Review
CSCI 338
Test 2 Logistics

1. During class on Wednesday 3/27.
2. You can bring your book and any notes you would like, but no electronic devices.
3. You may assume anything proven in class or on homeworks.
4. Four questions:
 1) Show a language is decidable (5 points).
 2) Show a language is not decidable (10 points).
 3) Show a language is not decidable (5 points).
 4) Show a language is not decidable (1-2 points).
Claim: \(\text{FINITE}_{TM} = \{ \langle M \rangle : M \text{ is a TM and accepts a finite number of strings} \} \) is undecidable.

Proof: Suppose \(\text{FINITE}_{TM} \) is decidable and let TM \(H \) be its decider.

Build a TM \(S \) that decides \(A_{TM} \):

\[
S = \text{on input } \langle N, \omega \rangle
\]

1. Construct TM \(M_2 \) on input \(\langle x \rangle \):
 1. Run \(N \) on \(\omega \) and accept if \(N \) does.
 2. Run \(H \) on \(\langle M_2 \rangle \).
 3. If \(H \) accepts, reject. If \(H \) rejects, accept.

If \(N \) accepts \(\omega \), \(L(M_2) = \Sigma^* \) (infinite) and \(S \) accepts. If \(N \) does not accept \(\omega \), \(L(M_2) = \emptyset \) (finite) and \(S \) rejects. Therefore, \(S \) is a decider for \(A_{TM} \), which is a contradiction, so \(\text{FINITE}_{TM} \) is undecidable.
Claim: \(EVEN_{TM} = \{\langle M \rangle: M \text{ is a TM and } L(M) \text{ contains all even length strings}\}\) is undecidable.

Proof: Suppose \(EVEN_{TM}\) is decidable and let TM \(H\) be its decider.

Build a TM \(S\) that decides \(A_{TM}\):

1. Construct TM \(M_2\) on input \(\langle x \rangle\):
 1. If \(x\) has odd length, reject.
 2. If \(x\) has even length, run \(N\) on \(\omega\).
 3. If \(N\) accepts \(\omega\), accept. If \(N\) rejects \(\omega\), reject.
2. Run \(H\) on \(\langle M_2 \rangle\).
Claim: $EVEN_{TM} = \{\langle M \rangle: M \text{ is a TM and } L(M) \text{ contains all even length strings}\}$ is undecidable.

Proof: Suppose $EVEN_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

$S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. If x has odd length, reject. \[\text{ accept}\]
 2. If x has even length, run N on ω.
 3. If N accepts ω, accept. If N rejects ω, reject.

2. Run H on $\langle M_2 \rangle$.

$L(M_2)$ contains all even length strings
\[\updownarrow\]
N accepts ω
Claim: \(\text{EVEN}_{TM} = \{ \langle M \rangle : M \text{ is a TM and } L(M) \text{ contains all even length strings} \} \) is undecidable.

Proof: Suppose \(\text{EVEN}_{TM} \) is decidable and let TM \(H \) be its decider.

Build a TM \(S \) that decides \(A_{TM} \):

\[
S = \text{on input } \langle N, \omega \rangle
\]

1. Construct TM \(M_2 \) on input \(\langle x \rangle \):
 1. If \(x \) has odd length, reject.
 2. If \(x \) has even length, run \(N \) on \(\omega \).
 3. If \(N \) accepts \(\omega \), accept. If \(N \) rejects \(\omega \), reject.

2. Run \(H \) on \(\langle M_2 \rangle \).

Let \(L(M_2) \) contains all even length strings if \(N \) accepts \(\omega \) accept
Claim: \(\text{EVEN}_{TM} = \{ \langle M \rangle : M \text{ is a TM and } L(M) \text{ contains all even length strings} \} \) is undecidable.

Proof: Suppose \(\text{EVEN}_{TM} \) is decidable and let TM \(H \) be its decider.

Build a TM \(S \) that decides \(A_{TM} \):

\[
S = \text{on input } \langle N, \omega \rangle \\
1. \text{Construct TM } M_2 \text{ on input } \langle x \rangle : \\
 1. \text{If } x \text{ has odd length, reject.} \\
 2. \text{If } x \text{ has even length, run } N \text{ on } \omega. \\
 3. \text{If } N \text{ accepts } \omega, \text{ accept. If } N \text{ rejects } \omega, \text{ reject.} \\
2. \text{Run } H \text{ on } \langle M_2 \rangle.
\]

\(L(M_2) \) contains all even length strings

\(N \) accepts \(\omega \)
Claim: $EVEN_{TM} = \{\langle M \rangle : M$ is a TM and $L(M)$ contains all even length strings$\}$ is undecidable.

Proof: Suppose $EVEN_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

$S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. Run N on ω and accept if N does.

2. Run H on $\langle M_2 \rangle$.

3. If H accepts, accept. If H rejects, reject.

If N accepts ω, $L(M_2) = \Sigma^*$ (contains all even length strings) and S accepts.
If N does not accept ω, $L(M_2) = \emptyset$ (does not contain all even length strings) and S rejects. Thus, S is a decider for A_{TM}, which is a contradiction, so $EVEN_{TM}$ is undecidable.
Claim: $HALT - \varepsilon_{TM} = \{\langle M \rangle: M \text{ is a TM and halts on empty input (i.e. } \varepsilon)\}$ is undecidable.

Proof: Suppose $HALT - \varepsilon_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

$S = \text{ on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. Run N on ω and accept if N does.

2. Run H on $\langle M_2 \rangle$.

3. If H accepts, accept. If H rejects, reject.

If N accepts ω, M_2 halts on ε and S accepts. If N does not accept ω, M_2 does not halt on ε and S rejects. Therefore, S is a decider for A_{TM}, which is a contradiction, so $HALT - \varepsilon_{TM}$ is undecidable.
Claim: $HALT - \varepsilon_{TM} = \{\langle M \rangle : M \text{ is a TM and halts on empty input (i.e. } \varepsilon)\}$ is undecidable.

Proof: Suppose $HALT - \varepsilon_{TM}$ is decidable and let TM H be its decider. Build a TM S that decides A_{TM}:

$S = \text{ on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. Run N on ω and accept if N accepts.
 2. Run H on $\langle M_2 \rangle$.

\[
\begin{array}{c}
M_2 \text{ halts on } \varepsilon \\
\downarrow \\
N \text{ accepts } \omega
\end{array}
\]

\[\text{reject}\]
Claim: $HALT - \varepsilon_{TM} = \{\langle M \rangle: M$ is a TM and halts on empty input (i.e. $\varepsilon)\}$ is undecidable.

Proof: Suppose $HALT - \varepsilon_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

$S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. If $x \neq \varepsilon$, reject.
 2. If $x = \varepsilon$, run N on ω and accept if N accepts.
2. Run H on $\langle M_2 \rangle$.

M_2 halts on ε \iff N accepts ω
Claim: \(\text{HALT} - \varepsilon_{TM} = \{ \langle M \rangle : M \text{ is a TM and halts on empty input (i.e. } \varepsilon) \} \) is undecidable.

Proof: Suppose \(\text{HALT} - \varepsilon_{TM} \) is decidable and let TM \(H \) be its decider.

Build a TM \(S \) that decides \(\mathcal{A}_{TM} \):

\[
S = \text{on input } \langle N, \omega \rangle
\]

1. Construct TM \(M_2 \) on input \(\langle x \rangle \):
 1. If \(x \neq \varepsilon \), reject. **accept**
 2. If \(x = \varepsilon \), run \(N \) on \(\omega \) and **accept** if \(N \) accepts.

2. Run \(H \) on \(\langle M_2 \rangle \).
Claim: $HALT - \varepsilon_{TM} = \{\langle M \rangle: M$ is a TM and halts on empty input (i.e. $\varepsilon)\}$ is undecidable.

Proof: Suppose $HALT - \varepsilon_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

$S =$ on input $\langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. If $x \neq \varepsilon$, reject.
 2. If $x = \varepsilon$, run N on ω and accept if N accepts.

2. Run H on $\langle M_2 \rangle$.

M_2 halts on ε

\Downarrow

N accepts ω
Claim: $HALT - \varepsilon_{TM} = \{\langle M \rangle: M \text{ is a TM and halts on empty input (i.e. } \varepsilon)\}$ is undecidable.

Proof: Suppose $HALT - \varepsilon_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM}:

$S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. If $x \neq \varepsilon$, reject.
 2. If $x = \varepsilon$, run N on ω and accept if N accepts.

2. Run H on $\langle M_2 \rangle$.

M_2 halts on ε
\uparrow
N accepts ω

Rejects
Claim: \(\text{HALT} - \varepsilon_{TM} = \{ \langle M \rangle: M \text{ is a TM and halts on empty input (i.e. } \varepsilon) \} \) is undecidable.

Proof: Suppose \(\text{HALT} - \varepsilon_{TM} \) is decidable and let TM \(H \) be its decider.

Build a TM \(S \) that decides \(A_{TM} \):

\[
S = \text{on input } \langle N, \omega \rangle
\]

1. Construct TM \(M_2 \) on input \(\langle x \rangle \):
 1. If \(x \neq \varepsilon \), reject.
 2. If \(x = \varepsilon \), run \(N \) on \(\omega \) and accept if \(N \) accepts.
2. Run \(H \) on \(\langle M_2 \rangle \).

\(M_2 \) halts on \(\varepsilon \)
\(\uparrow \)
\(N \) accepts \(\omega \)

\(N \) not accepting is not the same as \(N \) rejecting!

Doesn't work! \(N \) not accepting is not the same as \(N \) rejecting!
Claim: $HALT - \varepsilon_{TM} = \{\langle M \rangle: M$ is a TM and halts on empty input (i.e. $\varepsilon)\}$ is undecidable.

Proof: Suppose $HALT - \varepsilon_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides $HALT_{TM}$:

$S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. Run N on ω and accept if N does.
2. Run H on $\langle M_2 \rangle$.

\[
\begin{array}{c}
M_2 \text{ halts on } \varepsilon \\
\Downarrow
\\
N \text{ halts on } \omega
\end{array}
\]
Claim: \(\text{HALT} - \varepsilon_{TM} = \{ \langle M \rangle : M \text{ is a TM and halts on empty input (i.e. } \varepsilon) \} \) is undecidable.

Proof: Suppose \(\text{HALT} - \varepsilon_{TM} \) is decidable and let \(\text{TM } H \) be its decider.

Build a TM \(S \) that decides \(\text{HALT}_{TM} \):

\[
S = \text{on input } \langle N, \omega \rangle \\
1. \text{Construct } \text{TM } M_2 \text{ on input } \langle x \rangle : \\
 1. \text{Run } N \text{ on } \omega \text{ and accept if } N \text{ does.} \\
 2. \text{Run } H \text{ on } \langle M_2 \rangle.
\]

\[
\begin{array}{c}
M_2 \text{ halts on } \varepsilon \\
\Downarrow \\
N \text{ halts on } \omega
\end{array}
\]

Doesn’t work! \(M_2 \) does not (always) halt when \(N \) halts on \(\omega \)!
Claim: $HALT - \varepsilon_{TM} = \{\langle M \rangle: M \text{ is a TM and halts on empty input (i.e. } \varepsilon)\}$ is undecidable.

Proof: Suppose $HALT - \varepsilon_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides $HALT_{TM}$:

$S = \text{on input } \langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. Run N on ω.
 2. Accept if N accepts and reject if N rejects.
2. Run H on $\langle M_2 \rangle$.
3. If H accepts, accept. If H rejects, reject.
Claim: $HALT - \varepsilon_{TM} = \{\langle M \rangle: M \text{ is a TM and halts on empty input (i.e. } \varepsilon)\}$ is undecidable.

Proof: Suppose $HALT - \varepsilon_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides $HALT_{TM}$:

$S =$ on input $\langle N, \omega \rangle$

1. Construct TM M_2 on input $\langle x \rangle$:
 1. Run N on ω.
 2. reject.

2. Run H on $\langle M_2 \rangle$.

3. If H accepts, accept. If H rejects, reject.
Prove that $ALMOST_ALL_{DFA} = \{\langle A, \omega \rangle : A \text{ is a DFA and } L(A) = \Sigma^* \setminus \{\omega\}\} \text{ is decidable. Remember to show that your algorithm meets the requirements of a decider.}$

You are allowed to use any deciders we learned in class or on homework!
Prove that $ANY_{TM} = \{\langle M \rangle: M \text{ is a TM and } L(M) \neq \emptyset \}$ is undecidable.
Prove that $ALMOST_ALL_{DFA} = \{⟨A, ω⟩: A$ is a DFA and $L(A) = \Sigma^* \setminus \{ω\}\}$ is decidable. Remember to show that your algorithm meets the requirements of a decider.

Proof: Construct the following Turing machine to decide $ALMOST_ALL_{DFA}$:

$M = \text{on input } ⟨A, ω⟩$

1. Run A on $ω$ and reject if A accepts.
2. Construct DFA B that only accepts $ω$.
3. Construct DFA C so that $L(C) = L(A) \cup L(B)$.
4. Run the decider for ALL_{DFA} on C.
5. If the decider accepts, accept. If it rejects, reject.

Every DFA is guaranteed to halt on all input so step 1 will halt. Constructing B and C will occur in finite time, and running a decider is guaranteed to halt. Thus, M is guaranteed to halt and is a decider.
Prove that \(\text{ANY}_{TM} = \{ \langle M \rangle : M \text{ is a TM and } L(M) \neq \emptyset \} \) is undecidable.

Proof: Suppose \(\text{ANY}_{TM} \) is decidable and let TM \(H \) be its decider.

Build a TM \(S \) that decides \(A_{TM} \):

\[
S = \text{on input } \langle N, \omega \rangle
\]

1. Construct TM \(M_2 \) on input \(\langle x \rangle \):
 1. Run \(N \) on \(\omega \) and accept if \(N \) does.
 2. Run \(H \) on \(\langle M_2 \rangle \).
 3. If \(H \) accepts, accept. If \(H \) rejects, reject.

If \(N \) accepts \(\omega \), \(L(M_2) = \Sigma^* \) and \(S \) accepts. If \(N \) does not accept \(\omega \), \(L(M_2) = \emptyset \) and \(S \) rejects. Thus, \(S \) is a decider for \(A_{TM} \), which is a contradiction, so \(\text{ANY}_{TM} \) is undecidable.
Computability Hierarchy

- Regular
- Context-Free
- Decidable
- Turing-recognizable
- Other
Claim: \(\overline{\text{HALT}}_{TM} = \{ \langle M, \omega \rangle : M \text{ is a TM and } M \text{ does not halt on } \omega \} \) is not Turing-recognizable.
Unrecognizable Language

Claim: \(\overline{HALT_{TM}} = \{ \langle M, \omega \rangle: M \text{ is a TM and } M \text{ does not halt on } \omega \} \) is not Turing-recognizable.

Proof: Suppose \(\overline{HALT_{TM}} \) was Turing-recognizable. Let \(T \) be its recognizer (i.e., \(T \) will accept if a TM does \textbf{not} halt on some input).
Claim: $\overline{HALT_{TM}} = \{\langle M, \omega \rangle: M \text{ is a TM and } M \text{ does not halt on } \omega \}$ is not Turing-recognizable.

Proof: Suppose $\overline{HALT_{TM}}$ was Turing-recognizable. Let T be its recognizer (i.e., T will accept if a TM does not halt on some input).

Consider S on $\langle N, \omega \rangle$:
1. Run N on ω.
2. accept.

$HALT_{TM}$ recognizer!
Unrecognizable Language

Claim: $\overline{\text{HALT}_{TM}} = \{\langle M, \omega \rangle: M \text{ is a TM and } M \text{ does not halt on } \omega \}$ is not Turing-recognizable.

Proof: Suppose $\overline{\text{HALT}_{TM}}$ was Turing-recognizable. Let T be its recognizer (i.e., T will accept if a TM does not halt on some input).

Consider S on $\langle N, \omega \rangle$:
1. Run N on ω.
2. accept.

Consider V on $\langle N, \omega \rangle$:
1. Run T on $\langle N, \omega \rangle$ and run S on $\langle N, \omega \rangle$ in parallel.
2. If T accepts, reject. If S accepts, accept.
Computability Hierarchy

- Regular
- Context-Free
- Decidable
- Turing-recognizable

$HALT_{TM}$
Unrecognizable Language

Claim: A language is decidable \iff it and its complement are Turing-recognizable.

Proof: \implies If a language is decidable, its complement is also decidable (just reverse accept/reject conditions) and decidable languages are recognizable.

\impliedby If A and \overline{A} are both Turing-recognizable, let M_1 and M_2 be recognizers for A and \overline{A}. Consider the following TM:

$M =$ on input ω

1. Run both M_1 and M_2 on ω in parallel (alternate instructions).
2. If M_1 accepts, accept. If M_2 accepts, reject.

Since $\omega \in A$ or \overline{A}, M_1 or M_2 must accept (halts on input). Thus, M is a decider for A.
Beyond Decidability

What if $HALT_{TM}$ were “decidable”?
Beyond Decidability

What if $HALT_{TM}$ were “decidable”?

Goldbach’s Conjecture:

- 280-year-old open problem.
- Every integer ≥ 2 is sum of two primes.
Beyond Decidability

What if \(\text{HALT}_{TM} \) were “decidable”?

Goldbach’s Conjecture:
- 280-year-old open problem.
- Every integer \(\geq 2 \) is sum of two primes.

Consider \(G \) on \(\langle x \rangle \):
1. For \(n = 2 \), check each pair of prime number < \(n \).
2. If no pair sums to \(n \), reject.
3. Increment \(n \) and loop to step 1.
public boolean G() {
 int i = 2;
 while (true) {
 boolean found = false;
 for (int n = 1; n < i; n++) {
 for (int m = 1; m < i; m++) {
 if (isPrime(n) && isPrime(m) && m + n == i) {
 found = true;
 }
 }
 }
 if (!found) {
 return false;
 }
 i++;
 }
}
Beyond Decidability

What if $HALT_{TM}$ were “decidable”?

Goldbach’s Conjecture:
- 280-year-old open problem.
- Every integer ≥ 2 is sum of two primes.

Consider G on $\langle x \rangle$:
1. For $n = 2$, check each pair of prime number $< n$.
2. If no pair sums to n, reject.
3. Increment n and loop to step 1.

What does it mean if G halts?
What does it mean if G does not halt?
Beyond Decidability

What if $HALT_{TM}$ were “decidable”?

Goldbach’s Conjecture:
- 280-year-old open problem.
- Every integer ≥ 2 is sum of two primes.

Consider G on $\langle x \rangle$:
1. For $n = 2$, check each pair of prime number $< n$.
2. If no pair sums to n, reject.
3. Increment n and loop to step 1.

What does it mean if G halts? Goldbach’s conjecture is false!
What does it mean if G does not halt? Goldbach’s conjecture is true!
Beyond Decidability

What if $HALT_{TM}$ were “decidable”?

Goldbach’s Conjecture:

- 280-year-old open problem.
- Every integer ≥ 2 is sum of two primes.

Consider G on $\langle x \rangle$:

1. For $n = 2$, check each pair of prime number $< n$.
2. If no pair sums to n, reject.
3. Increment n and loop to step 1.

What does it mean if G halts? **Goldbach’s conjecture is false!**

What does it mean if G does not halt? **Goldbach’s conjecture is true!**

Turns out you can do this for lots of open problems over natural numbers (twin prime conjecture,...)