor T) \quad (T \lor F \lor F) \quad (T \lor T \lor T) \]

\[T \quad T \quad T \]

\[x_1 = false \]
\[x_2 = true \]
SAT & 3SAT

\[\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2) \]

\[(F \lor F \lor T) \quad (T \lor F \lor F) \quad (T \lor T \lor T) \]

\[T \quad T \quad T \]

\[x_1 = false \quad x_2 = true \]
SAT & 3SAT

\[
\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)
\]

\[
(F \lor F \lor T) \quad (T \lor F \lor F) \quad (T \lor T \lor T)
\]

\[
x_1 = \text{false} \quad x_2 = \text{true}
\]

\[
SAT = \{\langle \phi \rangle: \phi \text{ is a satisfiable formula} \}
\]

\[
3SAT = \{\langle \phi \rangle: \phi \text{ is a satisfiable formula with 3 variables per clause} \}
\]
P and NP
P and NP

Stuff we can solve in polynomial time.
P and NP

Stuff we can solve in polynomial time.
P and NP

- P: Stuff we can solve in polynomial time.
- NP: Stuff we can verify solutions to in polynomial time.
P versus NP
NP-Complete

$P \subseteq NP$

NP-Complete
A solution to an NP-Complete problem can be used to solve any problem in NP, with just polynomial extra time.
A solution to an *NP-Complete problem* can be used to solve any problem in *NP*, with just polynomial extra time.
A solution to an *NP*-Complete problem can be used to solve *any problem in NP*, with just polynomial extra time.
A solution to an \textit{NP}-Complete problem can be used to solve any problem in \textit{NP}, with just polynomial extra time.
A solution to an NP-Complete problem can be used to solve any problem in NP, with just polynomial extra time.
A solution to an \textit{NP-Complete} problem can be used to solve any problem in \textit{NP}, with just polynomial extra time.
A solution to an *NP*-Complete problem can be used to solve any problem in *NP*, with just polynomial extra time.

NP-Complete Problems:
- Vertex Cover
A solution to an \textit{NP-Complete problem} can be used to solve \textit{any problem in NP}, with just polynomial extra time.
A solution to an NP-Complete problem can be used to solve any problem in NP, with just polynomial extra time.

NP-Complete Problems:
- Vertex Cover
- Independent Set
- SAT
- 3-SAT
A solution to an \textit{NP-Complete} problem can be used to solve \textit{any problem in NP}, with just polynomial extra time.

\textit{NP-Complete} Problems:
- Vertex Cover
- Independent Set
- SAT
- 3-SAT

What if \exists polynomial time algorithm for \textit{Vertex Cover}?
A solution to an NP-Complete problem can be used to solve any problem in NP, with just polynomial extra time.

What if \exists polynomial time algorithm for Vertex Cover?
- It could be used to solve any problem in NP in polynomial time.

NP-Complete

NP-Complete Problems:
- Vertex Cover
- Independent Set
- SAT
- 3-SAT
A solution to an \textit{NP-Complete problem} can be used to solve \textit{any problem in NP}, with just polynomial extra time.

\textit{NP-Complete Problems:}
\begin{itemize}
 \item Vertex Cover
 \item Independent Set
 \item SAT
 \item 3-SAT
\end{itemize}

What if \exists polynomial time algorithm for \textit{Vertex Cover}?
\begin{itemize}
 \item It could be used to solve \textit{any problem in NP} in polynomial time.
 \item $P = NP$.
A solution to an $\textit{NP-Complete}$ problem can be used to solve any problem in \textit{NP}, with just polynomial extra time.

What if \exists polynomial time algorithm for $\textit{3-SAT}$?
A solution to an NP-Complete problem can be used to solve any problem in NP, with just polynomial extra time.

What if \exists polynomial time algorithm for 3-SAT?
- It could be used to solve any problem in NP in polynomial time.

NP-Complete Problems:
- Vertex Cover
- Independent Set
- SAT
- 3-SAT
A solution to an \textit{NP}-Complete problem can be used to solve \textit{any problem in NP}, with just polynomial extra time.

What if \(\exists\) polynomial time algorithm for 3-SAT?
- It could be used to solve \textit{any problem in NP} in polynomial time.
- \(P = NP\).
A solution to an NP-Complete problem can be used to solve any problem in NP, with just polynomial extra time.

NP-Complete Problems:
- Vertex Cover
- Independent Set
- SAT
- 3-SAT

What if \exists polynomial time algorithm for 3-SAT?
- It could be used to solve any problem in NP in polynomial time.
- $P = NP$.
NP-Complete

NP-Complete Problems:
- Vertex Cover
- Independent Set
- SAT
- 3-SAT
NP-Complete

P Problems:
- Shortest Path
- Searching
- Sorting

NP Complete Problems:
- Vertex Cover
- Independent Set
- SAT
- 3-SAT
Are there problems in NP, but not P or NP-Complete?
Are there problems in NP, but not P or NP-Complete?

- We don’t know.
Are there problems in \(NP \), but not \(P \) or \(NP \)-Complete?

- We don’t know. If so, \(P \neq NP \).
Are there problems in \(NP \), but not \(P \) or \(NP \)-Complete?

- We don’t know. If so, \(P \neq NP \).
- Suspected problems in \(NP \) but not \(P \) or \(NP \)-Complete:
Are there problems in \(NP \), but not \(P \) or \(NP \)-Complete?

- We don’t know. If so, \(P \neq NP \).
- Suspected problems in \(NP \) but not \(P \) or \(NP \)-Complete:
 - Graph Isomorphism.
Are there problems in NP, but not P or NP-Complete?

- We don’t know. If so, $P \neq NP$.
- Suspected problems in NP but not P or NP-Complete:
 - Graph Isomorphism.
 - Integer Factorization.
A solution to an *NP*-Complete problem can be used to solve any problem in *NP*, with just polynomial extra time.
A solution to an NP-Complete problem can be used to solve any problem in NP, with just polynomial extra time.

Too vague. Need formal definition.
Polynomial Time Reductions

A solution to an \textit{NP}-Complete problem can be used to solve any problem in \textit{NP}, with just polynomial extra time.

What do we mean by using the solution to a problem to solve another problem?
Polynomial Time Reductions

A reduces to B if A can be solved with a solver for B.

A solution to an NP-Complete problem can be used to solve any problem in NP, with just polynomial extra time.

What do we mean by using the solution to a problem to solve another problem?
Polynomial Time Reductions

A reduces to B if A can be solved with a solver for B.

Language A is **polynomial time reducible** to language B, written $A \leq_p B$, if a polynomial time function f exists where,

$$\omega \in A \iff f(\omega) \in B$$
Polynomial Time Reductions

A reduces to B if A can be solved with a solver for B.

Problem A: Find Max
Problem B: Sort
Polynomial Time Reductions

A reduces to B if A can be solved with a solver for B.

Problem A: Find Max
Problem B: Sort
Polynomial Time Reductions

A reduces to B if A can be solved with a solver for B.

Problem A: Find Max
Problem B: Sort

Find Max Algorithm
Polynomial Time Reductions

Problem A Solver

A Input → B Input → B Solver → B Solution → A Solution

A reduces to B if A can be solved with a solver for B.

Problem A: Find Max
Problem B: Sort

Find Max Algorithm

List L → Sort Input → Sorting Algorithm → Sort Solution → Max Solution
Polynomial Time Reductions

A reduces to B if A can be solved with a solver for B.

Problem A: Find Max
Problem B: Sort

Find Max Algorithm
Polynomial Time Reductions

A reduces to B if A can be solved with a solver for B.

Problem A Solver

A Input → B Input → B Solver → B Solution → A Solution

A reduces to B if A can be solved with a solver for B.

Problem A: Find Max
Problem B: Sort

Find Max Algorithm

List L → List L → Sorting Algorithm → Sorted List L’ → Max Solution
Polynomial Time Reductions

Problem A Solver

A reduces to B if A can be solved with a solver for B.

Problem A: Find Max
Problem B: Sort

Find Max Algorithm

return L'[0]
Polynomial Time Reductions

A reduces to B if A can be solved with a solver for B.

Problem A: Find Max
Problem B: Sort

Find Max Algorithm

```
return L'[0]
```
Polynomial Time Reductions

A reduces to B if A can be solved with a solver for B.
Polynomial Time Reductions

A reduces to B if A can be solved with a solver for B.

Our Responsibility
Polynomial Time Reductions

A reduces to B if A can be solved with a solver for B.

Our Responsibility

To show A reduces to B:

• Show any instance of A can be translated to some instance of B.
• The solution to B can be translated back to a solution to A.
Polynomial Time Reductions

A reduces to B if A can be solved with a solver for B.

Our Responsibility

To show A reduces to B:
• Show *any* instance of A can be translated to *some* instance of B.
• The solution to B can be translated back to a solution to A.
\(NP\)-Complete

\(B\) is in \(NP\)-Complete if it satisfies two conditions:

1. \(B \in NP\).
2. For every \(A \in NP\), \(A \leq_P B\).
NP-Complete

B is in NP-Complete if it satisfies two conditions:
1. $B \in NP$.
2. For every $A \in NP$, $A \leq_{P} B$.

"Every problem in NP can be solved by an algorithm for B in polynomial extra time."
NP-Complete

B is in NP-Complete if it satisfies two conditions:

1. $B \in NP$.
2. For every $A \in NP$, $A \leq_P B$.
NP-Complete

\[B \text{ is in } NP-\text{Complete} \text{ if it satisfies two conditions:} \]

1. \(B \in NP \).
2. For every \(A \in NP \), \(A \leq_P B \).

Suppose \(B \) is an \(NP-C \) problem.
NP-Complete

B is in NP-Complete if it satisfies two conditions:
1. $B \in NP$.
2. For every $A \in NP$, $A \leq_P B$.

Suppose B is an NP-C problem. Suppose C is a problem in NP.
Suppose B is an NP-C problem. Suppose C is a problem in NP. Suppose $B \leq_p C$.

B is in NP-Complete if it satisfies two conditions:
1. $B \in NP$.
2. For every $A \in NP$, $A \leq_p B$.

NP-Complete

$P \subseteq NP$
\textit{NP}–Complete

\(B \) is in \textit{NP}–Complete if it satisfies two conditions:
1. \(B \in \textit{NP} \).
2. For every \(A \in \textit{NP} \), \(A \leq _p B \).

Suppose \(B \) is an \textit{NP}–C problem.
Suppose \(C \) is a problem in \textit{NP}.
Suppose \(B \leq _p C \).
Prove \(C \) is an \textit{NP}–C problem:
\(B \) is in \(NP \)-Complete if it satisfies two conditions:

1. \(B \in NP \).
2. For every \(A \in NP \), \(A \leq_p B \).

Suppose \(B \) is an \(NP \)-C problem. Suppose \(C \) is a problem in \(NP \). Suppose \(B \leq_p C \).

Prove \(C \) is an \(NP \) – \(C \) problem:

\[\forall A \in NP , A \leq_p B \]
NP-Complete

\[P \subseteq NP \]

Suppose \(B \) is an \(NP \)-C problem. Suppose \(C \) is a problem in \(NP \). Suppose \(B \leq_P C \).

Prove \(C \) is an \(NP - C \) problem:
\[\forall A \in NP, A \leq_P B \leq_P C \]
NP-Complete

B is in NP-Complete if it satisfies two conditions:
1. $B \in NP$.
2. For every $A \in NP$, $A \leq_p B$.

Suppose B is an NP-C problem.
Suppose C is a problem in NP.
Suppose $B \leq_p C$.
Prove C is an $NP - C$ problem:
\[\forall A \in NP, A \leq_p B \leq_p C \Rightarrow \forall A \in NP, A \leq_p C \]
NP-Complete

B is in NP-Complete if it satisfies two conditions:
1. $B \in NP$.
2. For every $A \in NP$, $A \leq_P B$.

B is in NP-Complete if it satisfies two conditions:
1. $B \in NP$.
2. For some $A \in NP$-C, $A \leq_P B$.
B is in NP-Complete if it satisfies two conditions:
1. $B \in \text{NP}$.
2. For some $A \in \text{NP}$, $A \leq_{p} B$.

NP-Complete
Cook-Levin Theorem

Claim: $SAT \in NP$-Complete

Proof:
Cook-Levin Theorem

Claim: $SAT \in NP$-Complete

Proof:

$SAT = \{ \langle \phi \rangle : \phi \text{ is a satisfiable formula} \}$

E.g. $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor x_2) \land (\overline{x_1} \lor x_2 \lor x_2)$
Cook-Levin Theorem

Claim: $SAT \in NP$-Complete

Proof: Elaborate...
B is in NP-Complete if it satisfies two conditions:

1. $B \in NP$.
2. For every $A \in NP$, $A \leq_p B$.

B is in NP-Complete if it satisfies two conditions:

1. $B \in NP$.
2. For some $A \in NP$-C, $A \leq_p B$.
B is in NP-Complete if it satisfies two conditions:
1. $B \in NP$.
2. For every $A \in NP$, $A \leq_P B$.

B is in NP-Complete if it satisfies two conditions:
1. $B \in NP$.
2. For some $A \in NP-C$, $A \leq_P B$.

SAT
NP-Complete

How to show something (B) is in NP-Complete?

B is in NP-Complete if it satisfies two conditions:

1. $B \in NP$.
2. For some $A \in NP-C$, $A \leq_p B$.
NP-Complete

How to show something \((B)\) is in \(NP\)-Complete?

1. Show it is in \(NP\).

\(B\) is in \(NP\)-Complete if it satisfies two conditions:

1. \(B \in NP\).
2. For some \(A \in NP-C\), \(A \leq_p B\).
NP-Complete

How to show something \((B)\) is in \(NP\)-Complete?

1. Show it is in \(NP\).
2. Pick some known \(NP\)-Complete problem \(A\).

\[
\begin{align*}
B \text{ is in } NP\text{-Complete if it satisfies two conditions:} & \\
1. & B \in NP. \\
2. & \text{For some } A \in NP\text{-C, } A \leq_p B.
\end{align*}
\]
NP-Complete

How to show something \((B)\) is in \(NP\)-Complete?

1. Show it is in \(NP\).
2. Pick some known \(NP\)-Complete problem \(A\).
3. Show that a solver for \(B\) can solve \(A\) in polynomial extra time.

\(B\) is in \(NP\)-Complete if it satisfies two conditions:

1. \(B \in NP\).
2. For some \(A \in NP-C\), \(A \leq_p B\).