Review CSCI 338

Test 2 Logistics

- 1. During class on Wednesday 3/27.
- 2. You can bring your book and any notes you would like, but no electronic devices.
- 3. You may assume anything proven in class or on homeworks.
- 4. Four questions:
 - 1) Show a language is decidable (5 points).
 - 2) Show a language is not decidable (10 points).
 - 3) Show a language is not decidable (5 points).
 - 4) Show a language is not decidable (1-2 points).

Claim: $FINITE_{TM} = \{\langle M \rangle : M \text{ is a TM and accepts a finite number of strings} \}$ is undecidable.

Proof: Suppose $FINITE_{TM}$ is decidable and let TM H be its decider. Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

1. Run N on ω and <u>accept</u> if N does.

 $L(M_2)$ is infinite $\label{eq:linear}$ N accepts ω

2. Run *H* on $\langle M_2 \rangle$.

3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

If N accepts ω , $L(M_2) = \Sigma^*$ (infinite) and S accepts. If N does not accept ω , $L(M_2) = \emptyset$ (finite) and S rejects. Therefore, S is a decider for A_{TM} , which is a contradiction, so $FINITE_{TM}$ is undecidable.

Proof: Suppose $EVEN_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - 1. If x has odd length, <u>reject</u>.
 - 2. If x has even length, run N on ω .

 $L(M_2)$ contains all even length strings $\widehat{\mathbf{L}}$ N accepts ω

- <u>3.</u> If N accepts ω , <u>accept</u>. If N rejects ω , <u>reject</u>.
- 2. Run *H* on $\langle M_2 \rangle$.

Proof: Suppose $EVEN_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - 1. If x has odd length, reject. accept
 - 2. If x has even length, run N on ω .

 $L(M_2)$ contains all even length strings $\widehat{\mathbf{X}}$ N accepts ω

- <u>3.</u> If N accepts ω , <u>accept</u>. If N rejects ω , <u>reject</u>.
- 2. Run *H* on $\langle M_2 \rangle$.

Proof: Suppose $EVEN_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - 1. If x has odd length, <u>reject</u>.
 - 2. If x has even length, run N on ω .

 $L(M_2)$ contains all even length strings $\widehat{\mathbf{L}}$ N accepts ω

<u>3.</u> If N accepts ω , <u>accept</u>. If N rejects ω , <u>reject</u>.

2. Run *H* on $\langle M_2 \rangle$.

accept

Proof: Suppose $EVEN_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

1. If x has odd length, <u>reject</u>.

2. If x has even length, run N on ω .

 $L(M_2)$ contains all even length strings \widehat{V} N accepts ω

<u>3.</u> If N accepts ω , <u>accept</u>. If N rejects ω , <u>reject</u>.

2. Run *H* on $\langle M_2 \rangle$.

Proof: Suppose $EVEN_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

1. Run N on ω and <u>accept</u> if N does.

 $L(M_2)$ contains all even length strings \widehat{V} N accepts ω

2. Run *H* on $\langle M_2 \rangle$.

3. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

If N accepts ω , $L(M_2) = \Sigma^*$ (contains all even length strings) and S accepts. If N does not accept ω , $L(M_2) = \emptyset$ (does not contain all even length strings) and S rejects. Thus, S is a decider for A_{TM} , which is a contradiction, so $EVEN_{TM}$ is undecidable.

Proof: Suppose $HALT - \varepsilon_{TM}$ is decidable and let TM H be its decider. Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

1. Run N on ω and <u>accept</u> if N does.

2. Run *H* on $\langle M_2 \rangle$.

3. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

If N accepts ω , M_2 halts on ε and S accepts. If N does not accept ω , M_2 does not halt on ε and S rejects. Therefore, S is a decider for A_{TM} , which is a contradiction, so $HALT - \varepsilon_{TM}$ is undecidable.

Proof: Suppose $HALT - \varepsilon_{TM}$ is decidable and let TM H be its decider. Build a TM S that decides A_{TM} : $S = \text{ on input } \langle N, \omega \rangle$ 1. Construct TM M_2 on input $\langle x \rangle$: 1. Run N on ω and $\frac{\text{accept}}{\text{reject}}$ if N accepts. M_2 halts on ε 1N accepts ω

2. Run H on $\langle M_2 \rangle$.

Proof: Suppose $HALT - \varepsilon_{TM}$ is decidable and let TM H be its decider. Build a TM S that decides A_{TM} : $S = \text{ on input } \langle N, \omega \rangle$ M_2 halts on ε

1. Construct TM M_2 on input $\langle x \rangle$: 1. If $x \neq \varepsilon$, reject. 2. If $x = \varepsilon$, run N on ω and accept if N accepts. 2. Run H on $\langle M_2 \rangle$.

Proof: Suppose $HALT - \varepsilon_{TM}$ is decidable and let TM H be its decider. Build a TM S that decides A_{TM} : M_2 halts on ε

 $S = \text{ on input } \langle N, \omega \rangle$ 1. Construct TM M_2 on input $\langle x \rangle$: $1. \text{ If } x \neq \varepsilon, \frac{\text{reject}}{\text{reject}} \cdot \frac{\text{accept}}{\text{accept}}$ 2. If $x = \varepsilon$, run N on ω and $\frac{\text{accept}}{\text{accept}}$ if N accepts.
2. Run H on $\langle M_2 \rangle$.

Proof: Suppose $HALT - \varepsilon_{TM}$ is decidable and let TM H be its decider. Build a TM S that decides A_{TM} : M_2 halts on ε

 $S = \text{ on input } \langle N, \omega \rangle$ 1. Construct TM M_2 on input $\langle x \rangle$: $\begin{array}{c} 1. \quad \text{If } x \neq \varepsilon, \text{ reject.} \\ \hline 2. \quad \text{If } x = \varepsilon, \text{ run } N \text{ on } \omega \text{ and } \underline{\text{accept}} \text{ if N accepts.} \\ \hline 2. \quad \text{Run } H \text{ on } \langle M_2 \rangle. \end{array}$

Proof: Suppose $HALT - \varepsilon_{TM}$ is decidable and let TM H be its decider. Build a TM S that decides A_{TM} : $S = \text{ on input } \langle N, \omega \rangle$ 1. Construct TM M_2 on input $\langle x \rangle$: 1. If $x \neq \varepsilon$, reject. 2. If $x = \varepsilon$, run N on ω and accept if N accepts. 2. Run H on $\langle M_2 \rangle$. M_2 halts on ε \Re N accepts ω N accepts. Run H on $\langle M_2 \rangle$.

Proof: Suppose $HALT - \varepsilon_{TM}$ is decidable and let TM H be its decider. Build a TM S that decides $HALT_{TM}$:

 $S = on input \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

1. Run N on ω and <u>accept</u> if N does.

2. Run H on $\langle M_2 \rangle$.

Proof: Suppose $HALT - \varepsilon_{TM}$ is decidable and let TM H be its decider. Build a TM S that decides $HALT_{TM}$:

 $S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

1. Run N on ω and <u>accept</u> if N does.

2. Run H on $\langle M_2 \rangle$.

Doesn't work! M_2 does not (always) halt when N halts on ω !

Proof: Suppose $HALT - \varepsilon_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides $HALT_{TM}$:

 $S = \text{on input } \langle N, \omega \rangle$

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - 1. Run N on ω .

- 2. <u>Accept</u> if N accepts and <u>reject</u> if N rejects.
- 2. Run H on $\langle M_2 \rangle$.

3. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

Proof: Suppose $HALT - \varepsilon_{TM}$ is decidable and let TM H be its decider.

3. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

Build a TM *S* that decides $HALT_{TM}$: *S* = on input $\langle N, \omega \rangle$ 1. Construct TM M_2 on input $\langle x \rangle$: 1. Run *N* on ω . 2. reject. 2. Run *H* on $\langle M_2 \rangle$.

 M_2 halts on ε 1N halts on ω Prove that $ALMOST_ALL_{DFA} = \{\langle A, \omega \rangle : A \text{ is a DFA and } L(A) = \Sigma^* \setminus \{\omega\}\}$ is decidable. Remember to show that your algorithm meets the requirements of a decider.

You are allowed to use any deciders we learned in class or on homework!

Prove that $ANY_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \neq \emptyset\}$ is undecidable.

Prove that $ALMOST_ALL_{DFA} = \{\langle A, \omega \rangle : A \text{ is a DFA and } L(A) = \Sigma^* \setminus \{\omega\}\}$ is decidable. Remember to show that your algorithm meets the requirements of a decider.

Proof: Construct the following Turing machine to decide $ALMOST_ALL_{DFA}$: $M = \text{on input } \langle A, \omega \rangle$

- 1. Run A on ω and <u>reject</u> if A accepts.
- 2. Construct DFA B that only accepts ω .
- 3. Construct DFA C so that $L(C) = L(A) \cup L(B)$.
- 4. Run the decider for ALL_{DFA} on C.
- 5. If the decider accepts, <u>accept</u>. If it rejects, <u>reject</u>.

Every DFA is guaranteed to halt on all input so step 1 will halt. Constructing B and C will occur in finite time, and running a decider is guaranteed to halt. Thus, M is guaranteed to halt and is a decider. Prove that $ANY_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \neq \emptyset\}$ is undecidable.

Proof: Suppose ANY_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:

<u>1.</u> Run N on ω and <u>accept</u> if N does.

$$L(M_2) \neq \emptyset$$

$$1$$

$$N \text{ accepts } \omega$$

2. Run *H* on $\langle M_2 \rangle$.

3. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

If N accepts ω , $L(M_2) = \Sigma^*$ and S accepts. If N does not accept ω , $L(M_2) = \emptyset$ and S rejects. Thus, S is a decider for A_{TM} , which is a contradiction, so ANY_{TM} is undecidable.

Computability Hierarchy

Claim: $\overline{HALT_{TM}} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ does not halt on } \omega \}$ is not Turing-recognizable.

Claim: $\overline{HALT_{TM}} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ does not halt on } \omega\}$ is not Turing-recognizable.

Proof: Suppose $\overline{HALT_{TM}}$ was Turing-recognizable. Let T be its recognizer (i.e., T will accept if a TM does <u>**not**</u> halt on some input).

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ does not halt on } \omega \}$ is not Turing-recognizable.

Proof: Suppose $HALT_{TM}$ was Turing-recognizable. Let T be its recognizer (i.e., T will accept if a TM does **not** halt on some input).

- 2. accept.
- Consider S on $\langle N, \omega \rangle$: 1. Run N on ω . HALT_{TM} recognizer!

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ does not halt on } \omega \}$ is not Turing-recognizable.

Proof: Suppose $HALT_{TM}$ was Turing-recognizable. Let T be its recognizer (i.e., T will accept if a TM does **not** halt on some input).

- 2. accept.

Consider S on $\langle N, \omega \rangle$: 1. Run N on ω . HALT_{TM} recognizer!

Consider V on $\langle N, \omega \rangle$:

- 1. Run *T* on $\langle N, \omega \rangle$ and run *S* on $\langle N, \omega \rangle$ in parallel. 2. If *T* accepts, <u>reject</u>. If *S* accepts, <u>accept</u>.

Claim: A language is decidable \Leftrightarrow it and its complement are Turing-recognizable.

Proof: \implies If a language is decidable, its complement is also decidable (just reverse accept/reject conditions) and decidable languages are recognizable.

 \leftarrow If A and \overline{A} are both Turing-recognizable, let M₁ and M₂ be recognizers for A and \overline{A} . Consider the following TM:

M = on input ω

1. Run both M_1 and M_2 on ω in parallel (alternate instructions).

2. If M₁ accepts, <u>accept</u>. If M₂ accepts, <u>reject</u>.

Since $\omega \in A$ or \overline{A} , M_1 or M_2 must accept (halts on input). Thus, M is a decider for A.

What if $HALT_{TM}$ were "decidable"?

What if $HALT_{TM}$ were "decidable"?

Goldbach's Conjecture:

- 280-year-old open problem.
- Every integer ≥ 2 is sum of two primes.

What if $HALT_{TM}$ were "decidable"?

Goldbach's Conjecture:

- 280-year-old open problem.
- Every integer ≥ 2 is sum of two primes.

Consider G on $\langle x \rangle$:

- 1. For n = 2, check each pair of prime number < n.
- 2. If no pair sums to *n*, <u>reject</u>.
- 3. Increment *n* and loop to step 1.

```
public boolean G() {
  int i = 2;
  while (true) {
     boolean found = false;
     for (int n = 1; n < i; n++) {
       for (int m = 1; m < i; m++) {
          if (isPrime(n) && isPrime(m) && m + n = i) {
            found = true;
          }
       }
     }
    if (!found) {
       return false;
     i++;
```

What if $HALT_{TM}$ were "decidable"?

Goldbach's Conjecture:

- 280-year-old open problem.
- Every integer ≥ 2 is sum of two primes.

Consider G on $\langle x \rangle$:

- 1. For n = 2, check each pair of prime number < n.
- 2. If no pair sums to *n*, <u>reject</u>.
- 3. Increment *n* and loop to step 1.

What does it mean if *G* halts? What does it mean if *G* does not halt?

What if $HALT_{TM}$ were "decidable"?

Goldbach's Conjecture:

- 280-year-old open problem.
- Every integer ≥ 2 is sum of two primes.

Consider G on $\langle x \rangle$:

- 1. For n = 2, check each pair of prime number < n.
- 2. If no pair sums to *n*, <u>reject</u>.
- 3. Increment *n* and loop to step 1.

What does it mean if *G* halts? **Goldbach's conjecture is false!** What does it mean if *G* does not halt? **Goldbach's conjecture is true!**

What if $HALT_{TM}$ were "decidable"?

Goldbach's Conjecture:

- 280-year-old open problem.
- Every integer ≥ 2 is sum of two primes.

Consider G on $\langle x \rangle$:

- 1. For n = 2, check each pair of prime number < n.
- 2. If no pair sums to *n*, <u>reject</u>.

3. Increment *n* and loop to step 1.

What does it mean if *G* halts? **Goldbach's conjecture is false!** What does it mean if *G* does not halt? **Goldbach's conjecture is true!**

Turns out you can do this for lots of open problems over natural numbers (twin prime conjecture,...)