
Undecidability
CSCI 338

𝐸!"
Claim: 𝐸!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀 = ∅} is undecidable.

Proof: Suppose 𝐸!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
 𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:

2. Run 𝐻 on 𝑀# .
3. If 𝐻 accepts, reject. If 𝐻 rejects, accept.

If 𝑁 accepts 𝜔, 𝐿 𝑀# = Σ∗, 𝐻 will reject, and 𝑆 will accept. If 𝑁 does not
accept 𝜔, 𝐿 𝑀# = ∅, 𝐻 will accept, and 𝑆 will reject. Thus, 𝑆 decides
𝐴!", which is a contradiction, so 𝐸!" is undecidable.

1. Run 𝑁 on 𝜔	and accept if 𝑁 does.

𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
 𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀% on input 𝑥 	:
1. accept.

2. Construct TM 𝑀# on input 𝑦 	:
1. Run 𝑁 on 𝜔 and accept if 𝑁 does.

3. Run 𝐻 on 𝑀%, 𝑀# .
4. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

If 𝑁 accepts 𝜔, then 𝑀! and 𝑀" have the same language (𝛴∗) and 𝑆 accepts. If 𝑁 does not
accept 𝜔, then they have different languages and 𝑆 rejects. Thus, 𝑆 decides 𝐴$%, which is
a contradiction, so 𝐸𝑄$% is undecidable.

𝑵 accepts 𝝎⟺

𝑳 𝑴𝟐 = 𝚺∗

Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀 is regular} is undecidable.

Proof:

 ?

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"

Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀 is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" is decidable and let TM 𝐻 be its decider.

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"

Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀 is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
 𝑆 = on input 𝑁,𝜔

1.

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"

Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀 is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
 𝑆 = on input 𝑁,𝜔

1.

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"

Plan: Build a TM whose language is regular if 𝑁
accepts 𝜔 and not regular if 𝑁 does not accept 𝜔.

Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀 is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
 𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"

Plan: Build a TM whose language is regular if 𝑁
accepts 𝜔 and not regular if 𝑁 does not accept 𝜔.

?

𝐿 𝑀! 	is regular
⇕

𝑁 accepts 𝜔

Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀 is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
 𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ∈ 	 ? ? ?	 , accept.
2. If 𝑥 ∉ 	 ? ? ?	 , run 𝑁 on 𝜔	and accept if 𝑁 does.

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"

Plan: Build a TM whose language is regular if 𝑁
accepts 𝜔 and not regular if 𝑁 does not accept 𝜔.

𝐿 𝑀! 	is regular
⇕

𝑁 accepts 𝜔

Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀 is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
 𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ∈ 0'1': 𝑛 ≥ 0 , accept.
2. If 𝑥 ∉ 0'1': 𝑛 ≥ 0 , run 𝑁 on 𝜔	and accept if 𝑁 does.

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"

Plan: Build a TM whose language is regular if 𝑁
accepts 𝜔 and not regular if 𝑁 does not accept 𝜔.

𝐿 𝑀! 	is regular
⇕

𝑁 accepts 𝜔

Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀 is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
 𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ∈ 0'1': 𝑛 ≥ 0 , accept.
2. If 𝑥 ∉ 0'1': 𝑛 ≥ 0 , run 𝑁 on 𝜔	and accept if 𝑁 does.

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"

Plan: Build a TM whose language is regular if 𝑁
accepts 𝜔 and not regular if 𝑁 does not accept 𝜔.

?𝑳 𝑴𝟐 =

Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀 is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
 𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ∈ 0'1': 𝑛 ≥ 0 , accept.
2. If 𝑥 ∉ 0'1': 𝑛 ≥ 0 , run 𝑁 on 𝜔	and accept if 𝑁 does.

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"

Plan: Build a TM whose language is regular if 𝑁
accepts 𝜔 and not regular if 𝑁 does not accept 𝜔.

𝑳 𝑴𝟐 = 𝟎𝒏𝟏𝒏	or	𝚺∗

Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀 is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
 𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ∈ 0'1': 𝑛 ≥ 0 , accept.
2. If 𝑥 ∉ 0'1': 𝑛 ≥ 0 , run 𝑁 on 𝜔	and accept if 𝑁 does.

2. ?

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"

Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀 is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
 𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ∈ 0'1': 𝑛 ≥ 0 , accept.
2. If 𝑥 ∉ 0'1': 𝑛 ≥ 0 , run 𝑁 on 𝜔	and accept if 𝑁 does.

2. Run 𝐻 on 𝑀# .

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"

Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀 is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
 𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ∈ 0'1': 𝑛 ≥ 0 , accept.
2. If 𝑥 ∉ 0'1': 𝑛 ≥ 0 , run 𝑁 on 𝜔	and accept if 𝑁 does.

2. Run 𝐻 on 𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"

Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀 is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
 𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ∈ 0'1': 𝑛 ≥ 0 , accept.
2. If 𝑥 ∉ 0'1': 𝑛 ≥ 0 , run 𝑁 on 𝜔	and accept if 𝑁 does.

2. Run 𝐻 on 𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

 If 𝑁 accepts 𝜔, … 𝑆 accepts.

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"

Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀 is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
 𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ∈ 0'1': 𝑛 ≥ 0 , accept.
2. If 𝑥 ∉ 0'1': 𝑛 ≥ 0 , run 𝑁 on 𝜔	and accept if 𝑁 does.

2. Run 𝐻 on 𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

 If 𝑁 accepts 𝜔, 𝐿 𝑀# = Σ∗ (regular) and 𝑆 accepts.

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"

Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀 is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
 𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ∈ 0'1': 𝑛 ≥ 0 , accept.
2. If 𝑥 ∉ 0'1': 𝑛 ≥ 0 , run 𝑁 on 𝜔	and accept if 𝑁 does.

2. Run 𝐻 on 𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

 If 𝑁 accepts 𝜔, 𝐿 𝑀# = Σ∗ (regular) and 𝑆 accepts. If 𝑁 does not accept 𝜔,
… 𝑆 rejects.

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"

Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀 is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
 𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ∈ 0'1': 𝑛 ≥ 0 , accept.
2. If 𝑥 ∉ 0'1': 𝑛 ≥ 0 , run 𝑁 on 𝜔	and accept if 𝑁 does.

2. Run 𝐻 on 𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

 If 𝑁 accepts 𝜔, 𝐿 𝑀# = Σ∗ (regular) and 𝑆 accepts. If 𝑁 does not accept 𝜔,
𝐿 𝑀# = 0'1': 𝑛 ≥ 0 (not regular) and 𝑆 rejects.

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"

Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀 is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
 𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ∈ 0'1': 𝑛 ≥ 0 , accept.
2. If 𝑥 ∉ 0'1': 𝑛 ≥ 0 , run 𝑁 on 𝜔	and accept if 𝑁 does.

2. Run 𝐻 on 𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

 If 𝑁 accepts 𝜔, 𝐿 𝑀# = Σ∗ (regular) and 𝑆 accepts. If 𝑁 does not accept 𝜔,
𝐿 𝑀# = 0'1': 𝑛 ≥ 0 (not regular) and 𝑆 rejects. Therefore, S is a decider
for 𝐴!", which is a contradiction, so 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" is undecidable.

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"

𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
 𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀% on input 𝑥 	:
1. accept.

2. Construct TM 𝑀# on input 𝑦 	:
1. Run 𝑁 on 𝜔 and accept if 𝑁 does.

3. Run 𝐻 on 𝑀%, 𝑀# .
4. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

If 𝑁 accepts 𝜔, then 𝑀! and 𝑀" have the same language (𝛴∗) and 𝑆 accepts. If 𝑁 does not
accept 𝜔, then they have different languages and 𝑆 rejects. Thus, 𝑆 decides 𝐴$%, which is
a contradiction, so 𝐸𝑄$% is undecidable.

𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
 𝑆 = on input 𝑃

1.

𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
 𝑆 = on input 𝑃

1.

We have a way (𝐻) to test if two TMs have the same language.
How could we use that to test if a TM’s language is empty?

Plan: ?

𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
 𝑆 = on input 𝑃

1.

We have a way (𝐻) to test if two TMs have the same language.
How could we use that to test if a TM’s language is empty?

Plan: Make a TM with an empty language and use 𝐻 to
 compare it to input to 𝐸"#.

𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
 𝑆 = on input 𝑃

1. Construct TM 𝑀# on input 𝑥 	:
1. reject.

Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
 𝑆 = on input 𝑃

1. Construct TM 𝑀# on input 𝑥 	:
1. reject.

𝑳 𝑴𝟐 = ∅

𝐸𝑄!"

?

𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
 𝑆 = on input 𝑃

1. Construct TM 𝑀# on input 𝑥 	:
1. reject.

𝑳 𝑴𝟐 = ∅

𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
 𝑆 = on input 𝑃

1. Construct TM 𝑀# on input 𝑥 	:
1. reject.

2. ?

𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
 𝑆 = on input 𝑃

1. Construct TM 𝑀# on input 𝑥 	:
1. reject.

2. Run 𝐻 on 𝑃,𝑀# .

𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
 𝑆 = on input 𝑃

1. Construct TM 𝑀# on input 𝑥 	:
1. reject.

2. Run 𝐻 on 𝑃,𝑀# .
3. If 𝐻 accepts, ? . If 𝐻 rejects, ? .

𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
 𝑆 = on input 𝑃

1. Construct TM 𝑀# on input 𝑥 	:
1. reject.

2. Run 𝐻 on 𝑃,𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
 𝑆 = on input 𝑃

1. Construct TM 𝑀# on input 𝑥 	:
1. reject.

2. Run 𝐻 on 𝑃,𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

 If 𝐿 𝑃 = ∅, … 𝑆 will accept. If 𝐿 𝑃 ≠ ∅, … 𝑆 will reject.

𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
 𝑆 = on input 𝑃

1. Construct TM 𝑀# on input 𝑥 	:
1. reject.

2. Run 𝐻 on 𝑃,𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

 If 𝐿 𝑃 = ∅, 𝑀# and 𝑃 will have the same language (since 𝐿 𝑀# = ∅)
and 𝑆 will accept. If 𝐿 𝑃 ≠ ∅, … 𝑆 will reject.

𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
 𝑆 = on input 𝑃

1. Construct TM 𝑀# on input 𝑥 	:
1. reject.

2. Run 𝐻 on 𝑃,𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

 If 𝐿 𝑃 = ∅, 𝑀# and 𝑃 will have the same language (since 𝐿 𝑀# = ∅)
and 𝑆 will accept. If 𝐿 𝑃 ≠ ∅, 𝑀# and 𝑃 will not have the same language
and 𝑆 will reject.

𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!" is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
 𝑆 = on input 𝑃

1. Construct TM 𝑀# on input 𝑥 	:
1. reject.

2. Run 𝐻 on 𝑃,𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

 If 𝐿 𝑃 = ∅, 𝑀# and 𝑃 will have the same language (since 𝐿 𝑀# = ∅)
and 𝑆 will accept. If 𝐿 𝑃 ≠ ∅, 𝑀# and 𝑃 will not have the same language
and 𝑆 will reject. Therefore, 𝑆 is a decider for 𝐸!", which is a
contradiction, so 𝐸𝑄!" is undecidable.

