P and NP CSCI 338

Announcements

- Test 2. (AVG = 72\%, MED = 85\%)
- Project 2. (AVG = 80\%, MED = 100\%)

> Computability: What's solvable by computers.

January

Computational Complexity

Determining the amount of resources required to accomplish some task (solve a problem).

- Time (most common)
- Space (close behind)
- Power (sensor networks, spacecraft, military)
- Network (Netflix, loT)

Definitions

Definition: For TM M, the running time of \boldsymbol{M} is the function $f: \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the maximum number of steps M used on any input of length n.

Definitions

Definition: For TM M, the running time of \boldsymbol{M} is the function $f: \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the maximum number of steps M used on any input of length n.

Definition: Let f and g be functions $f, g: \mathbb{N} \rightarrow \mathbb{R}^{+}$, $\boldsymbol{f}(\boldsymbol{n}) \in \boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$ if \exists positive integers c and n_{0} such that $\forall n \geq n_{0}, f(n) \leq c g(n)$.

Definition: Let $t: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function. The time complexity class, $\operatorname{TIME}(\boldsymbol{t}(\boldsymbol{n}))$, is the collection of all languages that are decidable by an $O(t(n))$ time TM.

Definition: \boldsymbol{P} is the set of languages that are decidable in polynomial time on a deterministic single-tape TM.

Properties of P :

$$
P=\bigcup_{k} \operatorname{TIME}\left(n^{k}\right)
$$

- Inclusion in P holds for all computational models polynomially equivalent to deterministic, single-tape TMs.
- Roughly corresponds to problems solvable by a computer.

Definition: Let $t: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function. The time complexity class, $\operatorname{TIME}(\boldsymbol{t}(\boldsymbol{n}))$, is the collection of all languages that are decidable by an $O(t(n))$ time TM.

Definition: \boldsymbol{P} is the set of languages that are decidable in polynomial time on a deterministic single-tape TM.

Properties of P :

$$
P=\bigcup_{k} \operatorname{TIME}\left(n^{k}\right)
$$

- Ind How do you show something is in P? po
- Rougniy corresponas to prodiems solvadie oy a computer.

Definition: Let $t: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function. The time complexity class, $\operatorname{TIME}(\boldsymbol{t}(\boldsymbol{n}))$, is the collection of all languages that are decidable by an $O(t(n))$ time TM.

Definition: \boldsymbol{P} is the set of languages that are decidable in polynomial time on a deterministic single-tape TM.

Properties of P :

$$
P=\bigcup_{k} \operatorname{TIME}\left(n^{k}\right)
$$

- Ind How do you show something is in P?
po Build a polynomial time decider for it. e TMs.
- Rougniy corresponas to prodems solvadie dy a computer.

Why Polynomial?

Given a problem of size n...
Algorithm A
solves it in n^{2}
seconds

Algorithm B solves it in 2^{n} seconds

Why Polynomial?

Given a problem of size n...
Algorithm A
solves it in n^{2}
seconds

Algorithm B solves it in 2^{n} seconds

Would you rather have a minute of compute time for algorithm A, or five minutes of compute time for algorithm B ?

Why Polynomial?

Given a problem of size n...
Algorithm A
solves it in n^{2}
seconds

Algorithm B solves it in 2^{n} seconds

Would you rather have a minute of compute time for algorithm A, or five minutes of compute time for algorithm B ?

A solves in $1 \mathrm{~min} \Rightarrow A$ solves in $60 \mathrm{sec} \Rightarrow n \approx 7.7$

Why Polynomial?

Given a problem of size n...
Algorithm A
solves it in n^{2}
seconds

Algorithm B solves it in 2^{n} seconds

Would you rather have a minute of compute time for algorithm A, or five minutes of compute time for algorithm B ?

A solves in $1 \mathrm{~min} \Rightarrow A$ solves in $60 \mathrm{sec} \Rightarrow n \approx 7.7$
B solves in $5 \mathrm{~min} \Rightarrow B$ solves in $300 \mathrm{sec} \Rightarrow n \approx 8.2$

Why Polynomial?

Given a problem of size n...
Algorithm A
solves it in n^{2}
seconds

Algorithm B solves it in 2^{n} seconds

Would you rather have an hour of compute time for algorithm A, or 10 billion years of compute time for algorithm B ?

Why Polynomial?

Given a problem of size n...
Algorithm A
solves it in n^{2}
seconds

Algorithm B solves it in 2^{n} seconds

Would you rather have an hour of compute time for algorithm A, or 10 billion years of compute time for algorithm B ?

A solves in $1 \mathrm{hr} \Rightarrow$ A solves in $3600 \mathrm{sec} \Rightarrow n=60$

Why Polynomial?

Given a problem of size n...
Algorithm A
solves it in n^{2}
seconds
Algorithm B
solves it in 2^{n}
seconds

Would you rather have an hour of compute time for algorithm A, or 10 billion years of compute time for algorithm B ?

A solves in $1 \mathrm{hr} \Rightarrow$ A solves in $3600 \mathrm{sec} \Rightarrow n=60$ B solves in 10B yr $\Rightarrow B$ solves in lots of $\sec \Rightarrow n \approx 58$

Why Polynomial?

Polynomial time algorithms are usually useful, exponential time algorithms are rarely useful

PATH

Claim: $P A T H=\{\langle G, s, t\rangle: G=(V, E)$ is a directed graph with a path from s to $t\} \in P$.

Proof:

PATH

Claim: $P A T H=\{\langle G, s, t\rangle: G=(V, E)$ is a directed graph with a path from s to $t\} \in P$.

Proof: Build a polynomial time decider.

PATH

Claim: PATH $=\{\langle G, s, t\rangle: G=(V, E)$ is a directed graph with a path from s to $t\} \in P$.

Proof: Build a polynomial time decider.

$$
\begin{aligned}
& N=\text { on input }\langle G, s, t\rangle \\
& 1 .
\end{aligned}
$$

PATH

Claim: PATH $=\{\langle G, s, t\rangle: G=(V, E)$ is a directed graph with a path from s to $t\} \in P$.

Proof: Build a polynomial time decider.
$N=$ on input $\langle G, s, t\rangle$

1. Mark s.
2.

PATH

Claim: PATH $=\{\langle G, s, t\rangle: G=(V, E)$ is a directed graph with a path from s to $t\} \in P$.

Proof: Build a polynomial time decider.

$$
N=\text { on input }\langle G, s, t\rangle
$$

1. Mark s.
2. Repeat until no new nodes are marked:
3. For each $e=(a, b) \in E$, if a is marked, mark b.
4.

PATH

Claim: PATH $=\{\langle G, s, t\rangle: G=(V, E)$ is a directed graph with a path from s to $t\} \in P$.

Proof: Build a polynomial time decider.

$$
N=\text { on input }\langle G, s, t\rangle
$$

1. Mark s.
2. Repeat until no new nodes are marked:
3. For each $e=(a, b) \in E$, if a is marked, mark b.
4. If t is marked, accept. Otherwise, reject.

PATH

Claim: $P A T H=\{\langle G, s, t\rangle: G=(V, E)$ is a directed graph with a path from s to $t\} \in P$.

Proof: Build a polynomial time decider.

$$
N=\text { on input }\langle G, s, t\rangle
$$

1. Mark s.
2. Repeat until no new nodes are marked:
3. For each $e=(a, b) \in E$, if a is marked, mark b.
4. If t is marked, accept. Otherwise, reject.

Need to show N is a decider and runs in polynomial time.

PATH

Claim: $P A T H=\{\langle G, s, t\rangle: G=(V, E)$ is a directed graph with a path from s to $t\} \in P$.

Proof: Build a polynomial time decider.
Suppose $|V|=n$.
$N=$ on input $\langle G, s, t\rangle$

1. Mark s.
2. Repeat until no new nodes are marked:
3. For each $e=(a, b) \in E$, if a is marked, mark b.
4. If t is marked, accept. Otherwise, reject.

Need to show N is a decider and runs in polynomial time.

PATH

Claim: $P A T H=\{\langle G, s, t\rangle: G=(V, E)$ is a directed graph with a path from s to $t\} \in P$.

Proof: Build a polynomial time decider.

$$
\text { Suppose }|\hat{V}|=n
$$

$$
N=\text { on input }\langle G, s, t\rangle
$$

? \longrightarrow 1. Mark s.
2. Repeat until no new nodes are marked:
3. For each $e=(a, b) \in E$, if a is marked, mark b.
4. If t is marked, accept. Otherwise, reject.

Need to show N is a decider and runs in polynomial time.

PATH

Claim: $P A T H=\{\langle G, s, t\rangle: G=(V, E)$ is a directed graph with a path from s to $t\} \in P$.

Proof: Build a polynomial time decider.

$$
\text { Suppose }|V|=n
$$

$$
N=\text { on input }\langle G, s, t\rangle
$$

$\boldsymbol{O}(\mathbf{1}) \longrightarrow$ 1. Mark s.
2. Repeat until no new nodes are marked:
3. For each $e=(a, b) \in E$, if a is marked, mark b.
4. If t is marked, accept. Otherwise, reject.

Need to show N is a decider and runs in polynomial time.

PATH

Claim: $P A T H=\{\langle G, s, t\rangle: G=(V, E)$ is a directed graph with a path from s to $t\} \in P$.

Proof: Build a polynomial time decider.

$$
\begin{aligned}
& \text { Suppose }|V|=n \text {. } \\
& N=\text { on input }\langle G, s, t\rangle
\end{aligned}
$$

$\boldsymbol{O}(\mathbf{1}) \longrightarrow$ 1. Mark s.
2. Repeat until no new nodes are marked:
$? \longrightarrow 3$. For each $e=(a, b) \in E$, if a is marked, mark b.
4. If t is marked, accept. Otherwise, reject.

Need to show N is a decider and runs in polynomial time.

PATH

Claim: $P A T H=\{\langle G, s, t\rangle: G=(V, E)$ is a directed graph with a path from s to $t\} \in P$.
At most, how many edges are in an undirected graph with n vertices? What graph has the most number of edges?

Need to show N is a decider and runs in polynomial time.

PATH

Claim: PATH $=\{\langle G, s, t\rangle: G=(V, E)$ is a directed graph with a path from s to $t\} \in P$.
At most, how many edges are in an undirected graph with n vertices? What graph has the most number of edges?

Complete graph (every pair of vertices have an edge).

Need to show N is a decider and runs in polynomial time.

PATH

Claim: $P A T H=\{\langle G, s, t\rangle: G=(V, E)$ is a directed graph with a path from s to $t\} \in P$.
At most, how many edges are in an undirected graph with n vertices? What graph has the most number of edges?

Complete graph (every pair of vertices have an edge).
How many edges does a complete graph with n vertices have? How many edges leave each vertex?

Need to show N is a decider and runs in polynomial time.

PATH

Claim: PATH $=\{\langle G, s, t\rangle: G=(V, E)$ is a directed graph with a path from s to $t\} \in P$.
At most, how many edges are in an undirected graph with n vertices? What graph has the most number of edges?

Complete graph (every pair of vertices have an edge).
How many edges does a complete graph with n vertices have?
How many edges leave each vertex? $n-1$
How much does that all add up to?

Need to show N is a decider and runs in polynomial time.

PATH

Claim: PATH $=\{\langle G, s, t\rangle: G=(V, E)$ is a directed graph with a path from s to $t\} \in P$.
At most, how many edges are in an undirected graph with n vertices? What graph has the most number of edges?

Complete graph (every pair of vertices have an edge).
How many edges does a complete graph with n vertices have?
How many edges leave each vertex? $n-1$
How much does that all add up to? $n(n-1)$
Did we double count any edges?

Need to show N is a decider and runs in polynomial time.

PATH

Claim: $P A T H=\{\langle G, s, t\rangle: G=(V, E)$ is a directed graph with a path from s to $t\} \in P$.
At most, how many edges are in an undirected graph with n vertices? What graph has the most number of edges?

Complete graph (every pair of vertices have an edge).
How many edges does a complete graph with n vertices have?
How many edges leave each vertex? $n-1$
How much does that all add up to? $n(n-1)$
Did we double count any edges? Yes
So how many edges are there?

Need to show N is a decider and runs in polynomial time.

PATH

Claim: PATH $=\{\langle G, s, t\rangle: G=(V, E)$ is a directed graph with a path from s to $t\} \in P$.
At most, how many edges are in an undirected graph with n vertices? What graph has the most number of edges?

Complete graph (every pair of vertices have an edge).
How many edges does a complete graph with n vertices have?
How many edges leave each vertex? $n-1$
How much does that all add up to? $n(n-1)$
Did we double count any edges? Yes
So how many edges are there? $\frac{n(n-1)}{2} \in O\left(n^{2}\right)$

Need to show N is a decider and runs in polynomial time.

PATH

Claim: $P A T H=\{\langle G, s, t\rangle: G=(V, E)$ is a directed graph with a path from s to $t\} \in P$.
At most, how many edges are in an undirected graph with n vertices? What graph has the most number of edges?

Complete graph (every pair of vertices have an edge).
How many edges does a complete graph with n vertices have?
How many edges leave each vertex? $n-1$
How much does that all add up to? $n(n-1)$
Did we double count any edges? Yes
So how many edges are there? $\frac{n(n-1)}{2} \in O\left(n^{2}\right)$
What if it is directed?
Need to show N is a decider and runs in polynomial time.

PATH

Claim: PATH $=\{\langle G, s, t\rangle: G=(V, E)$ is a directed graph with a path from s to $t\} \in P$.
At most, how many edges are in an undirected graph with n vertices? What graph has the most number of edges?

Complete graph (every pair of vertices have an edge).
How many edges does a complete graph with n vertices have?
How many edges leave each vertex? $n-1$
How much does that all add up to? $n(n-1)$
Did we double count any edges? Yes
So how many edges are there? $\frac{n(n-1)}{2} \in O\left(n^{2}\right)$
What if it is directed? $n(n-1) \in O\left(n^{2}\right)$ (no double counts)
Need to show N is a decider and runs in polynomial time.

PATH

Claim: PATH $=\{\langle G, s, t\rangle: G=(V, E)$ is a directed graph with a path from s to $t\} \in P$.

Proof: Build a polynomial time decider.

$$
\text { Suppose }|V|=n
$$

$$
N=\text { on input }\langle G, s, t\rangle
$$

$\boldsymbol{O}(\mathbf{1}) \longrightarrow$ 1. Mark s.
2. Repeat until no new nodes are marked:
$\boldsymbol{O}\left(\boldsymbol{n}^{\mathbf{2}}\right) \longrightarrow 3$. For each $e=(a, b) \in E$, if a is marked, mark b.
4. If t is marked, accept. Otherwise, reject.

Need to show N is a decider and runs in polynomial time.

PATH

Claim: $P A T H=\{\langle G, s, t\rangle: G=(V, E)$ is a directed graph with a path from s to $t\} \in P$.

Proof: Build a polynomial time decider.

$$
\text { Suppose }|V|=n
$$

$$
N=\text { on input }\langle G, s, t\rangle
$$

$\boldsymbol{O}(\mathbf{1}) \longrightarrow$ 1. Mark s.
? \longrightarrow 2. Repeat until no new nodes are marked:
$\boldsymbol{O}\left(\boldsymbol{n}^{2}\right) \longrightarrow 3$. For each $e=(a, b) \in E$, if a is marked, mark b.
4. If t is marked, accept. Otherwise, reject.

Need to show N is a decider and runs in polynomial time.

PATH

Claim: $P A T H=\{\langle G, s, t\rangle: G=(V, E)$ is a directed graph with a path from s to $t\} \in P$.

Proof: Build a polynomial time decider.

$$
\text { Suppose }|\hat{V}|=n
$$

$$
N=\text { on input }\langle G, s, t\rangle
$$

$\boldsymbol{O}(\mathbf{1}) \longrightarrow$ 1. Mark s.
$\boldsymbol{O}(\boldsymbol{n}) \longrightarrow 2$. Repeat until no new nodes are marked:
$\boldsymbol{O}\left(\boldsymbol{n}^{2}\right) \longrightarrow 3$. For each $e=(a, b) \in E$, if a is marked, mark b.
4. If t is marked, accept. Otherwise, reject.

Need to show N is a decider and runs in polynomial time.

PATH

Claim: $P A T H=\{\langle G, s, t\rangle: G=(V, E)$ is a directed graph with a path from s to $t\} \in P$.

Proof: Build a polynomial time decider.

$$
\text { Suppose }|\hat{V}|=n
$$

$$
N=\text { on input }\langle G, s, t\rangle
$$

$\boldsymbol{O}(\mathbf{1}) \longrightarrow$ 1. Mark s.
$\boldsymbol{O}(\boldsymbol{n}) \longrightarrow 2$. Repeat until no new nodes are marked:
$\boldsymbol{O}\left(\boldsymbol{n}^{\mathbf{2}}\right) \longrightarrow 3$. For each $e=(a, b) \in E$, if a is marked, mark b.
$? \longrightarrow 4$. If t is marked, accept. Otherwise, reject.
Need to show N is a decider and runs in polynomial time.

PATH

Claim: $P A T H=\{\langle G, s, t\rangle: G=(V, E)$ is a directed graph with a path from s to $t\} \in P$.

Proof: Build a polynomial time decider.

$$
\text { Suppose }|\hat{V}|=n
$$

$$
N=\text { on input }\langle G, s, t\rangle
$$

$\boldsymbol{O}(\mathbf{1}) \longrightarrow$ 1. Mark s.
$\boldsymbol{O}(\boldsymbol{n}) \longrightarrow 2$. Repeat until no new nodes are marked:
$\boldsymbol{O}\left(\boldsymbol{n}^{2}\right) \longrightarrow 3$. For each $e=(a, b) \in E$, if a is marked, mark b.
$\boldsymbol{O}(\mathbf{1}) \longrightarrow 4$. If t is marked, accept. Otherwise, reject.
Need to show N is a decider and runs in polynomial time.

PATH

Claim: $P A T H=\{\langle G, s, t\rangle: G=(V, E)$ is a directed graph with a path from s to $t\} \in P$.

Proof: Build a polynomial time decider. Suppose $|V|=n$.

$$
N=\text { on input }\langle G, s, t\rangle
$$

$\boldsymbol{O}(\mathbf{1}) \longrightarrow$ 1. Mark s.
$\boldsymbol{O}(\boldsymbol{n}) \longrightarrow 2$. Repeat until no new nodes are marked:
$\boldsymbol{O}\left(\boldsymbol{n}^{2}\right) \longrightarrow 3$. For each $e=(a, b) \in E$, if a is marked, mark b.
$\boldsymbol{O}(\mathbf{1}) \longrightarrow 4$. If t is marked, accept. Otherwise, reject.
N is a decider and runs in $O\left(n^{3}\right)$ time, therefore $P A T H \in P$.

