Undecidability CSCI 338

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input} \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

1. Run N on ω and <u>accept</u> if N does.

2. Run *H* on $\langle M_2 \rangle$.

3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

If N accepts ω , $L(M_2) = \Sigma^*$, H will reject, and S will accept. If N does not accept ω , $L(M_2) = \emptyset$, H will accept, and S will reject. Thus, S decides A_{TM} , which is a contradiction, so E_{TM} is undecidable.

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_1 on input $\langle x \rangle$:

1. accept.

- 2. Construct TM M_2 on input $\langle y \rangle$:
 - 1. Run N on ω and <u>accept</u> if N does.
- 3. Run *H* on $\langle M_1, M_2 \rangle$.

4. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

If N accepts ω , then M_1 and M_2 have the same language (Σ^*) and S accepts. If N does not accept ω , then they have different languages and S rejects. Thus, S decides A_{TM} , which is a contradiction, so EQ_{TM} is undecidable.

?

Claim: $REGULAR_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable. Proof:

Claim: $REGULAR_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable. Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

Claim: $REGULAR_{TM} = \{\langle M \rangle: M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable. Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider. Build a TM S that decides A_{TM} : $S = \text{ on input } \langle N, \omega \rangle$ 1.

Claim: $REGULAR_{TM} = \{\langle M \rangle: M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable. Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider. Build a TM S that decides A_{TM} : $S = \text{ on input } \langle N, \omega \rangle$ 1.

Claim: $REGULAR_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

- $S = \text{on input } \langle N, \omega \rangle$
 - 1. Construct TM M_2 on input $\langle x \rangle$:

$$L(M_2)$$
 is regular
 $\widehat{\mathbf{M}}$
 N accepts ω

Claim: $REGULAR_{TM} = \{\langle M \rangle: M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable. Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider. Build a TM S that decides A_{TM} : $S = \text{ on input } \langle N, \omega \rangle$ 1. Construct TM M_2 on input $\langle x \rangle$: $1. \text{ If } x \in \{ ??? \}, \text{ accept.}$ $2. \text{ If } x \notin \{ ??? \}, \text{ run } N \text{ on } \omega \text{ and } \text{ accept if } N \text{ does.}$

Claim: $REGULAR_{TM} = \{\langle M \rangle: M \text{ is a TM and } L(M) \text{ is regular}\} \text{ is undecidable.}$ Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider. Build a TM S that decides A_{TM} : $S = \text{ on input } \langle N, \omega \rangle$ 1. Construct TM M_2 on input $\langle x \rangle$: 1. If $x \in \{0^n 1^n: n \ge 0\}$, accept. 2. If $x \notin \{0^n 1^n: n \ge 0\}$, run N on ω and accept if N does.

Claim: $REGULAR_{TM} = \{\langle M \rangle: M \text{ is a TM and } L(M) \text{ is regular}\}$ is undecidable. Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider. Build a TM S that decides A_{TM} : $S = \text{ on input } \langle N, \omega \rangle$ 1. Construct TM M_2 on input $\langle x \rangle$: 1. If $x \in \{0^n 1^n : n \ge 0\}$, accept. 2. If $x \notin \{0^n 1^n : n \ge 0\}$, run N on ω and accept if N does.

Claim: $REGULAR_{TM} = \{\langle M \rangle: M \text{ is a TM and } L(M) \text{ is regular}\}$ is undecidable. Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider. Build a TM S that decides A_{TM} : $S = \text{ on input } \langle N, \omega \rangle$ 1. Construct TM M_2 on input $\langle x \rangle$: $1. \text{ If } x \in \{0^n 1^n : n \ge 0\}, \text{ accept.}$ 2. If $x \notin \{0^n 1^n : n \ge 0\}, \text{ run } N$ on ω and accept if N does.

Claim: $REGULAR_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable. Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider. Build a TM S that decides A_{TM} : $S = \text{on input} \langle N, \omega \rangle$ 1. Construct TM M_2 on input $\langle x \rangle$: 1. If $x \in \{0^n \overline{1}^n : n \ge 0\}$, <u>accept</u>. 2. If $x \notin \{0^n 1^n : n \ge 0\}$, run N on ω and <u>accept</u> if N does. 2. ?

Claim: $REGULAR_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$: 1. If $x \in \{0^n 1^n : n \ge 0\}$, accept. 2. If $x \notin \{0^n 1^n : n \ge 0\}$, run N on ω and accept if N does. 2. Run H on $\langle M_2 \rangle$.

Claim: $REGULAR_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input} \langle N, \omega \rangle$

- 1. Construct TM M_2 on input $\langle x \rangle$:

1. If $x \in \{0^n 1^n : n \ge 0\}$, <u>accept</u>. 2. If $x \notin \{0^n 1^n : n \ge 0\}$, run N on ω and <u>accept</u> if N does.

2. Run H on $\langle M_2 \rangle$.

3. If *H* accepts, accept. If *H* rejects, reject.

Claim: $REGULAR_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input} \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

1. If $x \in \{0^n 1^n : n \ge 0\}$, <u>accept</u>. 2. If $x \notin \{0^n 1^n : n \ge 0\}$, run N on ω and <u>accept</u> if N does.

2. Run H on $\langle M_2 \rangle$.

3. If *H* accepts, accept. If *H* rejects, reject.

If N accepts ω , ... S accepts.

Claim: $REGULAR_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input} \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

1. If $x \in \{0^n 1^n : n \ge 0\}$, <u>accept</u>. 2. If $x \notin \{0^n 1^n : n \ge 0\}$, run N on ω and <u>accept</u> if N does.

2. Run H on $\langle M_2 \rangle$.

3. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

If N accepts ω , $L(M_2) = \Sigma^*$ (regular) and S accepts.

Claim: $REGULAR_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input} \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

1. If $x \in \{0^n 1^n : n \ge 0\}$, <u>accept</u>. 2. If $x \notin \{0^n 1^n : n \ge 0\}$, run N on ω and <u>accept</u> if N does.

2. Run H on $\langle M_2 \rangle$.

3. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

If N accepts ω , $L(M_2) = \Sigma^*$ (regular) and S accepts. If N does not accept ω , ... S rejects.

Claim: $REGULAR_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input} \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

1. If $x \in \{0^n 1^n : n \ge 0\}$, <u>accept</u>. 2. If $x \notin \{0^n 1^n : n \ge 0\}$, run N on ω and <u>accept</u> if N does.

2. Run H on $\langle M_2 \rangle$.

3. If H accepts, accept. If H rejects, reject.

If N accepts ω , $L(M_2) = \Sigma^*$ (regular) and S accepts. If N does not accept ω , $L(M_2) = \{0^n 1^n : n \ge 0\}$ (not regular) and S rejects.

Claim: $REGULAR_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input} \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

1. If $x \in \{0^n \overline{1}^n : n \ge 0\}$, <u>accept</u>. 2. If $x \notin \{0^n 1^n : n \ge 0\}$, run N on ω and <u>accept</u> if N does.

2. Run H on $\langle M_2 \rangle$.

3. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

If N accepts ω , $L(M_2) = \Sigma^*$ (regular) and S accepts. If N does not accept ω , $L(M_2) = \{0^n 1^n : n \ge 0\}$ (not regular) and S rejects. Therefore, S is a decider for A_{TM} , which is a contradiction, so $REGULAR_{TM}$ is undecidable.

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

- 1. Construct TM M_1 on input $\langle x \rangle$:
 - 1. accept.
- 2. Construct TM M_2 on input $\langle y \rangle$:
 - 1. Run N on ω and <u>accept</u> if N does.
- 3. Run *H* on $\langle M_1, M_2 \rangle$.
- 4. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

If N accepts ω , then M_1 and M_2 have the same language (Σ^*) and S accepts. If N does not accept ω , then they have different languages and S rejects. Thus, S decides A_{TM} , which is a contradiction, so EQ_{TM} is undecidable.

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

```
Build a TM S that decides E_{TM}:
```

```
S = \text{on input } \langle P \rangle
```

```
1.
```

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM} :

$$S = \text{on input } \langle P \rangle$$

1.

We have a way (*H*) to test if two TMs have the same language. How could we use that to test if a TM's language is empty? Plan: **?**

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM} :

$$S = on input \langle P \rangle$$

1.

We have a way (H) to test if two TMs have the same language. How could we use that to test if a TM's language is empty? Plan: Make a TM with an empty language and use H to compare it to input to E_{TM} .

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM} :

 $S = \text{on input } \langle P \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

1. <u>reject</u>.

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM} :

- $S = on input \langle P \rangle$
 - 1. Construct TM M_2 on input $\langle x \rangle$: $\frown L(M_2) = ?$ <u>1. reject</u>.

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM} :

- $S = on input \langle P \rangle$
 - 1. Construct TM M_2 on input $\langle x \rangle$: $\frown L(M_2) = \emptyset$ <u>1. reject</u>.

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM} :

S = on input $\langle P \rangle$ 1. Construct TM M_2 on input $\langle x \rangle$: 1. reject. 2. ?

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM} :

 $S = \text{on input } \langle P \rangle$

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - <u>1. reject</u>.

2. Run *H* on $\langle P, M_2 \rangle$.

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM} :

 $S = \text{on input } \langle P \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

<u>1. reject</u>.

2. Run *H* on $\langle P, M_2 \rangle$.

3. If *H* accepts, <u>?</u>. If *H* rejects, <u>?</u>.

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM} :

 $S = \text{on input } \langle P \rangle$

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - <u>1. reject</u>.
- 2. Run *H* on $\langle P, M_2 \rangle$.
- 3. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM} :

 $S = \text{on input } \langle P \rangle$

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - <u>1. reject</u>.
- 2. Run *H* on $\langle P, M_2 \rangle$.
- 3. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

If $L(P) = \emptyset$, ... S will accept. If $L(P) \neq \emptyset$, ... S will reject.

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM} :

 $S = \text{on input } \langle P \rangle$

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - <u>1. reject</u>.
- 2. Run *H* on $\langle P, M_2 \rangle$.
- 3. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

If $L(P) = \emptyset$, M_2 and P will have the same language (since $L(M_2) = \emptyset$) and S will accept. If $L(P) \neq \emptyset$, ... S will reject.

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM} :

 $S = \text{on input } \langle P \rangle$

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - <u>1. reject</u>.
- 2. Run *H* on $\langle P, M_2 \rangle$.
- 3. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

If $L(P) = \emptyset$, M_2 and P will have the same language (since $L(M_2) = \emptyset$) and S will accept. If $L(P) \neq \emptyset$, M_2 and P will not have the same language and S will reject.

Claim: $EQ_{TM} = \{ \langle A, B \rangle : A, B \text{ are TMs and } L(A) = L(B) \}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM} :

 $S = \text{on input } \langle P \rangle$

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - <u>1. reject</u>.
- 2. Run *H* on $\langle P, M_2 \rangle$.
- 3. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

If $L(P) = \emptyset$, M_2 and P will have the same language (since $L(M_2) = \emptyset$) and S will accept. If $L(P) \neq \emptyset$, M_2 and P will not have the same language and S will reject. Therefore, S is a decider for E_{TM} , which is a contradiction, so EQ_{TM} is undecidable.