NP-Complete
CSCI 338
Complexity Classes

Stuff we can solve in polynomial time.

Stuff we can verify solutions to in polynomial time.

\(P \)

\(NP \)
Complexity Classes

Stuff we can solve in polynomial time.

Stuff we can verify solutions to in polynomial time.

\mathbb{NP}-Complete

Stuff that can be used to solve everything in \mathbb{NP} in polynomial extra time.

“Hardest problems in \mathbb{NP}”
B is in NP-Complete if it satisfies two conditions:

1. $B \in NP$.
2. For every $A \in NP$, $A \leq_P B$.

B is in NP-Complete if it satisfies two conditions:

1. $B \in NP$.
2. For some $A \in NP-C$, $A \leq_P B$.

SAT
NP-Complete

How to show something \((B)\) is in NP-Complete?

\(B\) is in NP-Complete if it satisfies two conditions:

1. \(B \in NP\).
2. For some \(A \in NP-C\), \(A \leq_p B\).
NP-Complete

How to show something \((B)\) is in \(NP\)-Complete?

1. Show it is in \(NP\).

\[B \text{ is in } NP\text{-Complete if it satisfies two conditions:} \]
\[1. B \in NP. \]
\[2. \text{For some } A \in NP\text{-C, } A \leq_p B. \]
NP-Complete

How to show something \((B)\) is in \(NP\)-Complete?

1. Show it is in \(NP\).
2. Pick some known \(NP\)-Complete problem \(A\).

\[
B \text{ is in } NP\text{-Complete if it satisfies two conditions:} \\
1. B \in NP. \\
2. For some } A \in NP\text{-C, } A \leq_p B.
\]
NP-Complete

How to show something \((B)\) is in \(NP\)-Complete?

1. Show it is in \(NP\).
2. Pick some known \(NP\)-Complete problem \(A\).
3. Show that a solver for \(B\) can solve \(A\) in polynomial extra time.

\[B \text{ is in } NP\text{-Complete if it satisfies two conditions:} \]
\[1. B \in NP. \]
\[2. \text{For some } A \in NP\text{-C, } \]
\[A \leq_p B. \]
3SAT

Claim: 3SAT is in \(NP \)-Complete.

Proof:
3SAT

Claim: 3SAT is in NP-Complete.

Proof:

3SAT = \{⟨φ⟩: φ is a satisfiable formula with 3 variables per clause\}

\[\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2) \]

\[(F \lor F \lor T) \land (T \lor F \lor F) \land (T \lor T \lor T) \]

\[
\begin{align*}
x_1 &= F & T \\
x_2 &= T \\
F \lor F \lor T &= T \\
T \lor F \lor F &= T \\
T \lor T \lor T &= T
\end{align*}
\]
3SAT

Claim: 3SAT is in \(NP\)-Complete.

Proof:

\(B\) is in \(NP\)-Complete if it satisfies two conditions:

1. \(B \in NP\).
2. For some \(A \in NP\)-C, \(A \leq_{P} B\).
3SAT

Claim: 3SAT is in NP-Complete.

Proof:

1. Show 3SAT is in NP.

B is in NP-Complete if it satisfies two conditions:
 1. $B \in NP$.
 2. For some $A \in NP-C$, $A \leq_p B$.
3SAT

Claim: 3SAT is in NP-Complete.

Proof:

1. Show 3SAT is in NP.

 Given the Boolean formula and variable assignments, evaluate the formula and accept if true and reject if false. This can be done in $O(n)$ time where n is the number of clauses.

B is in NP-Complete if it satisfies two conditions:

1. $B \in NP$.
2. For some $A \in NP-C$, $A \leq_p B$.
3SAT

Claim: 3SAT is in NP-Complete.

Proof:

1. Show 3SAT is in NP.

2. Show some NP-C problem can be solved using an algorithm for 3SAT.

B is in NP-Complete if it satisfies two conditions:

1. $B \in NP$.
2. For some $A \in NP-C$, $A \leq_p B$.
3SAT

Claim: 3SAT is in \(NP \)-Complete.

Proof:

1. Show 3SAT is in \(NP \).

2. Show some \(NP \)-C problem can be solved using an algorithm for 3SAT.

\(B \) is in \(NP \)-Complete if it satisfies two conditions:

1. \(B \in NP \).
2. For some \(A \in NP-C \), \(A \leq_p B \).
3SAT

Claim: 3SAT is in NP-Complete.

Proof:

1. Show 3SAT is in NP.

2. Show some NP-C problem can be solved using an algorithm for 3SAT.

B is in NP-Complete if it satisfies two conditions:

1. \(B \in NP \).
2. For some \(A \in NP-C \), \(A \leq_p B \).

Basic approach:

- Assume we have an algorithm that solves 3SAT.
- Use that algorithm to solve any instance to SAT.
$SAT \leq_p 3SAT$

Claim: $SAT \leq_p 3SAT$

Proof:
SAT \leq_p 3SAT

Claim: \(SAT \leq_p 3SAT \)

Proof:

Apollo 13 Filter Problem:

“We need to fit this into the hole for this, using nothing but that”
SAT \leq_p 3SAT

Claim: \(SAT \leq_p 3SAT \)

Proof:

Apollo 13 Filter Problem:

“We need to fit this into the hole for this, using nothing but that”

SAT Input \quad 3SAT Solver \quad Polynomial Time
Claim: $SAT \leq_p 3SAT$

Proof:
We need to turn instances of SAT into instances of $3SAT$.

So we can use our $3SAT$ solver.
Claim: $SAT \leq_p 3SAT$

Proof:
We need to turn instances of SAT into instances of $3SAT$.

So we can use our $3SAT$ solver.
Claim: $\text{SAT} \leq_p 3\text{SAT}$

Proof:
We need to turn instances of SAT into instances of 3SAT.

What is keeping our SAT instance from being a 3SAT instance?

\[
\phi = (x_1) \land (\overline{x_1} \lor x_2 \lor x_2 \lor x_1) \land (\overline{x_1} \lor x_2) \\
\text{vs} \\
\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor x_2 \lor x_2) \land (\overline{x_1} \lor x_2 \lor x_2)
\]
Claim: $SAT \leq_p 3SAT$

Proof:
We need to turn instances of SAT into instances of $3SAT$. If a clause has one literal?
\[\text{SAT} \leq_p 3\text{SAT} \]

Claim: \(\text{SAT} \leq_p 3\text{SAT} \)

Proof:

We need to turn instances of \(\text{SAT} \) into instances of \(3\text{SAT} \).

If a clause has one literal? \((x_1) \rightarrow (x_1 \lor x_1 \lor x_1)\)

If a clause has two literals?

\[\text{SAT Solver} \]

\[\text{SAT Input} \rightarrow 3\text{SAT Input} \rightarrow 3\text{SAT Solver} \rightarrow 3\text{SAT Solution} \rightarrow \text{SAT Solution} \]
SAT \leq_p 3SAT

Claim: SAT \leq_p 3SAT

Proof:
We need to turn instances of SAT into instances of 3SAT.
If a clause has one literal? \((x_1) \rightarrow (x_1 \lor x_1 \lor x_1)\)
If a clause has two literals? \((x_1 \lor x_2) \rightarrow (x_1 \lor x_1 \lor x_2)\)
If a clause had three literals?

[Diagram showing a flow from SAT Input through 3SAT Input to 3SAT Solver to 3SAT Solution to SAT Solution]
$SAT \leq_P 3SAT$

Claim: $SAT \leq_P 3SAT$

Proof:

We need to turn instances of SAT into instances of $3SAT$.
If a clause has one literal? $(x_1) \rightarrow (x_1 \lor x_1 \lor x_1)$
If a clause has two literals? $(x_1 \lor x_2) \rightarrow (x_1 \lor x_1 \lor x_2)$
If a clause had three literals? No change.
If a clause has more than three literals?
Claim: $SAT \leq_p 3SAT$

Proof: Convert SAT clauses with > 3 literals into $3SAT$ clauses.
$SAT \leq_P 3SAT$

Claim: $SAT \leq_P 3SAT$

Proof: Convert SAT clauses with > 3 literals into $3SAT$ clauses.

$\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)$
Claim: $SAT \leq_p 3SAT$

Proof: Convert SAT clauses with > 3 literals into $3SAT$ clauses.

$$\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)$$

$$\rightarrow \phi_{3SAT} = \ ?$$
SAT \leq_p 3SAT

Claim: SAT \leq_p 3SAT

Proof: Convert SAT clauses with > 3 literals into 3SAT clauses.

$$\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)$$

$$\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z_1} \lor x_3 \lor z_2) \land \cdots \land (\overline{z_{k-3}} \lor x_{k-1} \lor x_k)$$

\[\downarrow\]

SAT Solver

\[\begin{array}{c}
\text{SAT Input} \\
\xrightarrow{\text{3SAT Input}} \\
\xrightarrow{\text{3SAT Solver}} \\
\xrightarrow{\text{3SAT Solution}} \\
\text{SAT Solution}
\end{array}\]
Claim: \(SAT \leq_p 3SAT \)

Proof: Convert \(SAT \) clauses with > 3 literals into \(3SAT \) clauses.

\[
\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)
\]

\[
\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor \overline{z_1}) \land (\overline{z_1} \lor x_3 \lor z_2) \land \cdots \land (\overline{z_{k-3}} \lor x_{k-1} \lor x_k)
\]
Claim: \(SAT \leq_p 3SAT \)

Proof: Convert \(SAT \) clauses with \(> 3 \) literals into \(3SAT \) clauses.

\[
\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)
\]
\[
\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z}_1 \lor x_3 \lor z_2) \land \cdots \land (\overline{z}_{k-3} \lor x_{k-1} \lor x_k)
\]

Need to show: \(\phi_{SAT} \) can be true \(\iff \phi_{3SAT} \) can be true.
SAT \leq_P 3SAT

Claim: \(SAT \leq_P 3SAT \)

Proof: Convert \(SAT \) clauses with \(> 3 \) literals into \(3SAT \) clauses.

\[
\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)
\]

\[
\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z_1} \lor x_3 \lor z_2) \land \cdots \land (\overline{z_{k-3}} \lor x_{k-1} \lor x_k)
\]

Need to show: \(\phi_{SAT} \) can be true \(\iff \) \(\phi_{3SAT} \) can be true.

SAT Solver

Why if any only if? If \(\phi_{SAT} \) is satisfiable, we need to conclude that.
Claim: $SAT \leq_p 3SAT$

Proof: Convert SAT clauses with > 3 literals into $3SAT$ clauses.

$\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)$

$\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z_1} \lor x_3 \lor z_2) \land \cdots \land (\overline{z_{k-3}} \lor x_{k-1} \lor x_k)$

Need to show: ϕ_{SAT} can be true $\iff \phi_{3SAT}$ can be true.

Why if any only if? If ϕ_{SAT} is satisfiable, we need to conclude that.
SAT \leq_p **3SAT**

Claim: $\text{SAT} \leq_p \text{3SAT}$

Proof: Convert SAT clauses with > 3 literals into 3SAT clauses.

$$\phi_{\text{SAT}} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)$$

$$\rightarrow \phi_{\text{3SAT}} = (x_1 \lor x_2 \lor z_1) \land (\overline{z}_1 \lor x_3 \lor z_2) \land \cdots \land (\overline{z}_{k-3} \lor x_{k-1} \lor x_k)$$

Need to show: ϕ_{SAT} can be true \iff ϕ_{3SAT} can be true.

Why if any only if? If ϕ_{SAT} is satisfiable, we need to conclude that.

If ϕ_{SAT} is not satisfiable, we cannot conclude it is.
SAT \leq_p 3SAT

Claim: $SAT \leq_p 3SAT$

Proof: Convert SAT clauses with > 3 literals into $3SAT$ clauses.

\[
\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)
\]

\[
\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z_1} \lor x_3 \lor z_2) \land \cdots \land (\overline{z_{k-3}} \lor x_{k-1} \lor x_k)
\]

Need to show: ϕ_{SAT} can be true \iff ϕ_{3SAT} can be true.
SAT \leq_p 3SAT

Claim: \(SAT \leq_p 3SAT \)

Proof: Convert \(SAT \) clauses with > 3 literals into \(3SAT \) clauses.

\[
\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)
\]

\[
\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z_1} \lor x_3 \lor z_2) \land \cdots \land (\overline{z_{k-3}} \lor x_{k-1} \lor x_k)
\]

Need to show: \(\phi_{SAT} \) can be true \(\iff \phi_{3SAT} \) can be true.

Suppose \(\phi_{SAT} \) can be true.
Claim: $SAT \leq_p 3SAT$

Proof: Convert SAT clauses with > 3 literals into $3SAT$ clauses.

\[\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k) \]
\[\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z}_1 \lor x_3 \lor z_2) \land \cdots \land (\overline{z}_{k-3} \lor x_{k-1} \lor x_k) \]

Need to show: ϕ_{SAT} can be true \iff ϕ_{3SAT} can be true.

Suppose ϕ_{SAT} can be true. Then some x_m is true.
SAT \leq_p 3SAT

Claim: SAT \leq_p 3SAT

Proof: Convert SAT clauses with > 3 literals into 3SAT clauses.

\[
\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)
\]
\[
\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z}_1 \lor x_3 \lor z_2) \land \cdots \land (\overline{z}_{k-3} \lor x_{k-1} \lor x_k)
\]

Need to show: \(\phi_{SAT}\) can be true \(\iff\) \(\phi_{3SAT}\) can be true.

Suppose \(\phi_{SAT}\) can be true. Then some \(x_m\) is true.

\[
\ldots \land (\overline{z}_{i-1} \lor x_{m-1} \lor z_i) \land (\overline{z}_i \lor x_m \lor z_{i+1}) \land (\overline{z}_{i+1} \lor x_{m+1} \lor z_{i+2}) \land \ldots
\]
\textbf{SAT} \leq_p 3\text{SAT}

Claim: SAT \leq_p 3SAT

Proof: Convert SAT clauses with > 3 literals into 3SAT clauses.

\[\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k) \]
\[\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z_1} \lor x_3 \lor z_2) \land \cdots \land (\overline{z_{k-3}} \lor x_{k-1} \lor x_k) \]

Need to show: \(\phi_{SAT} \) can be true \(\iff \) \(\phi_{3SAT} \) can be true.

Suppose \(\phi_{SAT} \) can be true. Then some \(x_m \) is true. Let \(x_m \) be true in \(\phi_{3SAT} \).

\[\cdots \land (\overline{z_{i-1}} \lor x_{m-1} \lor z_i) \land (\overline{z_i} \lor x_m \lor z_{i+1}) \land (\overline{z_{i+1}} \lor x_{m+1} \lor z_{i+2}) \land \cdots \]
SAT \leq_p 3SAT

Claim: $SAT \leq_p 3SAT$

Proof: Convert SAT clauses with > 3 literals into $3SAT$ clauses.

$\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)$

$\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z_1} \lor x_3 \lor z_2) \land \cdots \land (\overline{z_{k-3}} \lor x_{k-1} \lor x_k)$

Need to show: ϕ_{SAT} can be true $\iff \phi_{3SAT}$ can be true.

Suppose ϕ_{SAT} can be true. Then some x_m is true. Let x_m be true in ϕ_{3SAT}. Let all z_i’s before x_m be true...

... $\land (\overline{z_{i-1}} \lor x_{m-1} \lor \text{ tagging in } z_i) \land \overline{z_i} \lor x_m \lor z_{i+1}) \land (\overline{z_{i+1}} \lor x_{m+1} \lor z_{i+2}) \land \ldots$
Claim: $SAT \leq_p 3SAT$

Proof: Convert SAT clauses with > 3 literals into $3SAT$ clauses.

$$
\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)
\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z_1} \lor x_3 \lor z_2) \land \cdots \land (\overline{z_{k-3}} \lor x_{k-1} \lor x_k)
$$

Need to show: ϕ_{SAT} can be true \iff ϕ_{3SAT} can be true.

Suppose ϕ_{SAT} can be true. Then some x_m is true. Let x_m be true in ϕ_{3SAT}. Let all z_i’s before x_m be true and all z_i’s after be false.

$$
\ldots \land (\overline{z_{i-1}} \lor x_{m-1} \lor z_i) \land (\overline{z_i} \lor x_m \lor \overline{z_{i+1}}) \land (\overline{z_{i+1}} \lor x_{m+1} \lor z_{i+2}) \land \ldots
$$
SAT \leq_P 3SAT

Claim: $SAT \leq_P 3SAT$

Proof: Convert SAT clauses with > 3 literals into $3SAT$ clauses.

\[\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k) \]
\[\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z}_1 \lor x_3 \lor z_2) \land \cdots \land (\overline{z}_{k-3} \lor x_{k-1} \lor x_k) \]

Need to show: ϕ_{SAT} can be true \iff ϕ_{3SAT} can be true.

Suppose ϕ_{SAT} can be true. Then some x_m is true. Let x_m be true in ϕ_{3SAT}. Let all z_i’s before x_m be true and all z_i’s after be false.

\[\cdots \land (\overline{z}_{i-1} \lor x_{m-1} \lor z_i) \land (\overline{z}_i \lor x_m \lor \overline{z}_{i+1}) \land (\overline{z}_{i+1} \lor x_{m+1} \lor z_{i+2}) \land \cdots \]
Claim: $SAT \leq_p 3SAT$

Proof: Convert SAT clauses with > 3 literals into $3SAT$ clauses.

\[\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k) \]
\[\Rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z_1} \lor x_3 \lor z_2) \land \cdots \land (\overline{z_{k-3}} \lor x_{k-1} \lor x_k) \]

Need to show: ϕ_{SAT} can be true \iff ϕ_{3SAT} can be true.

Suppose ϕ_{SAT} can be true. Then some x_m is true. Let x_m be true in ϕ_{3SAT}. Let all z_i's before x_m be true and all z_i's after be false.

\Rightarrow Every clause has a variable set to true.
\[SAT \leq_p 3SAT \]

Claim: \(SAT \leq_p 3SAT \)

Proof: Convert \(SAT \) clauses with \(> 3 \) literals into \(3SAT \) clauses.

\[\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k) \]
\[\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z}_1 \lor x_3 \lor z_2) \land \cdots \land (\overline{z}_{k-3} \lor x_{k-1} \lor x_k) \]

Need to show: \(\phi_{SAT} \) can be true \(\iff \phi_{3SAT} \) can be true.

Suppose \(\phi_{SAT} \) can be true. Then some \(x_m \) is true. Let \(x_m \) be true in \(\phi_{3SAT} \). Let all \(z_i \)'s before \(x_m \) be true and all \(z_i \)'s after be false.

\[\Rightarrow \] Every clause has a variable set to true. \(\therefore \phi_{3SAT} = T. \)
SAT \leq_p 3SAT

Claim: SAT \leq_p 3SAT

Proof: Convert SAT clauses with > 3 literals into 3SAT clauses.

\[
\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)
\]

\[
\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z_1} \lor x_3 \lor z_2) \land \cdots \land (\overline{z_{k-3}} \lor x_{k-1} \lor x_k)
\]

Need to show: \(\phi_{SAT}\) can be true \(\iff\) \(\phi_{3SAT}\) can be true.

Suppose \(\phi_{SAT}\) can be true. Then some \(x_m\) is true. Let \(x_m\) be true in \(\phi_{3SAT}\). Let all \(z_i\)'s before \(x_m\) be true and all \(z_i\)'s after be false.

\(\Rightarrow\) Every clause has a variable set to true. \(\therefore\) \(\phi_{3SAT} = T\).

Suppose \(\phi_{3SAT}\) can be true.
\textbf{SAT} \leq_p 3\textit{SAT}

Claim: \(SAT \leq_p 3SAT \)

Proof: Convert \(SAT \) clauses with \(> 3 \) literals into \(3SAT \) clauses.
\[
\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)
\]
\[
\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z_1} \lor x_3 \lor z_2) \land \cdots \land (\overline{z_{k-3}} \lor x_{k-1} \lor x_k)
\]

Need to show: \(\phi_{SAT} \) can be true \(\iff \phi_{3SAT} \) can be true.

Suppose \(\phi_{SAT} \) can be true. Then some \(x_m \) is true. Let \(x_m \) be true in \(\phi_{3SAT} \). Let all \(z_i \)'s before \(x_m \) be true and all \(z_i \)'s after be false.
\[
\Rightarrow \quad \text{Every clause has a variable set to true.} \quad \therefore \phi_{3SAT} = T.
\]

Suppose \(\phi_{3SAT} \) can be true. Some \(x_m \) must be true.
Claim: $SAT \leq_p 3SAT$

Proof: Convert SAT clauses with > 3 literals into $3SAT$ clauses.

\[
\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)
\]

\[
\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z_1} \lor x_3 \lor z_2) \land \cdots \land (\overline{z_{k-3}} \lor x_{k-1} \lor x_k)
\]

Need to show: ϕ_{SAT} can be true \iff ϕ_{3SAT} can be true.

Suppose ϕ_{SAT} can be true. Then some x_m is true. Let x_m be true in ϕ_{3SAT}. Let all z_i’s before x_m be true and all z_i’s after be false.

\Rightarrow Every clause has a variable set to true. $\therefore \phi_{3SAT} = T$.

Suppose ϕ_{3SAT} can be true. Some x_m must be true. If not, all z_i’s must be true, and last clause would be false.
SAT \leq_p 3SAT

Claim: SAT \leq_p 3SAT

Proof: Convert SAT clauses with > 3 literals into 3SAT clauses.

\[
\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)
\]
\[
\Rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z_1} \lor x_3 \lor z_2) \land \cdots \land (\overline{z_{k-3}} \lor x_{k-1} \lor x_k)
\]

Need to show: \(\phi_{SAT}\) can be true \iff \(\phi_{3SAT}\) can be true.

Suppose \(\phi_{SAT}\) can be true. Then some \(x_m\) is true. Let \(x_m\) be true in \(\phi_{3SAT}\). Let all \(z_i\)'s before \(x_m\) be true and all \(z_i\)'s after be false.
\[
\Rightarrow \text{Every clause has a variable set to true.} \ \therefore \ \phi_{3SAT} = T.
\]

Suppose \(\phi_{3SAT}\) can be true. Some \(x_m\) must be true. If not, all \(z_i\)'s must be true, and last clause would be false. \(\therefore \phi_{SAT} = T\).
$SAT \leq_p 3SAT$

Claim: $SAT \leq_p 3SAT$

Proof: Convert SAT clauses with > 3 literals into $3SAT$ clauses.

$$\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)$$

$$\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z_1} \lor x_3 \lor z_2) \land \cdots \land (\overline{z_{k-3}} \lor x_{k-1} \lor x_k)$$

Need to show: ϕ_{SAT} can be true \iff ϕ_{3SAT} can be true.

Suppose ϕ_{SAT} can be true. Then some x_m is true. Let x_m be true in ϕ_{3SAT}. Let all z_i’s before x_m be true and all z_i’s after be false.

\Rightarrow Every clause has a variable set to true. $\therefore \phi_{3SAT} = T$

Suppose ϕ_{3SAT} can be true. Some x_m must be true. If not, all z_i’s must be true, and last clause would be false. $\therefore \phi_{SAT} = T$

$\therefore SAT \leq_p 3SAT$
3SAT

Claim: 3SAT is in NP-Complete.

Proof:

1. 3SAT is in NP. ✓

2. SAT \leq_p 3SAT ✓

Therefore, 3SAT is in NP-Complete.

\[
\begin{align*}
B \text{ is in } NP-\text{Complete if it satisfies two conditions:} \\
1. & \ B \in NP. \\
2. & \text{For some } A \in NP-C, A \leq_p B.
\end{align*}
\]
$NP - C$

Cook-Levin Theorem

All of NP

"Can be solved by"

SAT
$NP - C$

All of NP

Cook-Levin Theorem

"Can be solved by"

SAT

Today’s Class

3SAT
CLIQUE

Clique: a subgraph where every pair of nodes share an edge (i.e. a complete subgraph).

k-Clique: A clique that contains k vertices.

\[CLIQUE = \{ (G,k) : G \text{ is an undirected graph with a } k\text{-clique} \} \]
Claim: \textit{CLIQUE} \in \textit{NP}-Complete

Proof:
Claim: $\text{CLIQUE} \in \text{NP-Complete}$

Proof:

1. ???
Claim: $CLIQUE \in NP$-Complete

Proof:

1. $CLIQUE \in NP$
Claim: \textit{CLIQUE} $\in \text{NP}$-Complete

Proof:

1. \textit{CLIQUE} $\in \text{NP}$

Given a graph $G = (V, E)$, where $|V| = n$, and a subset $S \subseteq V$, where $|S| \geq k$, check if all pairs of vertices in S are in E. Running time: $O(n^2)$.
CLIQUE

Claim: \(\text{CLIQUE} \in \text{NP-Complete} \)

Proof:

1. \(\text{CLIQUE} \in \text{NP} \)

 Given a graph \(G = (V, E) \), where \(|V| = n \), and a subset \(S \subseteq V \), where \(|S| \geq k \), check if all pairs of vertices in \(S \) are in \(E \). Running time: \(O(n^2) \).

2. ???
Claim: $CLIQUE \in NP$-Complete

Proof:

1. $CLIQUE \in NP$

Given a graph $G = (V, E)$, where $|V| = n$, and a subset $S \subseteq V$, where $|S| \geq k$, check if all pairs of vertices in S are in E. Running time: $O(n^2)$.

2. $3SAT \leq_P CLIQUE$
Claim: \(3SAT \leq_p CLIQUE\)

Proof:
Claim: $3SAT \leq_p CLIQUE$

Proof:

$3SAT$ reduces to $CLIQUE$ if $3SAT$ can be solved with a solver for $CLIQUE$.
Claim: $3SAT \leq_p CLIQUE$

Proof:

Apollo 13 Filter Problem:

“We need to fit this into the hole for this, using nothing but that”
Claim: $3SAT \leq_p CLIQUE$

Proof:

\[\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2) \land (x_1 \lor x_2 \lor x_2) \]
Claim: $3SAT \leq_p CLIQUE$

Proof:

\[\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (x_1 \lor x_2 \lor x_2) \]

\[\phi - \text{Satisfiable} \iff \exists k - \text{Clique} \]
CLIQUE

Claim: $3SAT \leq_p CLIQUE$

Proof: Let ϕ be a formula with k clauses. Generate an undirected graph G:

$$\phi = (x_1 \lor \overline{x_1} \lor x_2) \land$$
$$\overline{x_1} \lor x_2 \lor \overline{x_2} \land$$
$$\overline{x_1} \lor \overline{x_2} \lor x_2 \land$$
$$\overline{x_1} \lor x_2 \lor x_2$$
CLIQUE

Claim: $3SAT \leq_p CLIQUE$

Proof: Let ϕ be a formula with k clauses. Generate an undirected graph G:
For each clause in ϕ, make a node for each literal.

\[
\phi = (x_1 \lor x_1 \lor x_2) \land \\
(x_1 \lor \overline{x_2} \lor \overline{x_2}) \land \\
(x_1 \lor x_2 \lor x_2)
\]