
Review
CSCI 338



Test 2 Logistics

1. During class on Wednesday 3/27.
2. You can bring your book and any notes you would like, 

but no electronic devices.
3. You may assume anything proven in class or on 

homeworks.
4. Four questions:

1) Show a language is decidable (5 points).
2) Show a language is not decidable (10 points).
3) Show a language is not decidable (5 points).
4) Show a language is not decidable (1-2 points).



Claim: 𝐹𝐼𝑁𝐼𝑇𝐸!" = { 𝑀 :𝑀 is a TM and accepts a finite number of strings}
is undecidable.

Proof: Suppose 𝐹𝐼𝑁𝐼𝑇𝐸!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. Run 𝑁 on 𝜔 and accept if N does.

2. Run 𝐻 on 𝑀# .
3. If 𝐻 accepts, reject. If 𝐻 rejects, accept.

 

 If 𝑁 accepts 𝜔, 𝐿(𝑀#) = Σ∗ (infinite) and 𝑆 accepts. If 𝑁 does not accept 𝜔, 
𝐿(𝑀#) = ∅ (finite) and 𝑆 rejects. Therefore, 𝑆 is a decider for 𝐴!", which is 
a contradiction, so 𝐹𝐼𝑁𝐼𝑇𝐸!"  is undecidable.

𝐿 𝑀! 	is infinite
⇕

𝑁 accepts 𝜔



Claim: 𝐸𝑉𝐸𝑁!" = { 𝑀 :𝑀 is a TM and 𝐿(𝑀) contains all even length strings}
is undecidable.

Proof: Suppose 𝐸𝑉𝐸𝑁!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 has odd length, reject.
2. If 𝑥 has even length, run 𝑁 on 𝜔.
3. If 𝑁 accepts 𝜔, accept. If 𝑁 rejects 𝜔, reject.

2. Run 𝐻 on 𝑀# .

𝐿(𝑀!)	contains all 
even length strings

⇕
𝑁 accepts 𝜔



Claim: 𝐸𝑉𝐸𝑁!" = { 𝑀 :𝑀 is a TM and 𝐿(𝑀) contains all even length strings}
is undecidable.

Proof: Suppose 𝐸𝑉𝐸𝑁!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 has odd length, reject.
2. If 𝑥 has even length, run 𝑁 on 𝜔.
3. If 𝑁 accepts 𝜔, accept. If 𝑁 rejects 𝜔, reject.

2. Run 𝐻 on 𝑀# .

𝐿(𝑀!)	contains all 
even length strings

⇕
𝑁 accepts 𝜔

accept



Claim: 𝐸𝑉𝐸𝑁!" = { 𝑀 :𝑀 is a TM and 𝐿(𝑀) contains all even length strings}
is undecidable.

Proof: Suppose 𝐸𝑉𝐸𝑁!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 has odd length, reject.
2. If 𝑥 has even length, run 𝑁 on 𝜔.
3. If 𝑁 accepts 𝜔, accept. If 𝑁 rejects 𝜔, reject.

2. Run 𝐻 on 𝑀# .

𝐿(𝑀!)	contains all 
even length strings

⇕
𝑁 accepts 𝜔

accept



Claim: 𝐸𝑉𝐸𝑁!" = { 𝑀 :𝑀 is a TM and 𝐿(𝑀) contains all even length strings}
is undecidable.

Proof: Suppose 𝐸𝑉𝐸𝑁!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 has odd length, reject.
2. If 𝑥 has even length, run 𝑁 on 𝜔.
3. If 𝑁 accepts 𝜔, accept. If 𝑁 rejects 𝜔, reject.

2. Run 𝐻 on 𝑀# .

𝐿(𝑀!)	contains all 
even length strings

⇕
𝑁 accepts 𝜔



Claim: 𝐸𝑉𝐸𝑁!" = { 𝑀 :𝑀 is a TM and 𝐿(𝑀) contains all even length strings}
is undecidable.

Proof: Suppose 𝐸𝑉𝐸𝑁!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:

1. Run 𝑁 on 𝜔 and accept if N does.

2. Run 𝐻 on 𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

 If 𝑁 accepts 𝜔, 𝐿(𝑀#) = Σ∗(contains all even length strings) and 𝑆 accepts. 
If 𝑁 does not accept 𝜔, 𝐿(𝑀#) = ∅ (does not contain all even length 
strings) and 𝑆 rejects. Thus, 𝑆 is a decider for 𝐴!", which is a contradiction, 
so 𝐸𝑉𝐸𝑁!"  is undecidable.

𝐿(𝑀!)	contains all 
even length strings

⇕
𝑁 accepts 𝜔



Claim: 𝐻𝐴𝐿𝑇 − 𝜀!" = { 𝑀 :𝑀 is a TM and halts on empty input (i.e. ε)}
is undecidable.

Proof: Suppose 𝐻𝐴𝐿𝑇 − 𝜀!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. Run 𝑁 on 𝜔 and accept if N does.

2. Run 𝐻 on 𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

 If 𝑁 accepts 𝜔, 𝑀# halts on 𝜀 and 𝑆 accepts. If 𝑁 does not accept 𝜔, 𝑀# 
does not halt on 𝜀 and 𝑆 rejects. Therefore, 𝑆 is a decider for 𝐴!", which is 
a contradiction, so 𝐻𝐴𝐿𝑇 − 𝜀!"  is undecidable.

𝑀!	halts on 𝜀
⇕

𝑁 accepts 𝜔



Claim: 𝐻𝐴𝐿𝑇 − 𝜀!" = { 𝑀 :𝑀 is a TM and halts on empty input (i.e. ε)}
is undecidable.

Proof: Suppose 𝐻𝐴𝐿𝑇 − 𝜀!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. Run 𝑁 on 𝜔 and accept if N accepts.

2. Run 𝐻 on 𝑀# .

𝑀!	halts on 𝜀
⇕

𝑁 accepts 𝜔
reject



Claim: 𝐻𝐴𝐿𝑇 − 𝜀!" = { 𝑀 :𝑀 is a TM and halts on empty input (i.e. ε)}
is undecidable.

Proof: Suppose 𝐻𝐴𝐿𝑇 − 𝜀!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ≠ 𝜀, reject.
2. If 𝑥 = 𝜀, run 𝑁 on 𝜔 and accept if N accepts.

2. Run 𝐻 on 𝑀# .

𝑀!	halts on 𝜀
⇕

𝑁 accepts 𝜔



Claim: 𝐻𝐴𝐿𝑇 − 𝜀!" = { 𝑀 :𝑀 is a TM and halts on empty input (i.e. ε)}
is undecidable.

Proof: Suppose 𝐻𝐴𝐿𝑇 − 𝜀!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ≠ 𝜀, reject.
2. If 𝑥 = 𝜀, run 𝑁 on 𝜔 and accept if N accepts.

2. Run 𝐻 on 𝑀# .

𝑀!	halts on 𝜀
⇕

𝑁 accepts 𝜔accept



Claim: 𝐻𝐴𝐿𝑇 − 𝜀!" = { 𝑀 :𝑀 is a TM and halts on empty input (i.e. ε)}
is undecidable.

Proof: Suppose 𝐻𝐴𝐿𝑇 − 𝜀!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ≠ 𝜀, reject.
2. If 𝑥 = 𝜀, run 𝑁 on 𝜔 and accept if N accepts.

2. Run 𝐻 on 𝑀# .

𝑀!	halts on 𝜀
⇕

𝑁 accepts 𝜔



Claim: 𝐻𝐴𝐿𝑇 − 𝜀!" = { 𝑀 :𝑀 is a TM and halts on empty input (i.e. ε)}
is undecidable.

Proof: Suppose 𝐻𝐴𝐿𝑇 − 𝜀!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ≠ 𝜀, reject.
2. If 𝑥 = 𝜀, run 𝑁 on 𝜔 and accept if N accepts.

2. Run 𝐻 on 𝑀# .

𝑀!	halts on 𝜀
⇕

𝑁 accepts 𝜔

rejects



Claim: 𝐻𝐴𝐿𝑇 − 𝜀!" = { 𝑀 :𝑀 is a TM and halts on empty input (i.e. ε)}
is undecidable.

Proof: Suppose 𝐻𝐴𝐿𝑇 − 𝜀!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. If 𝑥 ≠ 𝜀, reject.
2. If 𝑥 = 𝜀, run 𝑁 on 𝜔 and accept if N accepts.

2. Run 𝐻 on 𝑀# .

𝑀!	halts on 𝜀
⇕

𝑁 accepts 𝜔

rejects

Doesn’t work! 𝑵 not accepting 

is not the same as 𝑵 rejecting!



Claim: 𝐻𝐴𝐿𝑇 − 𝜀!" = { 𝑀 :𝑀 is a TM and halts on empty input (i.e. ε)}
is undecidable.

Proof: Suppose 𝐻𝐴𝐿𝑇 − 𝜀!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝑯𝑨𝑳𝑻𝑻𝑴:
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. Run 𝑁 on 𝜔 and accept if N does.

2. Run 𝐻 on 𝑀# .

𝑀!	halts on 𝜀
⇕

𝑁 halts on 𝜔



Claim: 𝐻𝐴𝐿𝑇 − 𝜀!" = { 𝑀 :𝑀 is a TM and halts on empty input (i.e. ε)}
is undecidable.

Proof: Suppose 𝐻𝐴𝐿𝑇 − 𝜀!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝑯𝑨𝑳𝑻𝑻𝑴:
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. Run 𝑁 on 𝜔 and accept if N does.

2. Run 𝐻 on 𝑀# .

𝑀!	halts on 𝜀
⇕

𝑁 halts on 𝜔

Doesn’t work! 𝑴𝟐 does not 
(always) halt when N halts on 𝜔!



Claim: 𝐻𝐴𝐿𝑇 − 𝜀!" = { 𝑀 :𝑀 is a TM and halts on empty input (i.e. ε)}
is undecidable.

Proof: Suppose 𝐻𝐴𝐿𝑇 − 𝜀!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐻𝐴𝐿𝑇!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. Run 𝑁 on 𝜔.
2. Accept if N accepts and reject if N rejects.

2. Run 𝐻 on 𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

𝑀!	halts on 𝜀
⇕

𝑁 halts on 𝜔



Claim: 𝐻𝐴𝐿𝑇 − 𝜀!" = { 𝑀 :𝑀 is a TM and halts on empty input (i.e. ε)}
is undecidable.

Proof: Suppose 𝐻𝐴𝐿𝑇 − 𝜀!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐻𝐴𝐿𝑇!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. Run 𝑁 on 𝜔.
2. reject.

2. Run 𝐻 on 𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

𝑀!	halts on 𝜀
⇕

𝑁 halts on 𝜔



Prove that 𝐴𝐿𝑀𝑂𝑆𝑇_𝐴𝐿𝐿'() = { 𝐴,𝜔 : 𝐴 is a DFA and 𝐿 𝐴 = Σ∗\ 𝜔 } is 
decidable. Remember to show that your algorithm meets the requirements 
of a decider.

You are allowed to use any deciders 
we learned in class or on homework!



Prove that 𝐴𝑁𝑌!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀 ≠ ∅} is undecidable. 



Prove that 𝐴𝐿𝑀𝑂𝑆𝑇_𝐴𝐿𝐿'() = { 𝐴,𝜔 : 𝐴 is a DFA and 𝐿 𝐴 = Σ∗\ 𝜔 } is 
decidable. Remember to show that your algorithm meets the requirements 
of a decider.

Proof: Construct the following Turing machine to decide 𝐴𝐿𝑀𝑂𝑆𝑇_𝐴𝐿𝐿'():
  𝑀 = on input 𝐴,𝜔

1. Run 𝐴 on 𝜔 and reject if 𝐴 accepts.
2. Construct DFA 𝐵 that only accepts 𝜔.
3. Construct DFA 𝐶 so that 𝐿 𝐶 = 𝐿 𝐴 ∪ 𝐿(𝐵).
4. Run the decider for 𝐴𝐿𝐿'() on 𝐶.
5. If the decider accepts, accept. If it rejects, reject.

 
 Every DFA is guaranteed to halt on all input so step 1 will halt. 
Constructing 𝐵 and 𝐶 will occur in finite time, and running a decider is 
guaranteed to halt. Thus, 𝑀 is guaranteed to halt and is a decider.



Prove that 𝐴𝑁𝑌!" = { 𝑀 :𝑀 is a TM and 𝐿 𝑀 ≠ ∅} is undecidable. 

Proof: Suppose 𝐴𝑁𝑌!"  is decidable and let TM 𝐻 be its decider.
 Build a TM 𝑆 that decides 𝐴!":
  𝑆 = on input 𝑁,𝜔

1. Construct TM 𝑀# on input 𝑥 	:
1. Run 𝑁 on 𝜔	and accept if 𝑁 does. 

2. Run 𝐻 on 𝑀# .
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

 If 𝑁 accepts 𝜔, 𝐿(𝑀#) = Σ∗ and 𝑆 accepts. If 𝑁 does not accept 𝜔, 
𝐿(𝑀#) = ∅ and 𝑆 rejects. Thus, 𝑆 is a decider for 𝐴!", which is a 
contradiction, so 𝐴𝑁𝑌!"  is undecidable.

𝐿(𝑀!) ≠ ∅
⇕

𝑁 accepts 𝜔



Context-Free

Computability Hierarchy

Regular

Other

Decidable
Turing-recognizable



Unrecognizable Language

Claim: 𝐻𝐴𝐿𝑇#$ = { 𝑀,𝜔 :𝑀 is a TM and 𝑀 does not halt on ω} is 
not Turing-recognizable.



Unrecognizable Language

Claim: 𝐻𝐴𝐿𝑇#$ = { 𝑀,𝜔 :𝑀 is a TM and 𝑀 does not halt on ω} is 
not Turing-recognizable.

Proof: Suppose 𝐻𝐴𝐿𝑇#$ was Turing-recognizable. Let 𝑇 be its 
recognizer (i.e., 𝑇 will accept if a TM does not halt on some input).



Unrecognizable Language

Claim: 𝐻𝐴𝐿𝑇#$ = { 𝑀,𝜔 :𝑀 is a TM and 𝑀 does not halt on ω} is 
not Turing-recognizable.

Proof: Suppose 𝐻𝐴𝐿𝑇#$ was Turing-recognizable. Let 𝑇 be its 
recognizer (i.e., 𝑇 will accept if a TM does not halt on some input).

Consider 𝑆 on 𝑁,𝜔 :
1. Run 𝑁 on 𝜔.
2. accept.

𝑯𝑨𝑳𝑻𝑻𝑴 recognizer!



Unrecognizable Language

Claim: 𝐻𝐴𝐿𝑇#$ = { 𝑀,𝜔 :𝑀 is a TM and 𝑀 does not halt on ω} is 
not Turing-recognizable.

Proof: Suppose 𝐻𝐴𝐿𝑇#$ was Turing-recognizable. Let 𝑇 be its 
recognizer (i.e., 𝑇 will accept if a TM does not halt on some input).

Consider 𝑆 on 𝑁,𝜔 :
1. Run 𝑁 on 𝜔.
2. accept.

Consider 𝑉 on 𝑁,𝜔 :
1. Run 𝑇 on 𝑁,𝜔  and run 𝑆 on 𝑁,𝜔  in parallel.
2. If 𝑇 accepts, reject. If 𝑆 accepts, accept.

𝑯𝑨𝑳𝑻𝑻𝑴 recognizer!

𝑯𝑨𝑳𝑻𝑻𝑴 
decider!



Context-Free

Computability Hierarchy

Regular

Other

Decidable
Turing-recognizable

𝑯𝑨𝑳𝑻𝑻𝑴



Unrecognizable Language

Claim: A language is decidable ⟺ it and its complement are 
Turing-recognizable.

Proof: ⟹ If a language is decidable, its complement is also decidable (just 
reverse accept/reject conditions) and decidable languages are recognizable.

⟸ If 𝐴 and 𝐴̅ are both Turing-recognizable, let M1 and M2 be recognizers 
for 𝐴 and 𝐴̅. Consider the following TM:
 M = on input 𝜔

1. Run both M1 and M2 on 𝜔 in parallel (alternate instructions).
2. If M1 accepts, accept. If M2 accepts, reject.

Since 𝜔 ∈ 𝐴 or 𝐴̅, M1 or M2 must accept (halts on input). Thus, M is a 
decider for 𝐴.



Beyond Decidability
What if 𝐻𝐴𝐿𝑇!"  were “decidable”?



Beyond Decidability
What if 𝐻𝐴𝐿𝑇!"  were “decidable”?

Goldbach’s Conjecture: 
• 280-year-old open problem.
• Every integer ≥ 2 is sum of two primes.



Beyond Decidability
What if 𝐻𝐴𝐿𝑇!"  were “decidable”?

Goldbach’s Conjecture: 
• 280-year-old open problem.
• Every integer ≥ 2 is sum of two primes.

Consider 𝐺 on 𝑥 :
1. For 𝑛 = 2, check each pair of prime number < 𝑛.
2. If no pair sums to 𝑛, reject.
3. Increment 𝑛 and loop to step 1.



Beyond Decidability
public boolean G() {
 int i = 2;
 while (true) {
  boolean found = false;
  for (int n = 1; n < i; n++) {
   for (int m = 1; m < i; m++) {
    if (isPrime(n) && isPrime(m) && m + n = i) {
     found = true;
    }
   }
  }
  if (!found) {
   return false;
  }
  i++;
 }
}



Beyond Decidability
What if 𝐻𝐴𝐿𝑇!"  were “decidable”?

Goldbach’s Conjecture: 
• 280-year-old open problem.
• Every integer ≥ 2 is sum of two primes.

Consider 𝐺 on 𝑥 :
1. For 𝑛 = 2, check each pair of prime number < 𝑛.
2. If no pair sums to 𝑛, reject.
3. Increment 𝑛 and loop to step 1.

What does it mean if 𝐺 halts? 
What does it mean if 𝐺 does not halt?  



Beyond Decidability
What if 𝐻𝐴𝐿𝑇!"  were “decidable”?

Goldbach’s Conjecture: 
• 280-year-old open problem.
• Every integer ≥ 2 is sum of two primes.

Consider 𝐺 on 𝑥 :
1. For 𝑛 = 2, check each pair of prime number < 𝑛.
2. If no pair sums to 𝑛, reject.
3. Increment 𝑛 and loop to step 1.

What does it mean if 𝐺 halts? Goldbach’s conjecture is false!
What does it mean if 𝐺 does not halt?  Goldbach’s conjecture is true!



Beyond Decidability
What if 𝐻𝐴𝐿𝑇!"  were “decidable”?

Goldbach’s Conjecture: 
• 280-year-old open problem.
• Every integer ≥ 2 is sum of two primes.

Consider 𝐺 on 𝑥 :
1. For 𝑛 = 2, check each pair of prime number < 𝑛.
2. If no pair sums to 𝑛, reject.
3. Increment 𝑛 and loop to step 1.

What does it mean if 𝐺 halts? Goldbach’s conjecture is false!
What does it mean if 𝐺 does not halt?  Goldbach’s conjecture is true!

Turns out you can do this for lots of open problems over natural 
numbers (twin prime conjecture,…)


