Undecidability CSCI 338

Computability Hierarchy

Halting Problem

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega\}$ is undecidable.

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

- $S = \text{on input } \langle M, \omega \rangle$
 - 1. Run *H* on $\langle M, \omega \rangle$.
 - 2. If *H* rejects, <u>reject</u> (i.e. *M* does not halt on ω).
 - 3. If *H* accepts, run *M* on ω until it halts.
 - 4. If *M* accepts, <u>accept</u>. If *M* rejects, <u>reject</u>.

If *M* accepts ω , *S* accepts. If *M* does not accept ω , *S* rejects. Thus, *S* is a decider for A_{TM} , which is a contradiction, so $HALT_{TM}$ is undecidable.

Undecidability Proof Blueprint

Claim: *New_Problem* is undecidable.

Proof: Suppose *New_Problem* is decidable and let *H* be its decider.

Build a TM *S* that decides *Old_Problem*: *S* = on input (?) 1. ... input depends on the input to *Old_Problem*.

S is a decider for **Old_Problem**, which is a contradiction.

: *New_Problem* is undecidable.

New_Problem: Problem we are trying to show is undecidable. *Old_Problem*: Problem we already know to be undecidable.

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}$ is undecidable. Proof:

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}$ is undecidable. Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider. Build a TM S that decides A_{TM} : S = on input $\langle N, \omega \rangle$

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

1.

To show E_{TM} is undecidable, use it to decide A_{TM} .

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

1.

To show E_{TM} is undecidable, use it to decide A_{TM} .

$L(M) \neq \emptyset \iff N \text{ accepts } \omega$

Frank

Bread Recipe:

- 1. Add flour, water, sugar, yeast, salt.
- 2. If the government has aliens, add an egg.
- 3. Mix, bake, eat.

Frank

Bread Recipe:

- 1. Add flour, water, sugar, yeast, salt.
- 2. If the government has aliens, add an egg.
- 3. Mix, bake, eat.

Frank

Bread Recipe:

- 1. Add flour, water, sugar, yeast, salt.
- 2. If the government has aliens, add an egg.
- 3. Mix, bake, eat.

Frank

Bread Recipe:

- 1. Add flour, water, sugar, yeast, salt.
- 2. If the government has aliens, add an egg.
- 3. Mix, bake, eat.

Frank

Bread Recipe:

- 1. Add flour, water, sugar, yeast, salt.
- 2. If the government has aliens, add an egg.
- 3. Mix, bake, eat.

Frank

Bread Recipe:

- 1. Add flour, water, sugar, yeast, salt.
- 2. If the government has aliens, add an egg.
- 3. Mix, bake, eat.

Frank

Bread Recipe:

- 1. Add flour, water, sugar, yeast, salt.
- 2. If the government has aliens, add an egg.
- 3. Mix, bake, eat.

No! No, the government doesn't have aliens.

Frank

1. Write down the following recipe:

- 1. Add flour, water, sugar, yeast, salt.
- 2. If the government has aliens, add an egg.
- 3. Mix, bake, eat.

1. Write down the following recipe:

Bread Recipe:

- 1. Add flour, water, sugar, yeast, salt.
- 2. If the government has aliens, add an egg.
- 3. Mix, bake, eat.

2. ???

1. Write down the following recipe:

- 1. Add flour, water, sugar, yeast, salt.
- 2. If the government has aliens, add an egg.
- 3. Mix, bake, eat.
- 2. Ask Frank if the recipe uses eggs.

1. Write down the following recipe:

- 1. Add flour, water, sugar, yeast, salt.
- 2. If the government has aliens, add an egg.
- 3. Mix, bake, eat.
- 2. Ask Frank if the recipe uses eggs.
- 3. If Frank says yes, ???

1. Write down the following recipe:

- 1. Add flour, water, sugar, yeast, salt.
- 2. If the government has aliens, add an egg.
- 3. Mix, bake, eat.
- 2. Ask Frank if the recipe uses eggs.
- 3. If Frank says yes, <u>yes, the government has aliens</u>. If Frank says no, <u>no, the government does not have aliens</u>.

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider. Build a TM S that decides A_{TM} : S = on input $\langle N, \omega \rangle$

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}$ is undecidable. Proof: Suppose E_{TM} is decidable and let TM H be its decider. Build a TM S that decides A_{TM} : $S = \text{ on input } \langle N, \omega \rangle$

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}$ is undecidable. Proof: Suppose E_{TM} is decidable and let TM H be its decider. Frank Build a TM S that decides A_{TM} : $S = \text{on input} \langle N, \omega \rangle$ 1. Construct TM M_2 on input $\langle x \rangle$: N accepts $\omega \Leftrightarrow L(M_2) \neq \emptyset$ The recipe that forces Frank to answer the The question I care about question I care about.

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}$ is undecidable. Proof: Suppose E_{TM} is decidable and let TM H be its decider. Frank Build a TM S that decides A_{TM} : S = on input $\langle N, \omega \rangle$ 1. Construct TM M_2 on input $\langle x \rangle$: *N* accepts $\omega \Leftrightarrow L(M_2) \neq \emptyset$ 2. Run *H* on $\langle M_2 \rangle$. 3. ?? The recipe that forces Frank to answer the The question I care about question I care about.

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}$ is undecidable. Proof: Suppose E_{TM} is decidable and let TM H be its decider. Build a TM S that decides A_{TM} : Frank S = on input $\langle N, \omega \rangle$ 1. Construct TM M_2 on input $\langle x \rangle$: N accepts $\omega \Leftrightarrow L(M_2) \neq \emptyset$ 2. Run *H* on $\langle M_2 \rangle$. 3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>. The recipe that forces Frank to answer the The question I care about question I care about.

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

- $S = \text{on input } \langle N, \omega \rangle$
 - 1. Construct TM M_2 on input $\langle x \rangle$:

- 2. Run *H* on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

- $S = \text{on input } \langle N, \omega \rangle$
 - 1. Construct TM M_2 on input $\langle x \rangle$:

1. Run N on ω and <u>accept</u> if N does.

- 2. Run *H* on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

- $S = \text{on input } \langle N, \omega \rangle$
 - 1. Construct TM M_2 on input $\langle x \rangle$:

1. Run N on ω and <u>accept</u> if N does.

- 2. Run *H* on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

 $L(M_2) = ??$

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

- $S = \text{on input } \langle N, \omega \rangle$
 - 1. Construct TM M_2 on input $\langle x \rangle$:

1. Run N on ω and <u>accept</u> if N does.

- 2. Run *H* on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

 $L(M_2) = \Sigma^* \text{ or } \emptyset$