Undecidability
CSCI 338
Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

$S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. Run N on ω and accept if N does.
 2. Run H on $\langle M_2 \rangle$.
 3. If H accepts, reject. If H rejects, accept.

If N accepts ω, $L(M_2) = \Sigma^*$, H will reject, and S will accept. If N does not accept ω, $L(M_2) = \emptyset$, H will accept, and S will reject. Thus, S decides A_{TM}, which is a contradiction, so E_{TM} is undecidable.
\(\mathcal{EQ}_{TM} \)

Claim: \(\mathcal{EQ}_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \} \) is undecidable.

Proof: Suppose \(\mathcal{EQ}_{TM} \) is decidable and let TM \(H \) be its decider.

Build a TM \(S \) that decides \(A_{TM} \):

\[
S = \text{on input } \langle N, \omega \rangle
\]

1. Construct TM \(M_1 \) on input \(\langle x \rangle \):
 1. accept.
2. Construct TM \(M_2 \) on input \(\langle y \rangle \):
 1. Run \(N \) on \(\omega \) and accept if \(N \) does.
3. Run \(H \) on \(\langle M_1, M_2 \rangle \).
4. If \(H \) accepts, accept. If \(H \) rejects, reject.

If \(N \) accepts \(\omega \), then \(M_1 \) and \(M_2 \) have the same language (\(\Sigma^* \)) and \(S \) accepts. If \(N \) does not accept \(\omega \), then they have different languages and \(S \) rejects. Thus, \(S \) decides \(A_{TM} \), which is a contradiction, so \(\mathcal{EQ}_{TM} \) is undecidable.
Claim: $REGULAR_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof:
Claim: $REGULAR_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.
**REGULAR}_{TM}

Claim: \(REGULAR_{TM} = \{ \langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \} \) is undecidable.

Proof: Suppose \(REGULAR_{TM} \) is decidable and let TM \(H \) be its decider.

 Build a TM \(S \) that decides \(A_{TM} \):

 \[S = \text{on input } \langle N, \omega \rangle \]

 1.
\textit{REGULAR}_{TM}

Claim: $\textit{REGULAR}_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular}\}$ is undecidable.

Proof: Suppose $\textit{REGULAR}_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

1. $S = \text{ on input } \langle N, \omega \rangle$

Plan: Build a TM whose language is regular if N accepts ω and not regular if N does not accept ω.
Claim: $\text{REGULAR}_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular}\}$ is undecidable.

Proof: Suppose REGULAR_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

$S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

$\text{L}(M_2) \text{ is regular }$ \iff $N \text{ accepts } \omega$

Plan: Build a TM whose language is regular if N accepts ω and not regular if N does not accept ω.
Claim: $REGULAR_{TM} = \{ \langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

$S =$ on input $\langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. If $x \in \{ \text{ ??? } \}$, accept.
 2. If $x \notin \{ \text{ ??? } \}$, run N on ω and accept if N does.

$L(M_2)$ is regular
\iff
N accepts ω

Plan: Build a TM whose language is regular if N accepts ω and not regular if N does not accept $\omega.$
REGULAR}_{ TM

Claim: \(\text{REGULAR}_{ TM} = \{ \langle M \rangle: M \text{ is a TM and } L(M) \text{ is regular} \} \) is undecidable.

Proof: Suppose \(\text{REGULAR}_{ TM} \) is decidable and let TM \(H \) be its decider.

Build a TM \(S \) that decides \(A_{ TM} : \)

\[S = \text{on input } \langle N, \omega \rangle \]

1. Construct TM \(M_2 \) on input \(\langle x \rangle : \)
 1. If \(x \in \{0^n1^n: n \geq 0\} \), accept.
 2. If \(x \notin \{0^n1^n: n \geq 0\} \), run \(N \) on \(\omega \) and accept if \(N \) does.

\(L(M_2) \) is regular \(\iff \)
\(N \) accepts \(\omega \)

Plan: Build a TM whose language is regular if \(N \)
accepts \(\omega \) and not regular if \(N \) does not accept \(\omega \).
Claim: $REGULAR_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular}\}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

- $S = \text{on input } \langle N, \omega \rangle$
 1. Construct TM M_2 on input $\langle x \rangle$:
 1. If $x \in \{0^n1^n : n \geq 0\}$, accept.
 2. If $x \notin \{0^n1^n : n \geq 0\}$, run N on ω and accept if N does.

Plan: Build a TM whose language is regular if N accepts ω and not regular if N does not accept ω.

$L(M_2) = ?$
Claim: $\text{REGULAR}_{TM} = \{ \langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose REGULAR_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

$S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. If $x \in \{0^n1^n : n \geq 0\}$, accept.
 2. If $x \not\in \{0^n1^n : n \geq 0\}$, run N on ω and accept if N does.

Plan: Build a TM whose language is regular if N accepts ω and not regular if N does not accept ω.

$L(M_2) = 0^n1^n$ or Σ^*
Claim: $REGULAR_{TM} = \{\langle M \rangle: M$ is a TM and $L(M)$ is regular$\}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

$S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

 1. If $x \in \{0^n1^n: n \geq 0\}$, accept.
 2. If $x \notin \{0^n1^n: n \geq 0\}$, run N on ω and accept if N does.

2. ?
Claim: $\text{REGULAR}_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular}\}$ is undecidable.

Proof: Suppose REGULAR_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

$S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

 1. If $x \in \{0^n1^n : n \geq 0\}$, accept.
 2. If $x \notin \{0^n1^n : n \geq 0\}$, run N on ω and accept if N does.

2. Run H on $\langle M_2 \rangle$.

REGULAR\textsubscript{TM}

Claim: \(\text{REGULAR}_{TM} = \{ \langle M \rangle: M \text{ is a TM and } L(M) \text{ is regular} \} \) is undecidable.

Proof: Suppose \(\text{REGULAR}_{TM} \) is decidable and let TM \(H \) be its decider.

Build a TM \(S \) that decides \(A_{TM} : \)

\[S = \text{on input } \langle N, \omega \rangle \]

1. Construct TM \(M_2 \) on input \(\langle x \rangle : \)
 1. If \(x \in \{ 0^n1^n : n \geq 0 \} \), accept.
 2. If \(x \notin \{ 0^n1^n : n \geq 0 \} \), run \(N \) on \(\omega \) and accept if \(N \) does.

2. Run \(H \) on \(\langle M_2 \rangle \).
3. If \(H \) accepts, accept. If \(H \) rejects, reject.
Claim: $REGULAR_{TM} = \{\langle M \rangle: M \text{ is a TM and } L(M) \text{ is regular}\}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

$S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. If $x \in \{0^n1^n: n \geq 0\}$, accept.
 2. If $x \notin \{0^n1^n: n \geq 0\}$, run N on ω and accept if N does.

2. Run H on $\langle M_2 \rangle$.

3. If H accepts, accept. If H rejects, reject.

If N accepts ω, ... S accepts.
REGULAR_TM

Claim: $REGULAR_TM = \{\langle M \rangle: M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose $REGULAR_TM$ is decidable and let TM H be its decider.

Build a TM S that decides A_TM:

$S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. If $x \in \{0^n1^n: n \geq 0\}$, accept.
 2. If $x \notin \{0^n1^n: n \geq 0\}$, run N on ω and accept if N does.
2. Run H on $\langle M_2 \rangle$.
3. If H accepts, accept. If H rejects, reject.

If N accepts ω, $L(M_2) = \Sigma^*$ (regular) and S accepts.
\textit{REGULAR}_{TM}

Claim: \(\text{REGULAR}_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular}\} \) is undecidable.

Proof: Suppose \(\text{REGULAR}_{TM}\) is decidable and let TM \(H\) be its decider.

Build a TM \(S\) that decides \(A_{TM}\):

\(S = \) on input \(\langle N, \omega \rangle\)
1. Construct TM \(M_2\) on input \(\langle x \rangle\):
 1. If \(x \in \{0^n1^n : n \geq 0\}\), accept.
 2. If \(x \notin \{0^n1^n : n \geq 0\}\), run \(N\) on \(\omega\) and accept if \(N\) does.
2. Run \(H\) on \(\langle M_2 \rangle\).
3. If \(H\) accepts, accept. If \(H\) rejects, reject.

If \(N\) accepts \(\omega\), \(L(M_2) = \Sigma^*\) (regular) and \(S\) accepts. If \(N\) does not accept \(\omega\), ...
\(S\) rejects.
Claim: $\textit{REGULAR}_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose $\textit{REGULAR}_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

S = on input $\langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle \omega \rangle$:
 1. If $\omega \in \{0^n1^n : n \geq 0\}$, accept.
 2. If $\omega \notin \{0^n1^n : n \geq 0\}$, run N on ω and accept if N does.

2. Run H on $\langle M_2 \rangle$.

3. If H accepts, accept. If H rejects, reject.

If N accepts ω, $L(M_2) = \Sigma^*$ (regular) and S accepts. If N does not accept ω, $L(M_2) = \{0^n1^n : n \geq 0\}$ (not regular) and S rejects.
\textbf{REGULAR}_{TM}

Claim: \(\text{REGULAR}_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular}\}\) is undecidable.

Proof: Suppose \(\text{REGULAR}_{TM}\) is decidable and let TM \(H\) be its decider.

Build a TM \(S\) that decides \(A_{TM}\):

\(S = \text{on input } \langle N, \omega \rangle\)

1. Construct TM \(M_2\) on input \(\langle x \rangle\):

 1. If \(x \in \{0^n1^n : n \geq 0\}\), \underline{accept}.
 2. If \(x \notin \{0^n1^n : n \geq 0\}\), run \(N\) on \(\omega\) and \underline{accept} if \(N\) does.

2. Run \(H\) on \(\langle M_2 \rangle\).

3. If \(H\) accepts, \underline{accept}. If \(H\) rejects, \underline{reject}.

If \(N\) accepts \(\omega\), \(L(M_2) = \Sigma^*\) (regular) and \(S\) accepts. If \(N\) does not accept \(\omega\), \(L(M_2) = \{0^n1^n : n \geq 0\}\) (not regular) and \(S\) rejects. Therefore, \(S\) is a decider for \(A_{TM}\), which is a contradiction, so \(\text{REGULAR}_{TM}\) is undecidable.
Claim: $EQ_{TM} = \{(A, B): A, B \text{ are TMs and } L(A) = L(B)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

$S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_1 on input $\langle x \rangle$:
 1. accept.

2. Construct TM M_2 on input $\langle y \rangle$:
 1. Run N on ω and accept if N does.

3. Run H on $\langle M_1, M_2 \rangle$.

4. If H accepts, accept. If H rejects, reject.

If N accepts ω, then M_1 and M_2 have the same language (Σ^*) and S accepts. If N does not accept ω, then they have different languages and S rejects. Thus, S decides A_{TM}, which is a contradiction, so EQ_{TM} is undecidable.
EQ_{TM}

Claim: $EQ_{TM} = \{\langle A, B \rangle: A, B \text{ are TMs and } L(A) = L(B)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

 Build a TM S that decides E_{TM}:

 $S = \text{on input } \langle P \rangle$

 1.
Claim: $EQ_{TM} = \{(A, B): A, B \text{ are TMs and } L(A) = L(B)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM}:

$S =$ on input $\langle P \rangle$

1. We have a way (H) to test if two TMs have the same language. How could we use that to test if a TM’s language is empty? Plan: ?
Claim: $E_{Q_{TM}} = \{(A, B) : A, B \text{ are TMs and } L(A) = L(B)\}$ is undecidable.

Proof: Suppose $E_{Q_{TM}}$ is decidable and let TM H be its decider.

Build a TM S that decides E_{TM}:

$S = \text{ on input } \langle P \rangle$

1. We have a way (H) to test if two TMs have the same language. How could we use that to test if a TM’s language is empty?

Plan: Make a TM with an empty language and use H to compare it to input to E_{TM}.
Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM}:

$S = \text{on input } \langle P \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. reject.
Claim: $EQ_{TM} = \{\langle A, B \rangle: A, B \text{ are TMs and } L(A) = L(B)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM}:

$S = \text{on input } \langle P \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

 1. reject.

$L(M_2) = ?$
Claim: $EQ_{TM} = \{\langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM}:

$S = $ on input $\langle P \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. reject.

$L(M_2) = \emptyset$
Claim: $EQ_{TM} = \{\langle A, B \rangle: A, B \text{ are TMs and } L(A) = L(B)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM}:

$S = \text{on input } \langle P \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. reject.

2. ?
Claim: $EQ_{TM} = \{\langle A, B \rangle: A, B$ are TMs and $L(A) = L(B)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM}:

$S = $ on input $\langle P \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

 1. reject.

2. Run H on $\langle P, M_2 \rangle$.
Claim: \(EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \} \) is undecidable.

Proof: Suppose \(EQ_{TM} \) is decidable and let TM \(H \) be its decider.

Build a TM \(S \) that decides \(E_{TM} \):

\[
S = \text{on input } \langle P \rangle \\
\quad 1. \text{Construct TM } M_2 \text{ on input } \langle x \rangle : \\
\quad \quad 1. \text{ reject.} \\
\quad 2. \text{Run } H \text{ on } \langle P, M_2 \rangle . \\
\quad 3. \text{If } H \text{ accepts, } _\text{?}_. \text{ If } H \text{ rejects, } _\text{?}_.
\]
Claim: $EQ_{TM} = \{\langle A, B \rangle: A, B \text{ are TMs and } L(A) = L(B)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM}:

$S = \text{on input } \langle P \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. reject.
 2. Run H on $\langle P, M_2 \rangle$.
 3. If H accepts, accept. If H rejects, reject.
Claim: \(EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \} \) is undecidable.

Proof: Suppose \(EQ_{TM} \) is decidable and let TM \(H \) be its decider.

Build a TM \(S \) that decides \(E_{TM} \):

\[S = \text{on input } \langle P \rangle \]

1. Construct TM \(M_2 \) on input \(\langle x \rangle \):
 1. reject.
 2. Run \(H \) on \(\langle P, M_2 \rangle \).
 3. If \(H \) accepts, accept. If \(H \) rejects, reject.

If \(L(P) = \emptyset \), ... \(S \) will accept. If \(L(P) \neq \emptyset \), ... \(S \) will reject.
Claim: \(EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \} \) is undecidable.

Proof: Suppose \(EQ_{TM} \) is decidable and let TM \(H \) be its decider.

Build a TM \(S \) that decides \(E_{TM} \):

\[
S = \text{on input } \langle P \rangle \\
1. \text{Construct TM } M_2 \text{ on input } \langle x \rangle : \\
 \quad 1. \text{ reject.} \\
2. \text{Run } H \text{ on } \langle P, M_2 \rangle. \\
3. \text{If } H \text{ accepts, accept. If } H \text{ rejects, reject.}
\]

If \(L(P) = \emptyset \), \(M_2 \) and \(P \) will have the same language (since \(L(M_2) = \emptyset \)) and \(S \) will accept. If \(L(P) \neq \emptyset \), ... \(S \) will reject.
Claim: \(EQ_{TM} = \{\langle A, B \rangle: A, B \text{ are TMs and } L(A) = L(B)\} \) is undecidable.

Proof: Suppose \(EQ_{TM} \) is decidable and let TM \(H \) be its decider.

Build a TM \(S \) that decides \(E_{TM} \):

\[
S = \text{on input } \langle P \rangle \\
1. \text{Construct TM } M_2 \text{ on input } \langle x \rangle : \\
 1. \text{ reject.} \\
2. \text{ Run } H \text{ on } \langle P, M_2 \rangle. \\
3. \text{ If } H \text{ accepts, accept. If } H \text{ rejects, reject.}
\]

If \(L(P) = \emptyset \), \(M_2 \) and \(P \) will have the same language (since \(L(M_2) = \emptyset \)) and \(S \) will accept. If \(L(P) \neq \emptyset \), \(M_2 \) and \(P \) will not have the same language and \(S \) will reject.
Claim: $EQ_{TM} = \{\langle A, B \rangle: A, B \text{ are TMs and } L(A) = L(B)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM}:

$S = \text{ on input } \langle P \rangle$
1. Construct TM M_2 on input $\langle x \rangle$:
 1. reject.
2. Run H on $\langle P, M_2 \rangle$.
3. If H accepts, accept. If H rejects, reject.

If $L(P) = \emptyset$, M_2 and P will have the same language (since $L(M_2) = \emptyset$) and S will accept. If $L(P) \neq \emptyset$, M_2 and P will not have the same language and S will reject. Therefore, S is a decider for E_{TM}, which is a contradiction, so EQ_{TM} is undecidable.