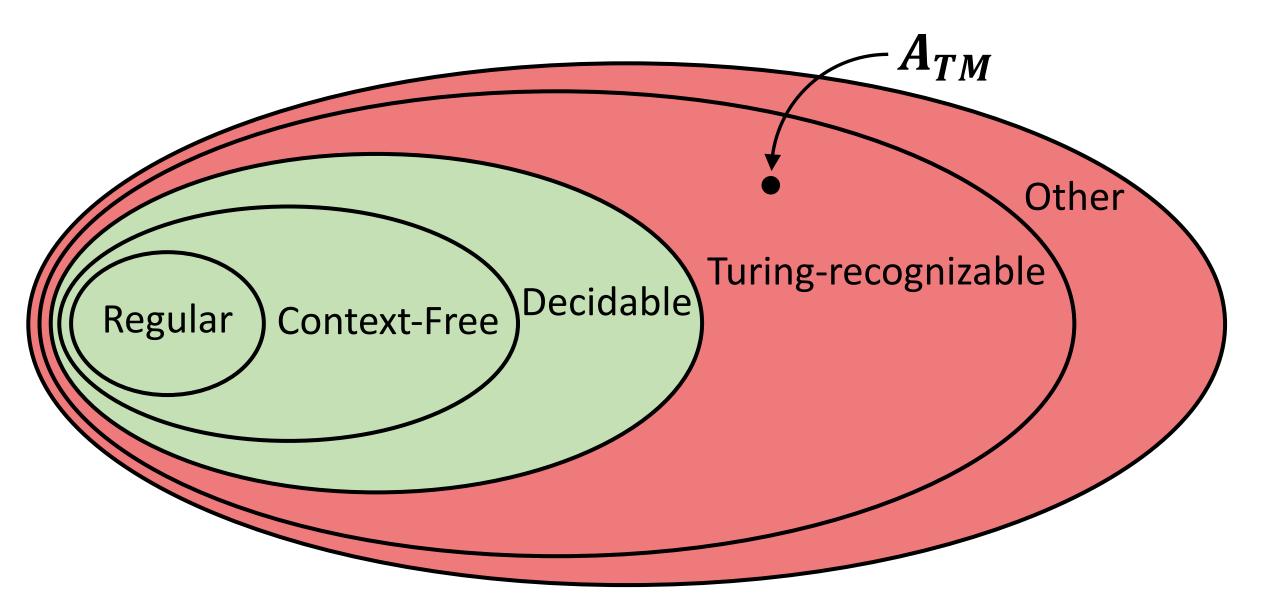
Undecidability CSCI 338


A_{TM}

Claim: $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ accepts } \omega\}$ is undecidable.

Proof: Suppose A_{TM} is decidable. Let TM H be its decider: $H(\langle M, \omega \rangle) = \frac{1}{\sqrt{1 - \frac{1}{2}}} \operatorname{accept, if} M \operatorname{accepts} \omega$ reject, if M does not accept ω Make a new TM D: D = on input $\langle N \rangle$, for TM N 1. Run *H* on $\langle N, \langle N \rangle \rangle$. 2. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>. What happens with $D(\langle D \rangle)$? $D(\langle D \rangle) = \int \operatorname{accept} if D \operatorname{does} \operatorname{not} \operatorname{accept} \langle D \rangle$ reject, if D accepts $\langle D \rangle$ D accepts $\langle D \rangle$, so long as D does not accept $\langle D \rangle$.

 \Rightarrow TM *D* cannot exist \Rightarrow TM *H* cannot exist \Rightarrow A_{TM} is undecidable

Computability Hierarchy

Claim: $HALT_{TM} = \{ \langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega \}$ is undecidable.

Proof:

Claim: $HALT_{TM} = \{ \langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega \}$ is undecidable.

Proof:

We are going to show that a decider for $HALT_{TM}$ can be used to build a decider for A_{TM} .

 $A_{TM} = \{ \langle M, \omega \rangle : M \text{ is a}$ TM and M accepts $\omega \}$

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega\}$ is undecidable.

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider.

 $A_{TM} = \{ \langle M, \omega \rangle : M \text{ is a} \}$ TM and *M* accepts $\omega \}$

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega\}$ is undecidable.

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider. Build a TM S that decides A_{TM} : S = on input $\langle M, \omega \rangle$ 1.

> $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a}$ TM and M accepts $\omega\}$

Claim: $HALT_{TM} = \{ \langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega \}$ is undecidable.

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider. Build a TM S that decides A_{TM} : S = on input $\langle M, \omega \rangle$

1. Run *H* on $\langle M, \omega \rangle$.

 $A_{TM} = \{ \langle M, \omega \rangle : M \text{ is a} \}$ TM and *M* accepts $\omega \}$

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega\}$ is undecidable.

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

- $S = \text{on input } \langle M, \omega \rangle$
 - 1. Run *H* on $\langle M, \omega \rangle$.
 - 2. If *H* rejects, reject (i.e. *M* does not halt on ω).

 $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a}$ TM and M accepts $\omega\}$

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega\}$ is undecidable.

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

- $S = \text{on input } \langle M, \omega \rangle$
 - 1. Run *H* on $\langle M, \omega \rangle$.
 - 2. If *H* rejects, <u>reject</u> (i.e. *M* does not halt on ω).
 - 3. If *H* accepts, run *M* on ω until it halts.

 $A_{TM} = \{ \langle M, \omega \rangle : M \text{ is a} \}$ TM and *M* accepts $\omega \}$

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega\}$ is undecidable.

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

- $S = \text{on input } \langle M, \omega \rangle$
 - 1. Run *H* on $\langle M, \omega \rangle$.
 - 2. If *H* rejects, reject (i.e. *M* does not halt on ω).
 - 3. If *H* accepts, run *M* on ω until it halts.
 - 4. If *M* accepts, <u>accept</u>. If *M* rejects, <u>reject</u>.

 $A_{TM} = \{ \langle M, \omega \rangle : M \text{ is a}$ TM and M accepts $\omega \}$

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega\}$ is undecidable.

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

- $S = \text{on input } \langle M, \omega \rangle$
 - 1. Run *H* on $\langle M, \omega \rangle$.
 - 2. If *H* rejects, <u>reject</u> (i.e. *M* does not halt on ω).
 - 3. If *H* accepts, run *M* on ω until it halts.
 - 4. If *M* accepts, <u>accept</u>. If *M* rejects, <u>reject</u>.

If *M* accepts ω , *S* accepts. If *M* does not accept ω , *S* rejects. Thus, *S* is a decider for A_{TM} , which is a contradiction, so $HALT_{TM}$ is undecidable.

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega\}$ is undecidable.

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

S =on input $\langle M, \omega \rangle$

1. Run *H* on $\langle M, \omega \rangle$.

2. If H rejects, reject (i.e. M does not halt on ω).

3. If H accepts, run M on ω until it halts.

4. If *M* accepts, <u>accept</u>. If *M* rejects, <u>reject</u>.

S is a decider for A_{TM} , which is a contradiction. $\therefore HALT_{TM}$ is undecidable. There is sort of a undecidability proof "blueprint", but it is not as helpful.

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega\}$ is undecidable. New problem Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider. Build a TM S that decides A_{TM} : S =on input $\langle M, \omega \rangle$ There is sort of a undecidability proof S is a decider for A_{TM} , which is a contradiction. "blueprint", but it is \rightarrow HALT_{TM} is undecidable. not as helpful.

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega\}$ is undecidable. New problem Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider. Build a TM S that decides A_{TM} . Known undecidable problem $S = \text{on input} \langle M, \omega \rangle$ There is sort of a S is a decider for A_{TM} , which is a contradiction. undecidability proof "blueprint", but it is \rightarrow HALT_{TM} is undecidable. not as helpful.

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega\}$ is undecidable. New problem Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider. Known undecidable problem Build a TM S that decides A_{TM} . S = on input $\langle M, \omega \rangle$ 1. Run H on $\langle M, \omega \rangle$. Input to known problem There is sort of a S is a decider for A_{TM} , which is a contradiction. undecidability proof "blueprint", but it is \blacktriangleright HALT_{TM} is undecidable. not as helpful.

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega\}$ is undecidable. New problem Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider. Known undecidable problem Build a TM S that decides A_{TM} S =on input $\langle M, \omega \rangle$ Input to known problem 1. Ru Decider ej fors, r known problem There is sort of a S is a decider for A_{TM} , which is a contradiction. undecidability proof "blueprint", but it is \blacktriangleright HALT_{TM} is undecidable.

not as helpful.

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega\}$ is undecidable.

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

- $S = \text{on input } \langle M, \omega \rangle$
 - 1. Run *H* on $\langle M, \omega \rangle$.
 - 2. If *H* rejects, <u>reject</u> (i.e. *M* does not halt on ω).
 - 3. If *H* accepts, run *M* on ω until it halts.
 - 4. If *M* accepts, <u>accept</u>. If *M* rejects, <u>reject</u>.

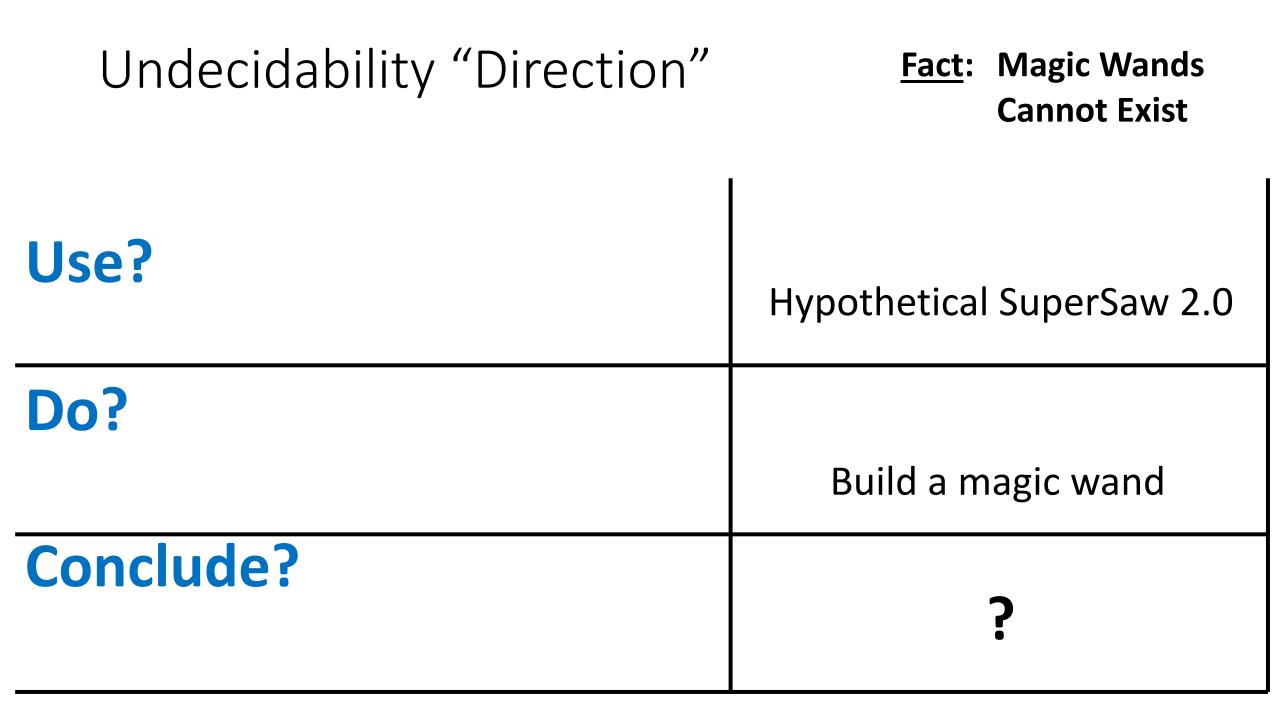
If *M* accepts ω , *S* accepts. If *M* does not accept ω , *S* rejects. Thus, *S* is a decider for A_{TM} , which is a contradiction, so $HALT_{TM}$ is undecidable.

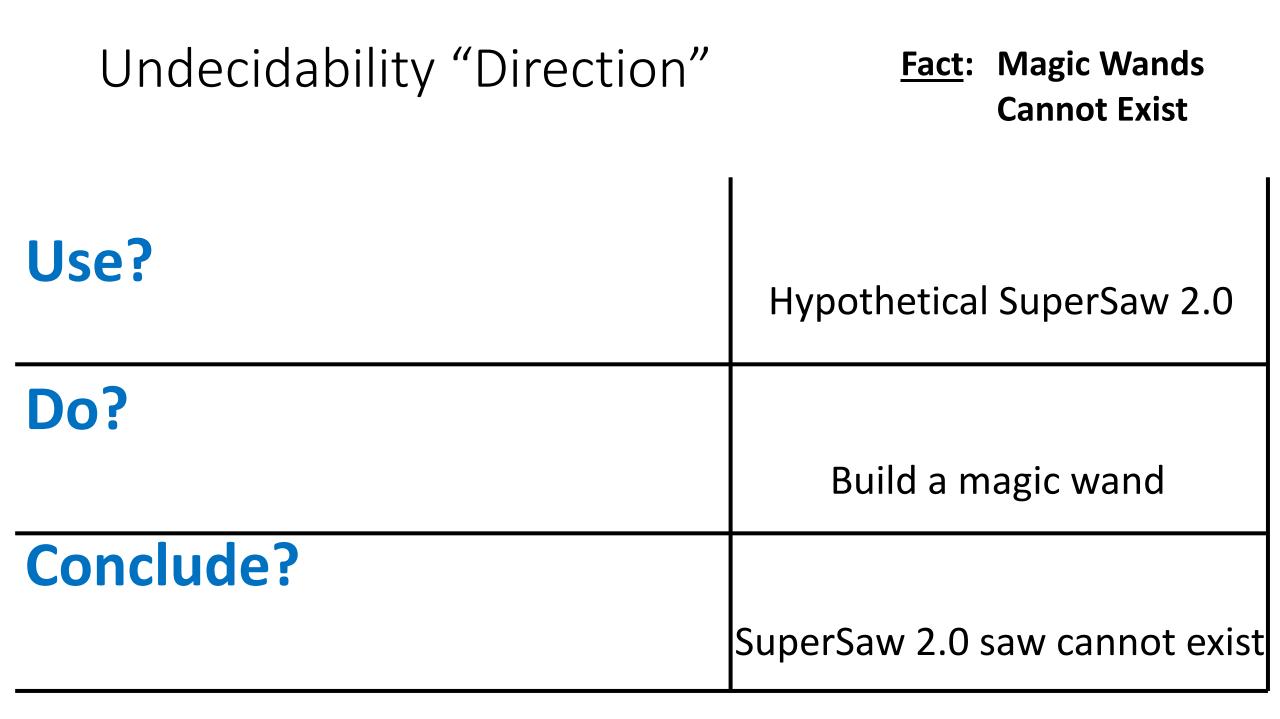
Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega\}$ is undecidable.

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

Used $HALT_{TM}$ decider to make decider for A_{TM} DID NOT use A_{TM} decider to make decider for $HALT_{TM}$


3. If *H* accepts, run *M* on ω until it halts.


4. If *M* accepts, <u>accept</u>. If *M* rejects, <u>reject</u>.

If *M* accepts ω , *S* accepts. If *M* does not accept ω , *S* rejects. Thus, *S* is a decider for A_{TM} , which is a contradiction, so $HALT_{TM}$ is undecidable.

Undecidability "Direction"

Fact: Magic Wands Cannot Exist

Undecidability "Direction"	<u>Fact</u> : Magic Wands Cannot Exist
Use?	Something Assumed to Exist Hypothetical SuperSaw 2.0
Do?	Something Impossible
	Build a magic wand
Conclude?	Assumed Thing Cannot Exist
	SuperSaw 2.0 saw cannot exist

Undecidability "Direction"	<u>Fact</u> : Magic Wands Cannot Exist
Use?	Something Assumed to Exist $HALT_{TM}$ Decider
Do?	Something Impossible
	Build an A_{TM} Decider
Conclude?	Assumed Thing Cannot Exist
	?

Undecidability "Direction"	<u>Fact</u> : Magic Wands Cannot Exist
Use?	Something Assumed to Exist $HALT_{TM}$ Decider
Do?	Something Impossible
	Build an A_{TM} Decider
Conclude?	Assumed Thing Cannot Exist
	$HALT_{TM}$ Decider can't exist

Undecida	ability "Direction"	<u>Fact</u> : Magic Wands Cannot Exist
Use?	Magic Mand	Something Assumed to Exist
	Magic Wand	HALT _{TM} Decider
Do?		Something Impossible
	Bake a Cake	Build an A_{TM} Decider
Conclude?		Assumed Thing Cannot Exist
	?	$HALT_{TM}$ Decider can't exist

Undecida	ability "Direction"	<u>Fact</u> : Magic Wands Cannot Exist
Use?	Magic Wand	Something Assumed to Exist $HALT_{TM}$ Decider
Do?		Something Impossible
	Bake a Cake	Build an A_{TM} Decider
Conclude?		Assumed Thing Cannot Exist
	Nothing	$HALT_{TM}$ Decider can't exist

Undecida	ability "Direction"	<u>Fact</u> : Magic Wands Cannot Exist
Use?		Something Assumed to Exist
	Magic Wand	HALT _{TM} Decider
Do?		Something Impossible
	Go Back in Time	Build an A_{TM} Decider
Conclude?		Assumed Thing Cannot Exist
		$HALT_{TM}$ Decider can't exist

Undecida	ability "Direction"	<u>Fact</u> : Magic Wands Cannot Exist
Use?	Magic Wand	Something Assumed to Exist <i>HALT_{TM}</i> Decider
Do?		Something Impossible
	Go Back in Time	Build an A_{TM} Decider
Conclude?		Assumed Thing Cannot Exist
	Nothing	$HALT_{TM}$ Decider can't exist

Undecida	ability "Direction"	<u>Fact</u> : Magic Wands Cannot Exist
Use?	Something Impossible Magic Wand	Something Assumed to Exist $HALT_{TM}$ Decider
Do?	Any Task	Something Impossible
	Go Back in Time	Build an A_{TM} Decider
Conclude?		Assumed Thing Cannot Exist
		$HALT_{TM}$ Decider can't exist

Undecida	ability "Direction"	<u>Fact</u> : Magic Wands Cannot Exist
Use?	Something Impossible Magic Wand	Something Assumed to Exist $HALT_{TM}$ Decider
Do?	Any Task	Something Impossible
	Go Back in Time	Build an A_{TM} Decider
Conclude?		Assumed Thing Cannot Exist
	Nothing	$HALT_{TM}$ Decider can't exist

Undecida	ability "Direction"	<u>Fact</u> : Magic Wands Cannot Exist
Use?	Something Impossible A _{TM} Decider	Something Assumed to Exist $HALT_{TM}$ Decider
Do?	Any Task	Something Impossible
	Build <i>HALT_{TM}</i> Decider	Build an A_{TM} Decider
Conclude?		Assumed Thing Cannot Exist
		$HALT_{TM}$ Decider can't exist

Undecida	ability "Direction"	<u>Fact</u> : Magic Wands Cannot Exist
Use?	Something Impossible A _{TM} Decider	Something Assumed to Exist $HALT_{TM}$ Decider
Do?	Any Task	Something Impossible
	Build HALT _{TM} Decider	Build an A_{TM} Decider
Conclude?		Assumed Thing Cannot Exist
	Nothing	$HALT_{TM}$ Decider can't exist

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega\}$ is undecidable.

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider.

Build a TM *S* that **decides** *A*_{*TM*}:

- $S = \text{on input } \langle M, \omega \rangle$
 - 1. Run *H* on $\langle M, \omega \rangle$.
 - 2. If *H* rejects, reject (i.e. *M* does not halt on ω).
 - 3. If *H* accepts, run *M* on ω until it halts.
 - 4. If *M* accepts, <u>accept</u>. If *M* rejects, <u>reject</u>.

If *M* accepts ω , *S* accepts. If *M* does not accept ω , *S* rejects. Thus, *S* is a decider for A_{TM} , which is a contradiction, so $HALT_{TM}$ is undecidable.