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𝐸!"
Claim: 𝐸!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀 = ∅} is undecidable.

Proof: Suppose 𝐸!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:

2. Run 𝐻 on 𝑀# .
3. If 𝐻 accepts, reject. If 𝐻 rejects, accept.

If 𝑁 accepts 𝜔, 𝐿 𝑀# = Σ∗, 𝐻 will reject, and 𝑆 will accept. If 𝑁 does not 
accept 𝜔, 𝐿 𝑀# = ∅, 𝐻 will accept, and 𝑆 will reject. Thus, 𝑆 decides 
𝐴!", which is a contradiction, so 𝐸!"  is undecidable.

1. Run 𝑁 on 𝜔	and accept if 𝑁 does.



𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀% on input 𝑥 	:
1.  accept.

2. Construct TM 𝑀# on input 𝑦 	: 
1. Run 𝑁 on 𝜔 and accept if 𝑁 does.

3. Run 𝐻 on 𝑀%, 𝑀# .
4. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

If 𝑁 accepts 𝜔, then 𝑀! and 𝑀" have the same language (𝛴∗) and 𝑆 accepts. If 𝑁 does not 
accept 𝜔, then they have different languages and 𝑆 rejects. Thus, 𝑆 decides 𝐴$%, which is 
a contradiction, so 𝐸𝑄$% is undecidable.

𝑵 accepts 𝝎⟺

𝑳 𝑴𝟐 = 𝚺∗



Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀  is regular} is undecidable.

Proof: 

  ?

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"



Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀  is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"  is decidable and let TM 𝐻 be its decider.
 

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"



Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀  is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1.  

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"



Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀  is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1.  

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"

Plan: Build a TM whose language is regular if 𝑁 
accepts 𝜔 and not regular if 𝑁 does not accept 𝜔.



Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀  is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"

Plan: Build a TM whose language is regular if 𝑁 
accepts 𝜔 and not regular if 𝑁 does not accept 𝜔.

?

𝐿 𝑀! 	is regular
⇕

𝑁 accepts 𝜔



Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀  is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ∈ 	 ? ? ?	 , accept.
2. If 𝑥 ∉ 	 ? ? ?	 , run 𝑁 on 𝜔	and accept if 𝑁 does. 

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"

Plan: Build a TM whose language is regular if 𝑁 
accepts 𝜔 and not regular if 𝑁 does not accept 𝜔.

𝐿 𝑀! 	is regular
⇕

𝑁 accepts 𝜔



Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀  is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ∈ 0'1': 𝑛 ≥ 0 , accept.
2. If 𝑥 ∉ 0'1': 𝑛 ≥ 0 , run 𝑁 on 𝜔	and accept if 𝑁 does. 

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"

Plan: Build a TM whose language is regular if 𝑁 
accepts 𝜔 and not regular if 𝑁 does not accept 𝜔.

𝐿 𝑀! 	is regular
⇕

𝑁 accepts 𝜔



Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀  is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ∈ 0'1': 𝑛 ≥ 0 , accept.
2. If 𝑥 ∉ 0'1': 𝑛 ≥ 0 , run 𝑁 on 𝜔	and accept if 𝑁 does. 

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"

Plan: Build a TM whose language is regular if 𝑁 
accepts 𝜔 and not regular if 𝑁 does not accept 𝜔.

?𝑳 𝑴𝟐 =



Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀  is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ∈ 0'1': 𝑛 ≥ 0 , accept.
2. If 𝑥 ∉ 0'1': 𝑛 ≥ 0 , run 𝑁 on 𝜔	and accept if 𝑁 does. 

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"

Plan: Build a TM whose language is regular if 𝑁 
accepts 𝜔 and not regular if 𝑁 does not accept 𝜔.

𝑳 𝑴𝟐 = 𝟎𝒏𝟏𝒏	or	𝚺∗



Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀  is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ∈ 0'1': 𝑛 ≥ 0 , accept.
2. If 𝑥 ∉ 0'1': 𝑛 ≥ 0 , run 𝑁 on 𝜔	and accept if 𝑁 does. 

2. ?

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"



Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀  is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ∈ 0'1': 𝑛 ≥ 0 , accept.
2. If 𝑥 ∉ 0'1': 𝑛 ≥ 0 , run 𝑁 on 𝜔	and accept if 𝑁 does. 

2. Run 𝐻 on 𝑀# .

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"



Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀  is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ∈ 0'1': 𝑛 ≥ 0 , accept.
2. If 𝑥 ∉ 0'1': 𝑛 ≥ 0 , run 𝑁 on 𝜔	and accept if 𝑁 does. 

2. Run 𝐻 on 𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"



Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀  is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ∈ 0'1': 𝑛 ≥ 0 , accept.
2. If 𝑥 ∉ 0'1': 𝑛 ≥ 0 , run 𝑁 on 𝜔	and accept if 𝑁 does. 

2. Run 𝐻 on 𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

 If 𝑁 accepts 𝜔, … 𝑆 accepts. 

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"



Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀  is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ∈ 0'1': 𝑛 ≥ 0 , accept.
2. If 𝑥 ∉ 0'1': 𝑛 ≥ 0 , run 𝑁 on 𝜔	and accept if 𝑁 does. 

2. Run 𝐻 on 𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

 If 𝑁 accepts 𝜔, 𝐿 𝑀# = Σ∗ (regular) and 𝑆 accepts. 

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"



Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀  is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ∈ 0'1': 𝑛 ≥ 0 , accept.
2. If 𝑥 ∉ 0'1': 𝑛 ≥ 0 , run 𝑁 on 𝜔	and accept if 𝑁 does. 

2. Run 𝐻 on 𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

 If 𝑁 accepts 𝜔, 𝐿 𝑀# = Σ∗ (regular) and 𝑆 accepts. If 𝑁 does not accept 𝜔, 
… 𝑆 rejects. 

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"



Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀  is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ∈ 0'1': 𝑛 ≥ 0 , accept.
2. If 𝑥 ∉ 0'1': 𝑛 ≥ 0 , run 𝑁 on 𝜔	and accept if 𝑁 does. 

2. Run 𝐻 on 𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

 If 𝑁 accepts 𝜔, 𝐿 𝑀# = Σ∗ (regular) and 𝑆 accepts. If 𝑁 does not accept 𝜔, 
𝐿 𝑀# = 0'1': 𝑛 ≥ 0  (not regular) and 𝑆 rejects. 

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"



Claim: 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀  is regular} is undecidable.

Proof: Suppose 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ∈ 0'1': 𝑛 ≥ 0 , accept.
2. If 𝑥 ∉ 0'1': 𝑛 ≥ 0 , run 𝑁 on 𝜔	and accept if 𝑁 does. 

2. Run 𝐻 on 𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

 If 𝑁 accepts 𝜔, 𝐿 𝑀# = Σ∗ (regular) and 𝑆 accepts. If 𝑁 does not accept 𝜔, 
𝐿 𝑀# = 0'1': 𝑛 ≥ 0  (not regular) and 𝑆 rejects. Therefore, S is a decider 
for 𝐴!", which is a contradiction, so 𝑅𝐸𝐺𝑈𝐿𝐴𝑅!" is undecidable.

𝑅𝐸𝐺𝑈𝐿𝐴𝑅!"



𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀% on input 𝑥 	:
1.  accept.

2. Construct TM 𝑀# on input 𝑦 	: 
1. Run 𝑁 on 𝜔 and accept if 𝑁 does.

3. Run 𝐻 on 𝑀%, 𝑀# .
4. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

If 𝑁 accepts 𝜔, then 𝑀! and 𝑀" have the same language (𝛴∗) and 𝑆 accepts. If 𝑁 does not 
accept 𝜔, then they have different languages and 𝑆 rejects. Thus, 𝑆 decides 𝐴$%, which is 
a contradiction, so 𝐸𝑄$% is undecidable.



𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
  𝑆 = on input 𝑃

1.  



𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
  𝑆 = on input 𝑃

1.  

We have a way (𝐻) to test if two TMs have the same language.
How could we use that to test if a TM’s language is empty?

Plan: ?



𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
  𝑆 = on input 𝑃

1.  

We have a way (𝐻) to test if two TMs have the same language.
How could we use that to test if a TM’s language is empty?

Plan: Make a TM with an empty language and use 𝐻 to   
  compare it to input to 𝐸"#.



𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
  𝑆 = on input 𝑃

1. Construct TM 𝑀# on input 𝑥 	:
1. reject.



Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
  𝑆 = on input 𝑃

1. Construct TM 𝑀# on input 𝑥 	:
1. reject.

𝑳 𝑴𝟐 = ∅

𝐸𝑄!"

?



𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
  𝑆 = on input 𝑃

1. Construct TM 𝑀# on input 𝑥 	:
1. reject.

𝑳 𝑴𝟐 = ∅



𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
  𝑆 = on input 𝑃

1. Construct TM 𝑀# on input 𝑥 	:
1. reject.

2. ?



𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
  𝑆 = on input 𝑃

1. Construct TM 𝑀# on input 𝑥 	:
1. reject.

2. Run 𝐻 on 𝑃,𝑀# .



𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
  𝑆 = on input 𝑃

1. Construct TM 𝑀# on input 𝑥 	:
1. reject.

2. Run 𝐻 on 𝑃,𝑀# .
3. If 𝐻 accepts, ?     . If 𝐻 rejects, ?    .



𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
  𝑆 = on input 𝑃

1. Construct TM 𝑀# on input 𝑥 	:
1. reject.

2. Run 𝐻 on 𝑃,𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.



𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
  𝑆 = on input 𝑃

1. Construct TM 𝑀# on input 𝑥 	:
1. reject.

2. Run 𝐻 on 𝑃,𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

 If 𝐿 𝑃 = ∅, … 𝑆 will accept. If 𝐿 𝑃 ≠ ∅, … 𝑆 will reject. 



𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
  𝑆 = on input 𝑃

1. Construct TM 𝑀# on input 𝑥 	:
1. reject.

2. Run 𝐻 on 𝑃,𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

 If 𝐿 𝑃 = ∅, 𝑀# and 𝑃 will have the same language (since 𝐿 𝑀# = ∅) 
and 𝑆 will accept. If 𝐿 𝑃 ≠ ∅, … 𝑆 will reject. 



𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
  𝑆 = on input 𝑃

1. Construct TM 𝑀# on input 𝑥 	:
1. reject.

2. Run 𝐻 on 𝑃,𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

 If 𝐿 𝑃 = ∅, 𝑀# and 𝑃 will have the same language (since 𝐿 𝑀# = ∅) 
and 𝑆 will accept. If 𝐿 𝑃 ≠ ∅, 𝑀# and 𝑃 will not have the same language 
and 𝑆 will reject. 



𝐸𝑄!"
Claim: 𝐸𝑄!" = { 𝐴, 𝐵 : 𝐴, 𝐵 are TMs and 𝐿 𝐴 = 𝐿(𝐵)} is undecidable.

Proof: Suppose 𝐸𝑄!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐸!":
  𝑆 = on input 𝑃

1. Construct TM 𝑀# on input 𝑥 	:
1. reject.

2. Run 𝐻 on 𝑃,𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

 If 𝐿 𝑃 = ∅, 𝑀# and 𝑃 will have the same language (since 𝐿 𝑀# = ∅) 
and 𝑆 will accept. If 𝐿 𝑃 ≠ ∅, 𝑀# and 𝑃 will not have the same language 
and 𝑆 will reject. Therefore, 𝑆 is a decider for 𝐸!", which is a 
contradiction, so 𝐸𝑄!"  is undecidable.


