P and NP CSCI 338

Announcements

- Test 2. (AVG = 72%, MED = 85%)
- Project 2. (AVG = 80%, MED = 100%)

Computational Complexity

Determining the amount of resources required to accomplish some task (solve a problem).

- Time (most common)
- Space (close behind)
- Power (sensor networks, spacecraft, military)
- Network (Netflix, IoT)

Definitions

Definition: For TM M, the **running time of** M is the function $f: \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of steps M used on any input of length n.

Definitions

Definition: For TM M, the **running time of** M is the function $f: \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of steps M used on any input of length n.

Definition: Let f and g be functions $f, g: \mathbb{N} \to \mathbb{R}^+$, $f(n) \in O(g(n))$ if \exists positive integers c and n_0 such that $\forall n \ge n_0, f(n) \le c g(n)$.

Asymptotic upper bound on running time.

Definition: Let $t: \mathbb{N} \to \mathbb{R}^+$ be a function. The time complexity class, **TIME**(t(n)), is the collection of all languages that are decidable by an O(t(n)) time TM.

Definition: **P** is the set of languages that are decidable in polynomial time on a deterministic single-tape TM.

$$P = \bigcup_{k} \mathsf{TIME}(n^k)$$

Properties of *P*:

- Inclusion in P holds for all computational models polynomially equivalent to deterministic, single-tape TMs.
- Roughly corresponds to problems solvable by a computer.

Definition: Let $t: \mathbb{N} \to \mathbb{R}^+$ be a function. The time complexity class, **TIME**(t(n)), is the collection of all languages that are decidable by an O(t(n)) time TM.

Definition: **P** is the set of languages that are decidable in polynomial time on a deterministic single-tape TM.

$$P = \bigcup_{k} \mathsf{TIME}(n^k)$$

Properties of *P*:

- Inc How do you show something is in P?
 po
 P TMs.
- Rougnly corresponds to problems solvable by a computer.

Definition: Let $t: \mathbb{N} \to \mathbb{R}^+$ be a function. The time complexity class, **TIME**(t(n)), is the collection of all languages that are decidable by an O(t(n)) time TM.

Definition: **P** is the set of languages that are decidable in polynomial time on a deterministic single-tape TM.

$$P = \bigcup_{k} \mathsf{TIME}(n^k)$$

Properties of *P*:

- Inc How do you show something is in P?
 po Build a polynomial time decider for it.
- Rougnly corresponds to proplems solvable by a computer.

Given a problem of size *n*...

Algorithm A solves it in n² seconds Algorithm B solves it in 2ⁿ seconds

Given a problem of size *n*...

Algorithm A solves it in n^2 seconds Algorithm B solves it in 2ⁿ seconds

Would you rather have a minute of compute time for algorithm A, or five minutes of compute time for algorithm B?

Given a problem of size *n*...

Algorithm A solves it in n^2 seconds Algorithm B solves it in 2ⁿ seconds

Would you rather have a minute of compute time for algorithm A, or five minutes of compute time for algorithm B?

A solves in 1 min \Rightarrow A solves in 60 sec \Rightarrow $n \approx$ 7.7

Given a problem of size *n*...

Algorithm A solves it in n^2 seconds Algorithm B solves it in 2ⁿ seconds

Would you rather have a minute of compute time for algorithm A, or five minutes of compute time for algorithm B?

A solves in 1 min \Rightarrow A solves in 60 sec \Rightarrow $n \approx 7.7$ B solves in 5 min \Rightarrow B solves in 300 sec \Rightarrow $n \approx 8.2$

Given a problem of size *n*...

Algorithm A solves it in n^2 seconds Algorithm B solves it in 2ⁿ seconds

Would you rather have an hour of compute time for algorithm A, or 10 billion years of compute time for algorithm B?

Given a problem of size *n*...

Algorithm A solves it in n² seconds Algorithm B solves it in 2ⁿ seconds

Would you rather have an hour of compute time for algorithm A, or 10 billion years of compute time for algorithm B?

A solves in 1 hr \Rightarrow A solves in 3600 sec \Rightarrow n = 60

Given a problem of size *n*...

Algorithm A solves it in n^2 seconds Algorithm B solves it in 2ⁿ seconds

Would you rather have an hour of compute time for algorithm A, or 10 billion years of compute time for algorithm B?

A solves in 1 hr \Rightarrow A solves in 3600 sec \Rightarrow n = 60B solves in 10B yr \Rightarrow B solves in lots of sec \Rightarrow $n \approx 58$

Polynomial time algorithms are usually useful, exponential time algorithms are rarely useful

Claim: $PATH = \{\langle G, s, t \rangle : G = (V, E) \text{ is a directed graph} with a path from s to t \} \in P$.

Proof:

Claim: $PATH = \{\langle G, s, t \rangle : G = (V, E) \text{ is a directed graph} with a path from s to t \} \in P$.

Proof: Build a polynomial time decider.

Claim: $PATH = \{\langle G, s, t \rangle : G = (V, E) \text{ is a directed graph} with a path from s to t \} \in P$.

Proof: Build a polynomial time decider.

```
N = \text{on input } \langle G, s, t \rangle
1.
```

Claim: $PATH = \{\langle G, s, t \rangle : G = (V, E) \text{ is a directed graph} with a path from s to t \} \in P$.

Proof: Build a polynomial time decider.

```
N = \text{on input } \langle G, s, t \rangle
1. Mark s.
2.
```

Claim: $PATH = \{\langle G, s, t \rangle : G = (V, E) \text{ is a directed graph} with a path from s to t \} \in P$.

Proof: Build a polynomial time decider.

 $N = \text{on input } \langle G, s, t \rangle$

- 1. Mark *s*.
- 2. Repeat until no new nodes are marked:
- 3. For each $e = (a, b) \in E$, if a is marked, mark b.

Claim: $PATH = \{\langle G, s, t \rangle : G = (V, E) \text{ is a directed graph} with a path from s to t \} \in P$.

Proof: Build a polynomial time decider.

 $N = \text{on input} \langle G, s, t \rangle$

- 1. Mark *s*.
- 2. Repeat until no new nodes are marked:

3. For each $e = (a, b) \in E$, if a is marked, mark b.

4. If *t* is marked, <u>accept</u>. Otherwise, <u>reject</u>.

Claim: $PATH = \{\langle G, s, t \rangle : G = (V, E) \text{ is a directed graph} with a path from s to t \} \in P$.

Proof: Build a polynomial time decider.

 $N = \text{on input} \langle G, s, t \rangle$

1. Mark *s*.

2. Repeat until no new nodes are marked:

3. For each $e = (a, b) \in E$, if a is marked, mark b.

4. If *t* is marked, <u>accept</u>. Otherwise, <u>reject</u>.

Claim: $PATH = \{\langle G, s, t \rangle : G = (V, E) \text{ is a directed graph} with a path from s to t \} \in P$.

Proof: Build a polynomial time decider. Suppose |V| = n.

 $N = \text{on input } \langle G, s, t \rangle$

1. Mark *s*.

2. Repeat until no new nodes are marked:

3. For each $e = (a, b) \in E$, if a is marked, mark b.

4. If *t* is marked, <u>accept</u>. Otherwise, <u>reject</u>.

Claim: $PATH = \{\langle G, s, t \rangle : G = (V, E) \text{ is a directed graph} with a path from s to t \} \in P$.

Proof: Build a polynomial time decider. Suppose |V| = n.

 $N = \text{on input } \langle G, s, t \rangle$

? → 1. Mark *s*.

2. Repeat until no new nodes are marked:

3. For each $e = (a, b) \in E$, if a is marked, mark b.

4. If *t* is marked, <u>accept</u>. Otherwise, <u>reject</u>.

Claim: $PATH = \{\langle G, s, t \rangle : G = (V, E) \text{ is a directed graph} with a path from s to t \} \in P$.

Proof: Build a polynomial time decider. Suppose |V| = n.

 $N = \text{on input } \langle G, s, t \rangle$ $O(1) \longrightarrow 1$. Mark s.

2. Repeat until no new nodes are marked:

3. For each $e = (a, b) \in E$, if a is marked, mark b.

If t is marked, <u>accept</u>. Otherwise, <u>reject</u>.

Claim: $PATH = \{\langle G, s, t \rangle : G = (V, E) \text{ is a directed graph} with a path from s to t \} \in P$.

Proof: Build a polynomial time decider. Suppose |V| = n.

 $N = \text{on input } \langle G, s, t \rangle$ $O(1) \longrightarrow 1$. Mark s.

2. Repeat until no new nodes are marked:

? \rightarrow 3. For each $e = (a, b) \in E$, if a is marked, mark b.

4. If *t* is marked, <u>accept</u>. Otherwise, <u>reject</u>.

Claim: $PATH = \{\langle G, s, t \rangle : G = (V, E) \text{ is a directed graph} with a path from s to t \} \in P$.

At most, how many edges are in an undirected graph with *n* vertices? What graph has the most number of edges?

Claim: $PATH = \{\langle G, s, t \rangle : G = (V, E) \text{ is a directed graph} with a path from s to t \} \in P$.

At most, how many edges are in an undirected graph with *n* vertices? What graph has the most number of edges?

Complete graph (every pair of vertices have an edge).

Claim: $PATH = \{\langle G, s, t \rangle : G = (V, E) \text{ is a directed graph} with a path from s to t \} \in P$.

At most, how many edges are in an undirected graph with *n* vertices? What graph has the most number of edges?

Complete graph (every pair of vertices have an edge). How many edges does a complete graph with *n* vertices have? How many edges leave each vertex?

Claim: $PATH = \{\langle G, s, t \rangle : G = (V, E) \text{ is a directed graph} with a path from s to t \} \in P$.

At most, how many edges are in an undirected graph with *n* vertices? What graph has the most number of edges?

Complete graph (every pair of vertices have an edge). How many edges does a complete graph with n vertices have?

How many edges leave each vertex? n-1

How much does that all add up to?

Claim: $PATH = \{\langle G, s, t \rangle: G = (V, E) \text{ is a directed graph} \}$ with a path from s to $t \in P$. At most, how many edges are in an undirected graph with *n* vertices? What graph has the most number of edges? Complete graph (every pair of vertices have an edge). How many edges does a complete graph with *n* vertices have? How many edges leave each vertex? n-1How much does that all add up to? n(n-1)Did we double count any edges?

Claim: $PATH = \{\langle G, s, t \rangle : G = (V, E) \text{ is a directed graph} \}$ with a path from s to $t \in P$. At most, how many edges are in an undirected graph with *n* vertices? What graph has the most number of edges? Complete graph (every pair of vertices have an edge). How many edges does a complete graph with *n* vertices have? How many edges leave each vertex? n-1How much does that all add up to? n(n-1)Did we double count any edges? Yes So how many edges are there?

Claim: $PATH = \{\langle G, s, t \rangle: G = (V, E) \text{ is a directed graph} \}$ with a path from s to $t \in P$. At most, how many edges are in an undirected graph with *n* vertices? What graph has the most number of edges? Complete graph (every pair of vertices have an edge). How many edges does a complete graph with *n* vertices have? How many edges leave each vertex? n-1How much does that all add up to? n(n-1)Did we double count any edges? Yes So how many edges are there? $\frac{n(n-1)}{2} \in O(n^2)$

Claim: $PATH = \{\langle G, s, t \rangle : G = (V, E) \text{ is a directed graph} \}$ with a path from s to $t \in P$. At most, how many edges are in an undirected graph with *n* vertices? What graph has the most number of edges? Complete graph (every pair of vertices have an edge). How many edges does a complete graph with n vertices have? How many edges leave each vertex? n-1How much does that all add up to? n(n-1)Did we double count any edges? Yes So how many edges are there? $\frac{n(n-1)}{2} \in O(n^2)$ What if it is directed?

Claim: $PATH = \{\langle G, s, t \rangle : G = (V, E) \text{ is a directed graph} \}$ with a path from s to $t \in P$. At most, how many edges are in an undirected graph with *n* vertices? What graph has the most number of edges? Complete graph (every pair of vertices have an edge). How many edges does a complete graph with *n* vertices have? How many edges leave each vertex? n-1How much does that all add up to? n(n-1)Did we double count any edges? Yes So how many edges are there? $\frac{n(n-1)}{2} \in O(n^2)$ What if it is directed? $n(n-1) \in O(n^2)$ (no double counts)

Claim: $PATH = \{\langle G, s, t \rangle : G = (V, E) \text{ is a directed graph} with a path from s to t \} \in P$.

Proof: Build a polynomial time decider. Suppose |V| = n.

 $N = \text{on input } \langle G, s, t \rangle$ $O(1) \longrightarrow 1$. Mark s.

2. Repeat until no new nodes are marked:

 $O(n^2) \rightarrow 3$. For each $e = (a, b) \in E$, if a is marked, mark b.

4. If *t* is marked, <u>accept</u>. Otherwise, <u>reject</u>.

Claim: $PATH = \{\langle G, s, t \rangle : G = (V, E) \text{ is a directed graph} with a path from s to t \} \in P$.

Proof: Build a polynomial time decider. Suppose |V| = n.

 $N = on input \langle G, s, t \rangle$

 $0(1) \rightarrow 1$. Mark s.

?→ 2. Repeat until no new nodes are marked:

 $O(n^2) \rightarrow 3$. For each $e = (a, b) \in E$, if a is marked, mark b.

4. If t is marked, <u>accept</u>. Otherwise, <u>reject</u>.

Claim: $PATH = \{\langle G, s, t \rangle : G = (V, E) \text{ is a directed graph} with a path from s to t \} \in P$.

Proof: Build a polynomial time decider. Suppose |V| = n.

 $N = \text{on input } \langle G, s, t \rangle$

 $0(1) \rightarrow 1$. Mark s.

 $O(n) \rightarrow 2$. Repeat until no new nodes are marked:

 $O(n^2) \rightarrow 3$. For each $e = (a, b) \in E$, if a is marked, mark b.

4. If t is marked, <u>accept</u>. Otherwise, <u>reject</u>.

Claim: $PATH = \{\langle G, s, t \rangle : G = (V, E) \text{ is a directed graph} with a path from s to t \} \in P$.

Proof: Build a polynomial time decider. Suppose |V| = n.

 $N = \text{on input } \langle G, s, t \rangle$

 $0(1) \rightarrow 1$. Mark s.

 $O(n) \rightarrow 2$. Repeat until no new nodes are marked:

 $O(n^2) \rightarrow 3$. For each $e = (a, b) \in E$, if a is marked, mark b.

? → 4. If *t* is marked, <u>accept</u>. Otherwise, <u>reject</u>.

Claim: $PATH = \{\langle G, s, t \rangle : G = (V, E) \text{ is a directed graph} with a path from s to t \} \in P$.

Proof: Build a polynomial time decider. Suppose |V| = n.

 $N = \text{on input } \langle G, s, t \rangle$

 $0(1) \rightarrow 1$. Mark s.

O(n)→2. Repeat until no new nodes are marked: $O(n^2)$ →3. For each $e = (a, b) \in E$, if a is marked, mark b. O(1)→4. If t is marked, <u>accept</u>. Otherwise, <u>reject</u>.

Claim: $PATH = \{\langle G, s, t \rangle : G = (V, E) \text{ is a directed graph} with a path from s to t \} \in P$.

Proof: Build a polynomial time decider. Suppose |V| = n.

 $N = \text{on input } \langle G, s, t \rangle$

 $0(1) \rightarrow 1$. Mark s.

O(n)→2. Repeat until no new nodes are marked: $O(n^2)$ →3. For each $e = (a, b) \in E$, if a is marked, mark b. O(1)→4. If t is marked, <u>accept</u>. Otherwise, <u>reject</u>. N is a decider and runs in $O(n^3)$ time, therefore $PATH \in P$.