Review
CSC| 338

Test 2 Logistics

1. During class on Wednesday 3/27.

2. You can bring your book and any notes you would like,
but no electronic devices.

3. You may assume anything proven in class or on
homeworks.

4. Four questions:
1) Show a language is decidable (5 points).
2) Show a language is not decidable (10 points).
3) Show a language is not decidable (5 points).
4) Show a language is not decidable (1-2 points).

Claim: FINITEy; = {{M): M is a TM and accepts a finite number of strings}
is undecidable.

Proof: Suppose FINITE,, is decidable and let TM H be its decider.
Build a TM S that decides Ay,;:

S =oninput (N, w)
1. Construct TM M, on input (x) : L(M,) is infinite

)

N accepts w

1. Run N on w and accept if N does.

2. Run H on (M,).
3. If H accepts, reject. If H rejects, accept.

If N accepts w, L(M,) = X" (infinite) and S accepts. If N does not accept w,
L(M,) = O (finite) and S rejects. Therefore, S is a decider for Ay, which is
a contradiction, so FINITE7,, is undecidable.

Claim: EVENyy, = {{M): M is a TM and L(M) contains all even length strings}
is undecidable.

Proof: Suppose EVEN,, is decidable and let TM H be its decider.

Build a TM S that decides Ay,;: L(M,) contains all
§ =on input (N, ®) , even length strings
1. Construct TM M, on input (x) : 0
1. If x has odd length, reject.
2. If x has even length, run N on w. N accepts w

3. If N accepts w, accept. If N rejects w, reject.
2. Run H on (M,).

Claim: EVENyy, = {{M): M is a TM and L(M) contains all even length strings}
is undecidable.

Proof: Suppose EVEN,, is decidable and let TM H be its decider.

Build a TM S that decides Ay,;: L(M,) contains all
S =oninput (N, w)
1. Construct TM M, on input (x) :
1. If x has odd length, reject

2. If x has even length, run N on w. N accepts w

even length strings
accept ()

3. If N accepts w, accept. If N rejects w, reject.
2. Run H on (M,).

Claim: EVENyy, = {{M): M is a TM and L(M) contains all even length strings}
is undecidable.

Proof: Suppose EVEN,, is decidable and let TM H be its decider.

Build a TM S that decides Ay,;: L(M,) contains all
§ =on input (N, ®) , even length strings
1. Construct TM M, on input (x) : 0
1. If x has odd length, reject.
2. If x has even length, run N on w. N accepts w

3. If N accepts w, accept. If N rejects w, rejeet.
2. Run H on (M,). accept

Claim: EVENyy, = {{M): M is a TM and L(M) contains all even length strings}
is undecidable.

Proof: Suppose EVEN,, is decidable and let TM H be its decider.

Build a TM S that decides Ay,;: L (M) contains all
S =oninput (N, w)

even length strings
1. Construct TM M, on input (x) : 5 5

-1—I-f—9e—h—a5—ee|e|—lengt—h—§,% 0
. If x has even length, run N on w. N accepts w
i If N accepts w, accept. If N rejects w, reject.

2. Run H on (M,).

Claim: EVENyy, = {{M): M is a TM and L(M) contains all even length strings}
is undecidable.

Proof: Suppose EVEN,, is decidable and let TM H be its decider.

Build a TM S that decides Ay,;: L(M,) contains all
§ =on input (N, ®) , even length strings
1. Construct TM M, on input (x) : 0
1. Run N on w and accept if N does. N accepts w

2. Run H on (M,).
3. If H accepts, accept. If H rejects, reject.
If N accepts w, L(M,) = X*(contains all even length strings) and S accepts.

If N does not accept w, L(M,) = @ (does not contain all even length
strings) and S rejects. Thus, S is a decider for A, which is a contradiction,

so EVENz,, is undecidable.

Claim: HALT — epp, = {{M): M is a TM and halts on empty input (i.e. €)}
is undecidable.

Proof: Suppose HALT — &€4,, is decidable and let TM H be its decider.
Build a TM S that decides Ay,;:
S =oninput (N, w)
1. Construct TM M, on input (x) :
1. Run N on w and accept if N does.

M, halts on ¢

)

N accepts w

2. Run H on (M,).

3. If H accepts, accept. If H rejects, reject.
If N accepts w, M, halts on € and S accepts. If N does not accept w, M,
does not halt on € and S rejects. Therefore, S is a decider for A, which is
a contradiction, so HALT — &1, is undecidable.

Claim: HALT — epp, = {{M): M is a TM and halts on empty input (i.e. €)}

is undecidable.

Proof: Suppose HALT — &€4,, is decidable and let TM H be its decider.

Build a TM S that decides Ay,;:
S =oninput (N, w)

1. Construct TM M, on input (x) :

2. Run H on (M,).

1. Run N on w and aeecept if N accepts.

reject

M, halts on ¢

)

N accepts w

Claim: HALT — epp, = {{M): M is a TM and halts on empty input (i.e. €)}
is undecidable.

Proof: Suppose HALT — &€4,, is decidable and let TM H be its decider.

Build a TM S that decides Ay,;:
S =oninput (N, w)
1. Construct TM M, on input (x) :
1. If x # ¢, reject.

M, halts on ¢

)

N accepts w

2. Ifx =¢,run N on w and accept if N accepts.
2. Run H on (M,).

Claim: HALT — epp, = {{M): M is a TM and halts on empty input (i.e. €)}
is undecidable.

Proof: Suppose HALT — &€4,, is decidable and let TM H be its decider.

Bwld_a TM S that decides A7, M, halts on &
S =oninput (N, w) 0
1. Construct TM M, on input (x) :
1. If x # &, reject. accept N accepts w

2. Ifx =¢,run N on w and accept if N accepts.
2. Run H on (M,).

Claim: HALT — epp, = {{M): M is a TM and halts on empty input (i.e. €)}
is undecidable.

Proof: Suppose HALT — &€4,, is decidable and let TM H be its decider.

Build a TM S that decides A7, M, halts on &
S =oninput (N, w) 0
1. Construct TM M, on input (x) :
; [£ reject N accepts w

. Ifx =€, run N on w and accept if N accepts.
2. Run n H on (M,).

Claim: HALT — epp, = {{M): M is a TM and halts on empty input (i.e. €)}
is undecidable.

Proof: Suppose HALT — &€4,, is decidable and let TM H be its decider.

Build a TM S that decides Ay,;:
S =oninput (N, w)
1. Construct TM M, on input (x) : 0
1. If x # €, reject. N accepts w

M, halts on ¢

2. Ifx =¢,run N on w and accept if N aceepts.
2. Run H on (M,). rejects

Claim: HALT — epp, = {{M): M is a TM and halts on empty input (i.e. €)}
is undecidable.

Proof: Suppose HALT — &€4,, is decidable and let TM H be its decider.

Build a TM S that decides Ay,;:
S =oninput (N, w)
1. Construct TM M, on input (x) : 0
1. If x # €, reject. N accepts w

M, halts on ¢

2. Ifx =¢,run N on w and accept if N aceepts.
2. Run H on (M,). rejects

Claim: HALT — epp, = {{M): M is a TM and halts on empty input (i.e. €)}
is undecidable.

Proof: Suppose HALT — &€4,, is decidable and let TM H be its decider.

Build a TM S that decides HALT -
S =oninput (N, w)
1. Construct TM M, on input (x) :
1. Run N on w and accept if N does.

M, halts on ¢

)

N halts on w

2. Run H on (M,).

Claim: HALT — epp, = {{M): M is a TM and halts on empty input (i.e. €)}
is undecidable.

Proof: Suppose HALT — &€4,, is decidable and let TM H be its decider.

Build a TM S that decides HALT -
S =oninput (N, w)
1. Construct TM M, on input (x) :
1. Run N on w and accept if N does.

M, halts on ¢

)

N halts on w

2. Run H on (M,).

Doesn’t work! M, does not
(always) halt when N halts on w!

Claim: HALT — epp, = {{M): M is a TM and halts on empty input (i.e. €)}
is undecidable.

Proof: Suppose HALT — &€4,, is decidable and let TM H be its decider.

Build a TM S that decides HALT ;-
S =oninput (N, w)
1. Construct TM M, on input (x) :
1. Run N on w.

M, halts on ¢

)

N halts on w

2. Accept if N accepts and reject if N rejects.
2. Run H on (M,).
3. If H accepts, accept. If H rejects, reject.

Claim: HALT — epp, = {{M): M is a TM and halts on empty input (i.e. €)}
is undecidable.

Proof: Suppose HALT — &€4,, is decidable and let TM H be its decider.

Build a TM S that decides HALT ;-
S =oninput (N, w)
1. Construct TM M, on input (x) :
1. Run N on w.

M, halts on ¢

)

N halts on w

2. reject.
2. Run H on (M,).

3. If H accepts, accept. If H rejects, reject.

Prove that ALMOST _ALLpr, = {{A, w): Aisa DFA and L(4) = 2" \{w}} is
decidable. Remember to show that your algorithm meets the requirements
of a decider.

You are allowed to use any deciders
we learned in class or on homework!

Prove that ANY;y, = {(M): M isaTM and L(M) # @} is undecidable.

Prove that ALMOST _ALLpr, = {{A, w): Aisa DFA and L(4) = 2" \{w}} is
decidable. Remember to show that your algorithm meets the requirements
of a decider.

Proof: Construct the following Turing machine to decide ALMOST _ALLpr4:
M =on input (4, w)
1. Run A on w and reject if A accepts.
Construct DFA B that only accepts w.
Construct DFA C so that L(C) = L(A) U L(B).
Run the decider for ALLyz, on C.
If the decider accepts, accept. If it rejects, reject.

Al S

Every DFA is guaranteed to halt on all input so step 1 will halt.
Constructing B and C will occur in finite time, and running a decider is
guaranteed to halt. Thus, M is guaranteed to halt and is a decider.

Prove that ANY;y, = {(M): M isaTM and L(M) # @} is undecidable.

Proof: Suppose ANY;,, is decidable and let TM H be its decider.

Build a TM § that decides A7y,: (M
S =oninput (N, w) (2& il
1. Construct TM M, on input (x) :

u Run N on w and accept if N does. N accepts w
2. Run H on (M,).
3. If H accepts, accept. If H rejects, reject.

If N accepts w, L(M,) = X" and S accepts. If N does not accept w,
L(M,) = @ and S rejects. Thus, S is a decider for Ay, which is a
contradiction, so ANYr,, is undecidable.

Computability Hierarchy

dabl Turing-recognizable
Regular) Context-Free)Pecidable

Unrecognizable Language

Claim: HALT;y = {{M, w): M is a TM and M does not halt on w} is
not Turing-recognizable.

Unrecognizable Language

Claim: HALT;y = {{M, w): M is a TM and M does not halt on w} is
not Turing-recognizable.

Proof: Suppose HALT+,, was Turing-recognizable. Let T be its
recognizer (i.e., T will accept if a TM does not halt on some input).

Unrecognizable Language

Claim: HALT;y = {{M, w): M is a TM and M does not halt on w} is
not Turing-recognizable.

Proof: Suppose HALT+,, was Turing-recognizable. Let T be its
recognizer (i.e., T will accept if a TM does not halt on some input).

Consider S on (N, w):

1. Run N on w. > HALT rj; recognizer!
2. accept. _

Unrecognizable Language

Claim: HALT;y = {{M, w): M is a TM and M does not halt on w} is
not Turing-recognizable.

Proof: Suppose HALT+,, was Turing-recognizable. Let T be its
recognizer (i.e., T will accept if a TM does not halt on some input).

Consider S on (N, w):

1. Run N on w. > HALT rj; recognizer!
2. accept. _

Consider V on (N, w):
1. Run T on (N, w) and run S on (N, w) in parallel. HAI:TTM
2. If T accepts, reject. If S accepts, accept. decider!

Computability Hierarchy

HALT 1y

dabl Turing-recognizable
Regular) Context-Free)Pecidable

Unrecognizable Language

Claim: A language is decidable < it and its complement are
Turing-recognizable.

Proof: = If a language is decidable, its complement is also decidable (just
reverse accept/reject conditions) and decidable languages are recognizable.

< If A and A are both Turing-recognizable, let M, and M, be recognizers
for A and A. Consider the following TM:
M =on input w
1. Run both M; and M, on w in parallel (alternate instructions).
2. If M, accepts, accept. If M, accepts, reject.
Since w € A or A, M, or M, must accept (halts on input). Thus, M is a

decider for A.

Beyond Decidability

What if HALT;,; were “decidable”?

Beyond Decidability
What if HALT;,; were “decidable”?

Goldbach’s Conjecture:
e 280-year-old open problem.
* Everyinteger = 2 is sum of two primes.

Beyond Decidability
What if HALT;,; were “decidable”?

Goldbach’s Conjecture:
e 280-year-old open problem.
* Everyinteger = 2 is sum of two primes.

Consider G on {(x):
1. Forn = 2, check each pair of prime number < n.
2. If no pair sums to n, reject.
3. Increment n and loop to step 1.

Beyond Decidability

public boolean G() {

int 1 = 2;
while (true) {

boolean found = false;

for (int n =1; n < 1; n++) {

for (Aintm=1; m < 1; m++) {
if (isPrime(n) && isPrime(m) & m + n = 1) {
found = true;

}
}
}
it (!found) {
return false;

;
Tt
}
}

Beyond Decidability
What if HALT;,; were “decidable”?

Goldbach’s Conjecture:
e 280-year-old open problem.
* Everyinteger = 2 is sum of two primes.

Consider G on {(x):
1. Forn = 2, check each pair of prime number < n.

2. If no pair sums to n, reject.
3. Increment n and loop to step 1.

What does it mean if G halts?
What does it mean if G does not halt?

Beyond Decidability
What if HALT;,; were “decidable”?

Goldbach’s Conjecture:
e 280-year-old open problem.
* Everyinteger = 2 is sum of two primes.

Consider G on {(x):
1. Forn = 2, check each pair of prime number < n.

2. If no pair sums to n, reject.
3. Increment n and loop to step 1.

What does it mean if G halts? Goldbach’s conjecture is false!
What does it mean if G does not halt? Goldbach’s conjecture is true!

Beyond Decidability
What if HALT;,; were “decidable”?

Goldbach’s Conjecture:
e 280-year-old open problem.
* Everyinteger = 2 is sum of two primes.

Consider G on {(x):
1. Forn = 2, check each pair of prime number < n.

2. If no pair sums to n, reject.
3. Increment n and loop to step 1.

What does it mean if G halts? Goldbach’s conjecture is false!
What does it mean if G does not halt? Goldbach’s conjecture is true!

Turns out you can do this for lots of open problems over natural
numbers (twin prime conjecture,...)

