
P and NP
CSCI 338

Announcements

• Test 2. (AVG = 72%, MED = 85%)

• Project 2. (AVG = 80%, MED = 100%)

Goal: Understand and
identify fundamental

limitations of computers.

January May

Computability:
What’s solvable
by computers.

Complexity: What’s
efficiently solvable
by computers.

Computational
Models

Context-FreeRegular

Other

Decidable
Turing-recognizable

Computational Complexity

Determining the amount of resources required to
accomplish some task (solve a problem).

• Time (most common)
• Space (close behind)
• Power (sensor networks, spacecraft, military)
• Network (Netflix, IoT)

Definitions

Definition: For TM 𝑀, the running time of 𝑴 is the
function 𝑓:ℕ → ℕ, where 𝑓(𝑛) is the maximum
number of steps 𝑀 used on any input of length 𝑛.

Definitions

Definition: For TM 𝑀, the running time of 𝑴 is the
function 𝑓:ℕ → ℕ, where 𝑓(𝑛) is the maximum
number of steps 𝑀 used on any input of length 𝑛.

Definition: Let 𝑓 and 𝑔 be functions 𝑓, 𝑔: ℕ → ℝ!,
𝒇(𝒏) ∈ 𝑶 𝒈 𝒏 if ∃ positive integers 𝑐 and 𝑛" such
that ∀	𝑛 ≥ 𝑛", 𝑓 𝑛 ≤ 𝑐	𝑔 𝑛 .

Asymptotic upper bound on running time.

Definition: Let 𝑡: ℕ → ℝ! be a function. The time
complexity class, TIME(𝒕(𝒏)), is the collection of all
languages that are decidable by an 𝑂(𝑡(𝑛)) time TM.

P

Definition: 𝑷 is the set of languages that are decidable
in polynomial time on a deterministic single-tape TM.

𝑃 =>
#

TIME 𝑛#

Properties of 𝑃:
• Inclusion in 𝑃 holds for all computational models

polynomially equivalent to deterministic, single-tape TMs.
• Roughly corresponds to problems solvable by a computer.

Definition: Let 𝑡: ℕ → ℝ! be a function. The time
complexity class, TIME(𝒕(𝒏)), is the collection of all
languages that are decidable by an 𝑂(𝑡(𝑛)) time TM.

P

Definition: 𝑷 is the set of languages that are decidable
in polynomial time on a deterministic single-tape TM.

𝑃 =>
#

TIME 𝑛#

Properties of 𝑃:
• Inclusion in 𝑃 holds for all computational models

polynomially equivalent to deterministic, single-tape TMs.
• Roughly corresponds to problems solvable by a computer.

How do you show something is in 𝑷?

Definition: Let 𝑡: ℕ → ℝ! be a function. The time
complexity class, TIME(𝒕(𝒏)), is the collection of all
languages that are decidable by an 𝑂(𝑡(𝑛)) time TM.

P

Definition: 𝑷 is the set of languages that are decidable
in polynomial time on a deterministic single-tape TM.

𝑃 =>
#

TIME 𝑛#

Properties of 𝑃:
• Inclusion in 𝑃 holds for all computational models

polynomially equivalent to deterministic, single-tape TMs.
• Roughly corresponds to problems solvable by a computer.

How do you show something is in 𝑷?
 Build a polynomial time decider for it.

Why Polynomial?
Given a problem of size 𝑛…

Algorithm A
solves it in 𝑛$
seconds

Algorithm B
solves it in 2%
seconds

Why Polynomial?
Given a problem of size 𝑛…

Algorithm A
solves it in 𝑛$
seconds

Algorithm B
solves it in 2%
seconds

Would you rather have a minute of compute time for
algorithm A, or five minutes of compute time for algorithm B?

Why Polynomial?
Given a problem of size 𝑛…

Algorithm A
solves it in 𝑛$
seconds

Algorithm B
solves it in 2%
seconds

Would you rather have a minute of compute time for
algorithm A, or five minutes of compute time for algorithm B?

A solves in 1 min ⇒ A solves in 60 sec ⇒ 𝑛 ≈ 7.7

Why Polynomial?
Given a problem of size 𝑛…

Algorithm A
solves it in 𝑛$
seconds

Algorithm B
solves it in 2%
seconds

Would you rather have a minute of compute time for
algorithm A, or five minutes of compute time for algorithm B?

A solves in 1 min ⇒ A solves in 60 sec ⇒ 𝑛 ≈ 7.7
B solves in 5 min ⇒ B solves in 300 sec ⇒ 𝑛 ≈ 8.2

Why Polynomial?
Given a problem of size 𝑛…

Algorithm A
solves it in 𝑛$
seconds

Algorithm B
solves it in 2%
seconds

Would you rather have an hour of compute time for
algorithm A, or 10 billion years of compute time for algorithm B?

Why Polynomial?
Given a problem of size 𝑛…

Algorithm A
solves it in 𝑛$
seconds

Algorithm B
solves it in 2%
seconds

Would you rather have an hour of compute time for
algorithm A, or 10 billion years of compute time for algorithm B?

A solves in 1 hr ⇒ A solves in 3600 sec ⇒ 𝑛 = 60

Why Polynomial?
Given a problem of size 𝑛…

Algorithm A
solves it in 𝑛$
seconds

Algorithm B
solves it in 2%
seconds

Would you rather have an hour of compute time for
algorithm A, or 10 billion years of compute time for algorithm B?

A solves in 1 hr ⇒ A solves in 3600 sec ⇒ 𝑛 = 60
B solves in 10B yr ⇒ B solves in lots of sec ⇒ 𝑛 ≈ 58

315360000000000000

Why Polynomial?

Polynomial time algorithms are usually useful,
exponential time algorithms are rarely useful

𝒙𝟐, 𝟐𝒙

𝑃𝐴𝑇𝐻
Claim: 𝑃𝐴𝑇𝐻 = {

}
𝐺, 𝑠, 𝑡 : 𝐺 = 𝑉, 𝐸 	is a directed graph

with a path from 𝑠 to 𝑡 ∈ 𝑃.

Proof:

𝑃𝐴𝑇𝐻
Claim: 𝑃𝐴𝑇𝐻 = {

}
𝐺, 𝑠, 𝑡 : 𝐺 = 𝑉, 𝐸 	is a directed graph

with a path from 𝑠 to 𝑡 ∈ 𝑃.

Proof: Build a polynomial time decider.

𝑃𝐴𝑇𝐻
Claim: 𝑃𝐴𝑇𝐻 = {

}
𝐺, 𝑠, 𝑡 : 𝐺 = 𝑉, 𝐸 	is a directed graph

with a path from 𝑠 to 𝑡 ∈ 𝑃.

Proof: Build a polynomial time decider.

 𝑁 = on input 𝐺, 𝑠, 𝑡
1.

𝑃𝐴𝑇𝐻
Claim: 𝑃𝐴𝑇𝐻 = {

}
𝐺, 𝑠, 𝑡 : 𝐺 = 𝑉, 𝐸 	is a directed graph

with a path from 𝑠 to 𝑡 ∈ 𝑃.

Proof: Build a polynomial time decider.

 𝑁 = on input 𝐺, 𝑠, 𝑡
1. Mark 𝑠.
2.

𝑃𝐴𝑇𝐻
Claim: 𝑃𝐴𝑇𝐻 = {

}
𝐺, 𝑠, 𝑡 : 𝐺 = 𝑉, 𝐸 	is a directed graph

with a path from 𝑠 to 𝑡 ∈ 𝑃.

Proof: Build a polynomial time decider.

 𝑁 = on input 𝐺, 𝑠, 𝑡
1. Mark 𝑠.
2. Repeat until no new nodes are marked:
3. For each 𝑒 = (𝑎, 𝑏) ∈ 𝐸, if 𝑎 is marked, mark 𝑏.
4.

𝑃𝐴𝑇𝐻
Claim: 𝑃𝐴𝑇𝐻 = {

}
𝐺, 𝑠, 𝑡 : 𝐺 = 𝑉, 𝐸 	is a directed graph

with a path from 𝑠 to 𝑡 ∈ 𝑃.

Proof: Build a polynomial time decider.

 𝑁 = on input 𝐺, 𝑠, 𝑡
1. Mark 𝑠.
2. Repeat until no new nodes are marked:
3. For each 𝑒 = (𝑎, 𝑏) ∈ 𝐸, if 𝑎 is marked, mark 𝑏.
4. If 𝑡 is marked, accept. Otherwise, reject.

𝑃𝐴𝑇𝐻
Claim: 𝑃𝐴𝑇𝐻 = {

}
𝐺, 𝑠, 𝑡 : 𝐺 = 𝑉, 𝐸 	is a directed graph

with a path from 𝑠 to 𝑡 ∈ 𝑃.

Proof: Build a polynomial time decider.

 𝑁 = on input 𝐺, 𝑠, 𝑡
1. Mark 𝑠.
2. Repeat until no new nodes are marked:
3. For each 𝑒 = (𝑎, 𝑏) ∈ 𝐸, if 𝑎 is marked, mark 𝑏.
4. If 𝑡 is marked, accept. Otherwise, reject.

Need to show N is a decider and runs in polynomial time.

𝑃𝐴𝑇𝐻
Claim: 𝑃𝐴𝑇𝐻 = {

}
𝐺, 𝑠, 𝑡 : 𝐺 = 𝑉, 𝐸 	is a directed graph

with a path from 𝑠 to 𝑡 ∈ 𝑃.

Proof: Build a polynomial time decider.
 Suppose 𝑉 = 𝑛.

 𝑁 = on input 𝐺, 𝑠, 𝑡
1. Mark 𝑠.
2. Repeat until no new nodes are marked:
3. For each 𝑒 = (𝑎, 𝑏) ∈ 𝐸, if 𝑎 is marked, mark 𝑏.
4. If 𝑡 is marked, accept. Otherwise, reject.

Need to show N is a decider and runs in polynomial time.

𝑃𝐴𝑇𝐻
Claim: 𝑃𝐴𝑇𝐻 = {

}
𝐺, 𝑠, 𝑡 : 𝐺 = 𝑉, 𝐸 	is a directed graph

with a path from 𝑠 to 𝑡 ∈ 𝑃.

Proof: Build a polynomial time decider.
 Suppose 𝑉 = 𝑛.

 𝑁 = on input 𝐺, 𝑠, 𝑡
1. Mark 𝑠.
2. Repeat until no new nodes are marked:
3. For each 𝑒 = (𝑎, 𝑏) ∈ 𝐸, if 𝑎 is marked, mark 𝑏.
4. If 𝑡 is marked, accept. Otherwise, reject.

?

Need to show N is a decider and runs in polynomial time.

𝑃𝐴𝑇𝐻
Claim: 𝑃𝐴𝑇𝐻 = {

}
𝐺, 𝑠, 𝑡 : 𝐺 = 𝑉, 𝐸 	is a directed graph

with a path from 𝑠 to 𝑡 ∈ 𝑃.

Proof: Build a polynomial time decider.
 Suppose 𝑉 = 𝑛.

 𝑁 = on input 𝐺, 𝑠, 𝑡
1. Mark 𝑠.
2. Repeat until no new nodes are marked:
3. For each 𝑒 = (𝑎, 𝑏) ∈ 𝐸, if 𝑎 is marked, mark 𝑏.
4. If 𝑡 is marked, accept. Otherwise, reject.

𝑶(𝟏)

Need to show N is a decider and runs in polynomial time.

𝑃𝐴𝑇𝐻
Claim: 𝑃𝐴𝑇𝐻 = {

}
𝐺, 𝑠, 𝑡 : 𝐺 = 𝑉, 𝐸 	is a directed graph

with a path from 𝑠 to 𝑡 ∈ 𝑃.

Proof: Build a polynomial time decider.
 Suppose 𝑉 = 𝑛.

 𝑁 = on input 𝐺, 𝑠, 𝑡
1. Mark 𝑠.
2. Repeat until no new nodes are marked:
3. For each 𝑒 = (𝑎, 𝑏) ∈ 𝐸, if 𝑎 is marked, mark 𝑏.
4. If 𝑡 is marked, accept. Otherwise, reject.

?

𝑶(𝟏)

Need to show N is a decider and runs in polynomial time.

𝑃𝐴𝑇𝐻
Claim: 𝑃𝐴𝑇𝐻 = {

}
𝐺, 𝑠, 𝑡 : 𝐺 = 𝑉, 𝐸 	is a directed graph

with a path from 𝑠 to 𝑡 ∈ 𝑃.

Proof: Build a polynomial time decider.
 Suppose 𝑉 = 𝑛.

 𝑁 = on input 𝐺, 𝑠, 𝑡
1. Mark 𝑠.
2. Repeat until no new nodes are marked:
3. For each 𝑒 = (𝑎, 𝑏) ∈ 𝐸, if 𝑎 is marked, mark 𝑏.
4. If 𝑡 is marked, accept. Otherwise, reject.

?

𝑶(𝟏)

Need to show N is a decider and runs in polynomial time.

At most, how many edges are in an undirected graph with 𝑛 vertices?
What graph has the most number of edges?

	

𝑃𝐴𝑇𝐻
Claim: 𝑃𝐴𝑇𝐻 = {

}
𝐺, 𝑠, 𝑡 : 𝐺 = 𝑉, 𝐸 	is a directed graph

with a path from 𝑠 to 𝑡 ∈ 𝑃.

Proof: Build a polynomial time decider.
 Suppose 𝑉 = 𝑛.

 𝑁 = on input 𝐺, 𝑠, 𝑡
1. Mark 𝑠.
2. Repeat until no new nodes are marked:
3. For each 𝑒 = (𝑎, 𝑏) ∈ 𝐸, if 𝑎 is marked, mark 𝑏.
4. If 𝑡 is marked, accept. Otherwise, reject.

?

𝑶(𝟏)

Need to show N is a decider and runs in polynomial time.

At most, how many edges are in an undirected graph with 𝑛 vertices?
What graph has the most number of edges?
 Complete graph (every pair of vertices have an edge).

	

 dc

a
eb

𝑃𝐴𝑇𝐻
Claim: 𝑃𝐴𝑇𝐻 = {

}
𝐺, 𝑠, 𝑡 : 𝐺 = 𝑉, 𝐸 	is a directed graph

with a path from 𝑠 to 𝑡 ∈ 𝑃.

Proof: Build a polynomial time decider.
 Suppose 𝑉 = 𝑛.

 𝑁 = on input 𝐺, 𝑠, 𝑡
1. Mark 𝑠.
2. Repeat until no new nodes are marked:
3. For each 𝑒 = (𝑎, 𝑏) ∈ 𝐸, if 𝑎 is marked, mark 𝑏.
4. If 𝑡 is marked, accept. Otherwise, reject.

?

𝑶(𝟏)

Need to show N is a decider and runs in polynomial time.

At most, how many edges are in an undirected graph with 𝑛 vertices?
What graph has the most number of edges?
 Complete graph (every pair of vertices have an edge).
How many edges does a complete graph with 𝑛 vertices have?
 How many edges leave each vertex?
	

𝑃𝐴𝑇𝐻
Claim: 𝑃𝐴𝑇𝐻 = {

}
𝐺, 𝑠, 𝑡 : 𝐺 = 𝑉, 𝐸 	is a directed graph

with a path from 𝑠 to 𝑡 ∈ 𝑃.

Proof: Build a polynomial time decider.
 Suppose 𝑉 = 𝑛.

 𝑁 = on input 𝐺, 𝑠, 𝑡
1. Mark 𝑠.
2. Repeat until no new nodes are marked:
3. For each 𝑒 = (𝑎, 𝑏) ∈ 𝐸, if 𝑎 is marked, mark 𝑏.
4. If 𝑡 is marked, accept. Otherwise, reject.

?

𝑶(𝟏)

Need to show N is a decider and runs in polynomial time.

At most, how many edges are in an undirected graph with 𝑛 vertices?
What graph has the most number of edges?
 Complete graph (every pair of vertices have an edge).
How many edges does a complete graph with 𝑛 vertices have?
 How many edges leave each vertex? 𝑛 − 1
	 How much does that all add up to?

𝑃𝐴𝑇𝐻
Claim: 𝑃𝐴𝑇𝐻 = {

}
𝐺, 𝑠, 𝑡 : 𝐺 = 𝑉, 𝐸 	is a directed graph

with a path from 𝑠 to 𝑡 ∈ 𝑃.

Proof: Build a polynomial time decider.
 Suppose 𝑉 = 𝑛.

 𝑁 = on input 𝐺, 𝑠, 𝑡
1. Mark 𝑠.
2. Repeat until no new nodes are marked:
3. For each 𝑒 = (𝑎, 𝑏) ∈ 𝐸, if 𝑎 is marked, mark 𝑏.
4. If 𝑡 is marked, accept. Otherwise, reject.

?

𝑶(𝟏)

Need to show N is a decider and runs in polynomial time.

At most, how many edges are in an undirected graph with 𝑛 vertices?
What graph has the most number of edges?
 Complete graph (every pair of vertices have an edge).
How many edges does a complete graph with 𝑛 vertices have?
 How many edges leave each vertex? 𝑛 − 1
	 How much does that all add up to? 𝑛(𝑛 − 1)
 Did we double count any edges?

𝑃𝐴𝑇𝐻
Claim: 𝑃𝐴𝑇𝐻 = {

}
𝐺, 𝑠, 𝑡 : 𝐺 = 𝑉, 𝐸 	is a directed graph

with a path from 𝑠 to 𝑡 ∈ 𝑃.

Proof: Build a polynomial time decider.
 Suppose 𝑉 = 𝑛.

 𝑁 = on input 𝐺, 𝑠, 𝑡
1. Mark 𝑠.
2. Repeat until no new nodes are marked:
3. For each 𝑒 = (𝑎, 𝑏) ∈ 𝐸, if 𝑎 is marked, mark 𝑏.
4. If 𝑡 is marked, accept. Otherwise, reject.

?

𝑶(𝟏)

Need to show N is a decider and runs in polynomial time.

At most, how many edges are in an undirected graph with 𝑛 vertices?
What graph has the most number of edges?
 Complete graph (every pair of vertices have an edge).
How many edges does a complete graph with 𝑛 vertices have?
 How many edges leave each vertex? 𝑛 − 1
	 How much does that all add up to? 𝑛(𝑛 − 1)
 Did we double count any edges? Yes
 So how many edges are there?

𝑃𝐴𝑇𝐻
Claim: 𝑃𝐴𝑇𝐻 = {

}
𝐺, 𝑠, 𝑡 : 𝐺 = 𝑉, 𝐸 	is a directed graph

with a path from 𝑠 to 𝑡 ∈ 𝑃.

Proof: Build a polynomial time decider.
 Suppose 𝑉 = 𝑛.

 𝑁 = on input 𝐺, 𝑠, 𝑡
1. Mark 𝑠.
2. Repeat until no new nodes are marked:
3. For each 𝑒 = (𝑎, 𝑏) ∈ 𝐸, if 𝑎 is marked, mark 𝑏.
4. If 𝑡 is marked, accept. Otherwise, reject.

?

𝑶(𝟏)

Need to show N is a decider and runs in polynomial time.

At most, how many edges are in an undirected graph with 𝑛 vertices?
What graph has the most number of edges?
 Complete graph (every pair of vertices have an edge).
How many edges does a complete graph with 𝑛 vertices have?
 How many edges leave each vertex? 𝑛 − 1
	 How much does that all add up to? 𝑛(𝑛 − 1)
 Did we double count any edges? Yes
 So how many edges are there? !(!#$)

&
∈ 𝑂 𝑛&

𝑃𝐴𝑇𝐻
Claim: 𝑃𝐴𝑇𝐻 = {

}
𝐺, 𝑠, 𝑡 : 𝐺 = 𝑉, 𝐸 	is a directed graph

with a path from 𝑠 to 𝑡 ∈ 𝑃.

Proof: Build a polynomial time decider.
 Suppose 𝑉 = 𝑛.

 𝑁 = on input 𝐺, 𝑠, 𝑡
1. Mark 𝑠.
2. Repeat until no new nodes are marked:
3. For each 𝑒 = (𝑎, 𝑏) ∈ 𝐸, if 𝑎 is marked, mark 𝑏.
4. If 𝑡 is marked, accept. Otherwise, reject.

?

𝑶(𝟏)

Need to show N is a decider and runs in polynomial time.

At most, how many edges are in an undirected graph with 𝑛 vertices?
What graph has the most number of edges?
 Complete graph (every pair of vertices have an edge).
How many edges does a complete graph with 𝑛 vertices have?
 How many edges leave each vertex? 𝑛 − 1
	 How much does that all add up to? 𝑛(𝑛 − 1)
 Did we double count any edges? Yes
 So how many edges are there? !(!#$)

&
∈ 𝑂 𝑛&

What if it is directed?

𝑃𝐴𝑇𝐻
Claim: 𝑃𝐴𝑇𝐻 = {

}
𝐺, 𝑠, 𝑡 : 𝐺 = 𝑉, 𝐸 	is a directed graph

with a path from 𝑠 to 𝑡 ∈ 𝑃.

Proof: Build a polynomial time decider.
 Suppose 𝑉 = 𝑛.

 𝑁 = on input 𝐺, 𝑠, 𝑡
1. Mark 𝑠.
2. Repeat until no new nodes are marked:
3. For each 𝑒 = (𝑎, 𝑏) ∈ 𝐸, if 𝑎 is marked, mark 𝑏.
4. If 𝑡 is marked, accept. Otherwise, reject.

?

𝑶(𝟏)

Need to show N is a decider and runs in polynomial time.

At most, how many edges are in an undirected graph with 𝑛 vertices?
What graph has the most number of edges?
 Complete graph (every pair of vertices have an edge).
How many edges does a complete graph with 𝑛 vertices have?
 How many edges leave each vertex? 𝑛 − 1
	 How much does that all add up to? 𝑛(𝑛 − 1)
 Did we double count any edges? Yes
 So how many edges are there? !(!#$)

&
∈ 𝑂 𝑛&

What if it is directed? 𝑛(𝑛 − 1) ∈ 𝑂 𝑛& (no double counts)

𝑃𝐴𝑇𝐻
Claim: 𝑃𝐴𝑇𝐻 = {

}
𝐺, 𝑠, 𝑡 : 𝐺 = 𝑉, 𝐸 	is a directed graph

with a path from 𝑠 to 𝑡 ∈ 𝑃.

Proof: Build a polynomial time decider.
 Suppose 𝑉 = 𝑛.

 𝑁 = on input 𝐺, 𝑠, 𝑡
1. Mark 𝑠.
2. Repeat until no new nodes are marked:
3. For each 𝑒 = (𝑎, 𝑏) ∈ 𝐸, if 𝑎 is marked, mark 𝑏.
4. If 𝑡 is marked, accept. Otherwise, reject.

𝑶(𝒏𝟐)

𝑶(𝟏)

Need to show N is a decider and runs in polynomial time.

𝑃𝐴𝑇𝐻
Claim: 𝑃𝐴𝑇𝐻 = {

}
𝐺, 𝑠, 𝑡 : 𝐺 = 𝑉, 𝐸 	is a directed graph

with a path from 𝑠 to 𝑡 ∈ 𝑃.

Proof: Build a polynomial time decider.
 Suppose 𝑉 = 𝑛.

 𝑁 = on input 𝐺, 𝑠, 𝑡
1. Mark 𝑠.
2. Repeat until no new nodes are marked:
3. For each 𝑒 = (𝑎, 𝑏) ∈ 𝐸, if 𝑎 is marked, mark 𝑏.
4. If 𝑡 is marked, accept. Otherwise, reject.

?
𝑶(𝒏𝟐)

𝑶(𝟏)

Need to show N is a decider and runs in polynomial time.

𝑃𝐴𝑇𝐻
Claim: 𝑃𝐴𝑇𝐻 = {

}
𝐺, 𝑠, 𝑡 : 𝐺 = 𝑉, 𝐸 	is a directed graph

with a path from 𝑠 to 𝑡 ∈ 𝑃.

Proof: Build a polynomial time decider.
 Suppose 𝑉 = 𝑛.

 𝑁 = on input 𝐺, 𝑠, 𝑡
1. Mark 𝑠.
2. Repeat until no new nodes are marked:
3. For each 𝑒 = (𝑎, 𝑏) ∈ 𝐸, if 𝑎 is marked, mark 𝑏.
4. If 𝑡 is marked, accept. Otherwise, reject.

𝑶(𝒏)
𝑶(𝒏𝟐)

𝑶(𝟏)

Need to show N is a decider and runs in polynomial time.

𝑃𝐴𝑇𝐻
Claim: 𝑃𝐴𝑇𝐻 = {

}
𝐺, 𝑠, 𝑡 : 𝐺 = 𝑉, 𝐸 	is a directed graph

with a path from 𝑠 to 𝑡 ∈ 𝑃.

Proof: Build a polynomial time decider.
 Suppose 𝑉 = 𝑛.

 𝑁 = on input 𝐺, 𝑠, 𝑡
1. Mark 𝑠.
2. Repeat until no new nodes are marked:
3. For each 𝑒 = (𝑎, 𝑏) ∈ 𝐸, if 𝑎 is marked, mark 𝑏.
4. If 𝑡 is marked, accept. Otherwise, reject.

𝑶(𝒏)
𝑶(𝒏𝟐)

𝑶(𝟏)

?
Need to show N is a decider and runs in polynomial time.

𝑃𝐴𝑇𝐻
Claim: 𝑃𝐴𝑇𝐻 = {

}
𝐺, 𝑠, 𝑡 : 𝐺 = 𝑉, 𝐸 	is a directed graph

with a path from 𝑠 to 𝑡 ∈ 𝑃.

Proof: Build a polynomial time decider.
 Suppose 𝑉 = 𝑛.

 𝑁 = on input 𝐺, 𝑠, 𝑡
1. Mark 𝑠.
2. Repeat until no new nodes are marked:
3. For each 𝑒 = (𝑎, 𝑏) ∈ 𝐸, if 𝑎 is marked, mark 𝑏.
4. If 𝑡 is marked, accept. Otherwise, reject.

𝑶(𝒏)
𝑶(𝒏𝟐)

𝑶(𝟏)

𝑶(𝟏)
Need to show N is a decider and runs in polynomial time.

𝑃𝐴𝑇𝐻
Claim: 𝑃𝐴𝑇𝐻 = {

}
𝐺, 𝑠, 𝑡 : 𝐺 = 𝑉, 𝐸 	is a directed graph

with a path from 𝑠 to 𝑡 ∈ 𝑃.

Proof: Build a polynomial time decider.
 Suppose 𝑉 = 𝑛.

 𝑁 = on input 𝐺, 𝑠, 𝑡
1. Mark 𝑠.
2. Repeat until no new nodes are marked:
3. For each 𝑒 = (𝑎, 𝑏) ∈ 𝐸, if 𝑎 is marked, mark 𝑏.
4. If 𝑡 is marked, accept. Otherwise, reject.

𝑶(𝒏)
𝑶(𝒏𝟐)

𝑶(𝟏)

𝑶(𝟏)
N is a decider and runs in 𝑂(𝑛() time, therefore 𝑃𝐴𝑇𝐻 ∈ 𝑃.

