Undecidability CSCI 338

Bread Recipe:

- 1. Add flour, water, sugar, yeast, salt.
- 2. If the government has aliens, add an egg.
- 3. Mix, bake, eat.

Frank

Can always perfectly answer the question: "Does a recipe use eggs?"

1. Write down the following recipe:

Bread Recipe:

- 1. Add flour, water, sugar, yeast, salt.
- 2. If the government has alien, add an egg.
- 3. Mix, bake, eat.
- 2. Ask Frank if the recipe uses eggs.
- 3. If Frank says yes, <u>yes, they got aliens</u>. If Frank says no, <u>no, they don't</u>.

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

1. Run N on ω and <u>accept</u> if N does.

2. Run *H* on $\langle M_2 \rangle$.

3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

1. Write down the following recipe:

Bread Recipe:

- 1. Add flour, water, sugar, yeast, salt.
- 2. If the government has alien, add an egg.
- 3. Mix, bake, eat.
- 2. Ask Frank if the recipe uses eggs.
- 3. If Frank says yes, <u>yes, they got aliens</u>. If Frank says no, <u>no, they don't</u>.

 A_{TM} Decider (does N accept ω ?):

1. Construct TM M_2 on input $\langle x \rangle$:

1. Run *N* on ω and <u>accept</u> if *N* does.

- 2. Run *H* on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

1. Write down the following recipe:

Bread Recipe:

- 1. Add flour, water, sugar, yeast, salt.
- 2. If the government has alien, add an egg.
- 3. Mix, bake, eat.
- 2. Ask Frank if the recipe uses eggs.
- 3. If Frank says yes, <u>yes, they got aliens</u>. If Frank says no, <u>no, they don't</u>.

A_{TM} Decider (does N accept ω ?):

1. Construct TM M_2 on input $\langle x \rangle$:

1. Run *N* on ω and <u>accept</u> if *N* does.

2. Run *H* on $\langle M_2 \rangle$.

Question?

3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

1. Write down the following recipe:

Bread Recipe:

- 1. Add flour, water, sugar, yeast, salt.
- 2. If the government has alien, add an egg.
- 3. Mix, bake, eat.
- 2. Ask Frank if the recipe uses eggs.

If Frank says yes, <u>yes, they got aliens</u>. If
Frank says no, <u>no, they don't</u>.
Available Tool

A_{TM} Decider (does N accept ω ?):

1. Construct TM M_2 on input $\langle x \rangle$:

1. Run N on ω and <u>accept</u> if N does.

2. Run *H* on $\langle M_2 \rangle$.

Question?

If H accepts, <u>reject</u>. If H rejects, <u>accept</u>.

Recipe/algorithm/TM that forces the tool to answer the question.

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

1. Run N on ω and <u>accept</u> if N does.

2. Run *H* on $\langle M_2 \rangle$.

3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

TODO: Argue that S is a decider for A_{TM}

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

1. Run N on ω and <u>accept</u> if N does.

2. Run *H* on $\langle M_2 \rangle$.

3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

If N accepts ω , ... S will accept. If N does not accept ω , ... S will reject.

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

1. Run N on ω and <u>accept</u> if N does.

2. Run *H* on $\langle M_2 \rangle$.

3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

If N accepts ω , $L(M_2) = \Sigma^*$, ...

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

1. Run N on ω and <u>accept</u> if N does.

2. Run *H* on $\langle M_2 \rangle$.

3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

If N accepts ω , $L(M_2) = \Sigma^*$, H will reject, ...

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input} \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

1. Run N on ω and <u>accept</u> if N does.

2. Run *H* on $\langle M_2 \rangle$.

3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

If N accepts ω , $L(M_2) = \Sigma^*$, H will reject, and S will accept.

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input} \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

1. Run N on ω and <u>accept</u> if N does.

2. Run *H* on $\langle M_2 \rangle$.

3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

If N accepts ω , $L(M_2) = \Sigma^*$, H will reject, and S will accept. If N does not accept ω , $L(M_2) = \emptyset$, H will accept, and S will reject.

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

1. Run N on ω and <u>accept</u> if N does.

2. Run *H* on $\langle M_2 \rangle$.

3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

If N accepts ω , $L(M_2) = \Sigma^*$, H will reject, and S will accept. If N does not accept ω , $L(M_2) = \emptyset$, H will accept, and S will reject. Thus, S decides A_{TM} , which is a contradiction, so E_{TM} is undecidable.

Claim: $EQ_{TM} = \{\langle A, B \rangle: A, B \text{ are TMs and } L(A) = L(B)\}$ is undecidable. Proof:

?

Claim: $EQ_{TM} = \{\langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

1. ???

To show EQ_{TM} is undecidable, use it to decide A_{TM} .

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

1. ???

We have a way (H) to test if two TMs have the same language. How could we use that to test if a TM's accepts some input? Plan: **?**

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

1. ???

We have a way (H) to test if two TMs have the same language. How could we use that to test if a TM's accepts some input? Plan: Make two TMs that have the same language if and only if N accepts ω .

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_1 on input $\langle x \rangle$:

1. accept.

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

S = on input $\langle N, \omega \rangle$ 1. Construct TM M_1 on input $\langle x \rangle$: $\blacksquare L(M_2) = ?$ 1. accept.

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

- $S = on input \langle N, \omega \rangle$
 - 1. Construct TM M_1 on input $\langle x \rangle$: $\frown L(M_2) = \Sigma^*$ <u>1. accept.</u>

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_1 on input $\langle x \rangle$:

1. accept.

2. Construct TM M_2 on input $\langle y \rangle$: 1. ?

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_1 on input $\langle x \rangle$:

<u>1. accept.</u>

2. Construct TM M_2 on input $\langle y \rangle$:

1. Run N on ω and <u>accept</u> if N does.

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

- 1. Construct TM M_1 on input $\langle x \rangle$: <u>1. accept.</u>
- 2. Construct TM M_2 on input $\langle y \rangle$: 1. Run N on ω and <u>accept</u> if N does.

N accepts ω \square $L(M_2) = Σ^*$

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

- 1. Construct TM M_1 on input $\langle x \rangle$: <u>1. accept.</u>
- 2. Construct TM M_2 on input $\langle y \rangle$:
 - <u>1.</u> Run N on ω and <u>accept</u> if N does.
- 3. Run *H* on $\langle M_1, M_2 \rangle$.
- 4. If *H* accepts, <u>???</u>

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

- 1. Construct TM M_1 on input $\langle x \rangle$: <u>1. accept.</u>
- 2. Construct TM M_2 on input $\langle y \rangle$:
 - 1. Run N on ω and <u>accept</u> if N does.
- 3. Run *H* on $\langle M_1, M_2 \rangle$.
- 4. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_1 on input $\langle x \rangle$:

1. accept.

- 2. Construct TM M_2 on input $\langle y \rangle$:
 - 1. Run N on ω and <u>accept</u> if N does.
- 3. Run *H* on $\langle M_1, M_2 \rangle$.

4. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

If N accepts ω , then M_1 and M_2 have the same language (Σ^*) and S accepts. If N does not accept ω , then they have different languages and S rejects. Thus, S decides A_{TM} , which is a contradiction, so EQ_{TM} is undecidable.

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

- 1. Construct TM M_1 on input $\langle x \rangle$: 1. <u>accept.</u>
- 2. Construct TM M_2 on input $\langle y \rangle$:
 - 1. Run N on ω and <u>accept</u> if N does.
- 3. Run *H* on $\langle M_1, M_2 \rangle$.
- 4. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

- 1. Construct TM M_1 on input $\langle x \rangle$: <u>1. accept.</u>
- 2. Construct TM M_2 on input $\langle y \rangle$:
 - <u>1.</u> Run N on ω and <u>accept</u> if N does.
- 3. Run *H* on $\langle M_1, M_2 \rangle$.
- 4. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

Bread Recipe:

- 1. Add flour, water, sugar, yeast, salt.
- 2. If government has aliens, add an egg.
- 3. Mix, bake, eat.

Bread Recipe:

- 1. Add flour, water, sugar, yeast, salt.
- 2. If government has aliens, add an egg.
- 3. Mix, bake, eat.

Bread Recipe:

- 1. Add flour, water, sugar, yeast, salt.
- 2. If government doesn't have aliens, add an egg.
- 3. Mix, bake, eat.

Recipe:

1. If government has aliens, add an egg.

Bread Recipe:

- 1. Add flour, water, sugar, yeast, salt.
- 2. If government has aliens, add an egg.
- 3. Mix, bake, eat.

Bread Recipe:

- 1. Add flour, water, sugar, yeast, salt.
- 2. If government doesn't have aliens, add an egg.
- 3. Mix, bake, eat.

Recipe:

1. If government has aliens, add an egg.

Won't Work Recipe:

- 1. If government has aliens, add flour.
- 2. Add eggs.

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

- 1. Construct TM M_1 on input $\langle x \rangle$: <u>1. accept.</u>
- 2. Construct TM M_2 on input $\langle y \rangle$:
 - <u>1.</u> Run N on ω and <u>accept</u> if N does.
- 3. Run *H* on $\langle M_1, M_2 \rangle$.
- 4. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

- 1. Construct TM M_1 on input $\langle x \rangle$: <u>1. reject.</u>
- 2. Construct TM M_2 on input $\langle y \rangle$:
 - <u>1.</u> Run N on ω and <u>accept</u> if N does.
- 3. Run *H* on $\langle M_1, M_2 \rangle$.
- 4. If *H* accepts, **reject**. If *H* rejects, **accept**.

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

- 1. Construct TM M_1 on input $\langle x \rangle$: <u>1. accept.</u>
- 2. Construct TM M_2 on input $\langle y \rangle$:
 - 1. Run N on ω .
 - 2. If N rejects, reject.
 - 3. <u>accept.</u>
- 3. Run *H* on $\langle M_1, M_2 \rangle$.
- 4. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

N accepts ω \downarrow $L(M_1) = L(M_2)$