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ETM

Claim: Epp = {{M): M isaTM and L(M) = @} is undecidable.

Proof: Suppose Er,, is decidable and let TM H be its decider.

Build a TM § that decides Ary,:
S =on input (N, w)
1. Construct TM M, on input (x) :

1. Run N on w and accept if N does.

2. Run H on (M,).
3. If H accepts, reject. If H rejects, accept.

If N accepts w, L(M,) = X%, H will reject, and S will accept. If N does not
accept w, L(M,) = @, H will accept, and S will reject. Thus, S decides
Ary, Which is a contradiction, so E7, is undecidable.



EQrm

Claim: EQpp; = {{A4,B): A, B are TMs and L(A) = L(B)} is undecidable.

Proof: Suppose EQ7,, is decidable and let TM H be its decider.

Build a TM § that decides Ary,:
S =oninput (N, w)
1. Construct TM M, on input (x) : N accepts w

u accept. 0

2. Construct TM M, on input (y) : L(M,) =X
u Run N on w and accept if N does.
3. Run H on (M, M,).

4. |If H accepts, accept. If H rejects, reject.
If N accepts w, then M; and M, have the same language (2™) and S accepts. If N does not
accept w, then they have different languages and S rejects. Thus, S decides Ary;, which is

a contradiction, so EQ+, is undecidable.
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a way (H) to test if two TMs have the same language.
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