NP
CSCI 338
\(\mathcal{NP} \)

\(P \) is the set of languages that are solvable (decidable) in polynomial time.
To show something is in \(P \), build a polynomial time decider for it.
NP

P is the set of languages that are solvable (decidable) in polynomial time.

To show something is in P, build a polynomial time decider for it.

$NP \left\{ \text{Set of languages that have polynomial time verifiers.} \right\}$
Vertex Cover (VC)

Vertex Cover = \{(G, k): G = (V, E) is a graph and k is an integer \leq |V| such that there exists some V' \subseteq V with |V'| \leq k, such that each edge in E contains an end point in V'\}
Vertex Cover (VC)

Vertex Cover = \{ (G, k) : G = (V, E) is a graph and k is an integer \leq |V| such that there exists some \(V' \subseteq V \) with \(|V'| \leq k\), such that each edge in \(E \) contains an end point in \(V' \) \}
Vertex Cover (VC)

Vertex Cover = \{ (G, k) : G = (V, E) is a graph and \(k \) is an integer \(\leq |V| \) such that there exists some \(V' \subseteq V \) with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \) \}

Vertex Cover: Given graph \(G = (V, E) \) and integer \(k \leq |V| \), is there \(V' \subseteq V \), with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \)?
Vertex Cover (VC)

Vertex Cover = \{\langle G, k \rangle: G = (V, E) is a graph and k is an integer \leq |V| such that there exists some \(V' \subseteq V \) with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \)\}

Vertex Cover: Given graph \(G = (V, E) \) and integer \(k \leq |V| \), is there \(V' \subseteq V \), with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \)?

Is there a VC \(\leq k \) for \(k = 8 \)?
Vertex Cover (VC)

Vertex Cover = \{ \langle G, k \rangle : G = (V, E) \) is a graph and \(k \) is an integer \(\leq |V| \) such that there exists some \(V' \subseteq V \) with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \) \}

Vertex Cover: Given graph \(G = (V, E) \) and integer \(k \leq |V| \), is there \(V' \subseteq V \), with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \)?

Is there a VC \(\leq k \) for \(k = 8 \)?
Vertex Cover (VC)

Vertex Cover = \{ (G, k) : G = (V, E) is a graph and \(k \) is an integer \(\leq |V| \) such that there exists some \(V' \subseteq V \) with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \) \}

Vertex Cover: Given graph \(G = (V, E) \) and integer \(k \leq |V| \), is there \(V' \subseteq V \), with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \)?

Is there a VC \(\leq k \) for \(k = 7 \)?
Vertex Cover (VC)

Vertex Cover = \{ (G, k) : G = (V, E) is a graph and k is an integer \leq |V| such that there exists some \(V' \subseteq V \) with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \) \}

Vertex Cover: Given graph \(G = (V, E) \) and integer \(k \leq |V| \), is there \(V' \subseteq V \), with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \)?

Is there a VC \(\leq k \) for \(k = 7 \)?
Vertex Cover (VC)

Vertex Cover = \{\langle G, k \rangle: G = (V, E) is a graph and k is an integer \leq |V| such that there exists some \(V' \subseteq V \) with \(|V'| \leq k\), such that each edge in \(E \) contains an end point in \(V' \) \}

Vertex Cover: Given graph \(G = (V, E) \) and integer \(k \leq |V| \), is there \(V' \subseteq V \), with \(|V'| \leq k\), such that each edge in \(E \) contains an end point in \(V' \)?

Is there a VC \(\leq k \) for \(k = 7 \)?

[Graph of a vertex cover problem]
Vertex Cover (VC)

Vertex Cover = \{ (G, k) : G = (V, E) is a graph and k is an integer \leq |V| such that there exists some \(V' \subseteq V \) with \(|V'| \leq k\), such that each edge in \(E \) contains an end point in \(V' \) \}

Vertex Cover: Given graph \(G = (V, E) \) and integer \(k \leq |V| \), is there \(V' \subseteq V \), with \(|V'| \leq k\), such that each edge in \(E \) contains an end point in \(V' \)?

Is there a VC \(\leq k \) for \(k = 6 \)?
Vertex Cover (VC)

Vertex Cover = \{\langle G, k \rangle: G = (V, E) is a graph and k is an integer \leq |V| such that there exists some \(V' \subseteq V \) with \(|V'| \leq k\), such that each edge in \(E \) contains an end point in \(V' \)\}

Vertex Cover: Given graph \(G = (V, E) \) and integer \(k \leq |V| \), is there \(V' \subseteq V \), with \(|V'| \leq k\), such that each edge in \(E \) contains an end point in \(V' \)?

Is there a VC \(\leq k \) for \(k = 6 \)?
Vertex Cover (VC)

Vertex Cover = \{\langle G, k \rangle: G = (V, E) is a graph and k is an integer ≤ |V| such that there exists some \(V' \subseteq V \) with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \)\}

Vertex Cover: Given graph \(G = (V, E) \) and integer \(k \leq |V| \), is there \(V' \subseteq V \), with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \)?

Is there a VC \(\leq k \) for \(k = 6 \)?
Vertex Cover (VC)

Vertex Cover = \{\langle G, k \rangle: G = (V, E) is a graph and k is an integer \leq |V| such that there exists some \(V' \subseteq V \) with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \)\}

Vertex Cover: Given graph \(G = (V, E) \) and integer \(k \leq |V| \), is there \(V' \subseteq V \), with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \)?

Is there a VC \(\leq k \) for \(k = 5 \)?
Vertex Cover (VC)

Vertex Cover = \{\langle G, k \rangle: G = (V, E) \text{ is a graph and } k \text{ is an integer } \leq |V| \text{ such that there exists some } V' \subseteq V \text{ with } |V'| \leq k, \text{ such that each edge in } E \text{ contains an end point in } V' \}\}

Vertex Cover: Given graph \(G = (V, E) \) and integer \(k \leq |V| \), is there \(V' \subseteq V \), with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \)?

Is there a VC \(\leq k \) for \(k = 5 \)?
Vertex Cover (VC)

Vertex Cover = \{ (G, k) : G = (V, E) is a graph and k is an integer \leq |V| such that there exists some \(V' \subseteq V \) with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \) \}

Vertex Cover: Given graph \(G = (V, E) \) and integer \(k \leq |V| \), is there \(V' \subseteq V \), with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \)?

Is there a VC \(\leq k \) for \(k = 5 \)?
Vertex Cover (VC)

Vertex Cover = \{ (G, k) : G = (V, E) is a graph and k is an integer \leq |V| such that there exists some \(V' \subseteq V \) with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \) \}

Vertex Cover: Given graph \(G = (V, E) \) and integer \(k \leq |V| \), is there \(V' \subseteq V \), with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \)?

Is there a \(VC \leq k \) for \(k = 4 \)?
Vertex Cover (VC)

Vertex Cover = \{ (G, k) : G = (V, E) is a graph and k is an integer \leq |V| such that there exists some V' \subseteq V with |V'| \leq k, such that each edge in E contains an end point in V' \}\n
Vertex Cover: Given graph G = (V, E) and integer k \leq |V|, is there V' \subseteq V, with |V'| \leq k, such that each edge in E contains an end point in V'?

Is there a VC \leq k for k = 4?
Vertex Cover (VC)

Vertex Cover = \{ (G, k): G = (V, E) is a graph and k is an integer ≤ |V| such that there exists some V′ ⊆ V with |V′| ≤ k, such that each edge in E contains an end point in V′ \}

Vertex Cover: Given graph G = (V, E) and integer k ≤ |V|, is there V′ ⊆ V, with |V′| ≤ k, such that each edge in E contains an end point in V′?

Is there a VC ≤ k for k = 4?
Vertex Cover (VC)

Vertex Cover = \{\langle G, k \rangle: G = (V, E) is a graph and k is an integer \leq |V| such that there exists some \(V' \subseteq V \) with |\(V' \)| \leq k, such that each edge in \(E \) contains an end point in \(V' \) \}

Vertex Cover: Given graph \(G = (V, E) \) and integer \(k \leq |V| \), is there \(V' \subseteq V \), with |\(V' \)| \leq k, such that each edge in \(E \) contains an end point in \(V' \)?

Is there a VC \(\leq k \) for \(k = 4 \)?

Decision problem:
“Yes/No” – Is there a VC \(\leq k \)?

Optimization problem:
“Best” – What is the smallest VC?
Vertex Cover (VC)

Claim: VC ∈ NP

Proof:

Decider: Is ⟨G, k⟩ ∈ VC?
Vertex Cover (VC)

Claim: VC ∈ NP

Proof:

Decider: Is \(\langle G, k \rangle \in VC \)?

Verifier: Is \(\langle G, k \rangle \in VC \), given a candidate solution?
Vertex Cover (VC)

Claim: VC ∈ NP

Proof:

Decider: Is \(\langle G, k \rangle \in VC \)?

Verifier: Is \(\langle G, k \rangle \in VC \), given a candidate solution?
Vertex Cover (VC)

Claim: VC $\in \mathcal{NP}$

Proof:
Build a polynomial time verifier.

Vertex Cover: Given graph $G = (V, E)$ and integer $k \leq |V|$, is there $V' \subseteq V$, with $|V'| \leq k$, such that each edge in E contains an end point in V'?
Vertex Cover (VC)

Claim: VC \(\in \mathcal{NP} \)

Proof:

Build a polynomial time verifier.

\[M = \text{on input } \langle G, k, V' \rangle, \text{ where } V' \text{ is a subset of } V. \]

1. ???.
Vertex Cover (VC)

Claim: VC ∈ \(NP \)

Proof:

Build a polynomial time verifier.

\[M = \text{on input } \langle G, k \rangle, V' \rangle, \text{ where } V' \text{ is a subset of } V. \]

1. Test if \(|V'| \leq k\), reject if not.
Vertex Cover (VC)

Claim: VC $\in \mathcal{NP}$

Proof:

Build a polynomial time verifier.

$M = \text{on input } \langle G, k \rangle, V', \text{ where } V' \subseteq V.$

1. Test if $|V'| \leq k$, reject if not.

2. ???
Vertex Cover (VC)

Claim: \(VC \in NP \)

Proof:

Build a polynomial time verifier.

\[M = \text{on input } \langle G, k \rangle, V' \rangle, \text{ where } V' \text{ is a subset of } V. \]

1. Test if \(|V'| \leq k \), reject if not.

2. For each edge \(e = (a, b) \) in \(E \),

 2.1 ????
Vertex Cover (VC)

Claim: VC ∈ NP

Proof:

Build a polynomial time verifier.

\[M = \text{on input } \langle \langle G, k \rangle, V' \rangle, \text{ where } V' \text{ is a subset of } V. \]

1. Test if \(|V'| \leq k\), reject if not.

2. For each edge \(e = (a, b)\) in \(E\),
 2.1 Test if \(a \in V'\) or \(b \in V'\), ???.

Vertex Cover: Given graph \(G = (V, E)\) and integer \(k \leq |V|\), is there \(V' \subseteq V\), with \(|V'| \leq k\), such that each edge in \(E\) contains an end point in \(V'\)?
Vertex Cover (VC)

Claim: VC ∈ NP

Proof:

Build a polynomial time verifier.

\[M = \text{on input } \langle G, k \rangle, V', \text{ where } V' \text{ is a subset of } V. \]

1. Test if \(|V'| \leq k\), reject if not.

2. For each edge \(e = (a, b) \) in \(E \),

 2.1 Test if \(a \in V' \) or \(b \in V' \), reject if neither.
Vertex Cover (VC)

Claim: VC $\in NP$

Proof:
Build a polynomial time verifier.

$M = \text{on input } \langle G, k \rangle, V' \rangle$, where V' is a subset of V.

1. Test if $|V'| \leq k$, reject if not.
2. For each edge $e = (a, b)$ in E,
 2.1 Test if $a \in V'$ or $b \in V'$, reject if neither.
3. ???.
Vertex Cover (VC)

Claim: VC ∈ NP

Proof:

Build a polynomial time verifier.

\[M = \text{on input } \langle \langle G, k \rangle, V' \rangle, \text{ where } V' \text{ is a subset of } V. \]

1. Test if \(|V'| \leq k\), reject if not.
2. For each edge \(e = (a, b)\) in \(E\),
 2.1 Test if \(a \in V'\) or \(b \in V'\), reject if neither.
3. accept.
Vertex Cover (VC)

Claim: VC ∈ NP

Proof:

Build a polynomial time verifier.

$|V| = n.$

$M = \text{on input } \langle G, k \rangle, V', \text{ where } V' \text{ is a subset of } V.$

$O(\cdot) \rightarrow 1. \text{ Test if } |V'| \leq k, \text{ reject if not.}$

2. For each edge $e = (a, b) \in E$,

2.1 Test if $a \in V'$ or $b \in V'$, reject if neither.

3. accept.
Vertex Cover (VC)

Claim: VC ∈ NP

Proof:

Build a polynomial time verifier.

$|V| = n.$

$M =$ on input $⟨⟨G, k⟩, V'⟩$, where V' is a subset of V.

$O(1)$

1. Test if $|V'| \leq k$, reject if not.

2. For each edge $e = (a, b)$ in E,

 2.1 Test if $a \in V'$ or $b \in V'$, reject if neither.

3. accept.

Vertex Cover: Given graph $G = (V, E)$ and integer $k \leq |V|$, is there $V' \subseteq V$, with $|V'| \leq k$, such that each edge in E contains an end point in V'?
Vertex Cover (VC)

Claim: VC ∈ NP

Proof:

Build a polynomial time verifier.

|V| = n.

\[M = \text{on input } \langle (G, k), V' \rangle, \text{ where } V' \text{ is a subset of } V. \]

\[O(1) \rightarrow 1. \] Test if \(|V'| \leq k\), reject if not.

\[O(?) \rightarrow 2. \] For each edge \(e = (a, b)\) in \(E\),

\[2.1 \] Test if \(a \in V'\) or \(b \in V'\), reject if neither.

3. accept.
Vertex Cover (VC)

Claim: $\text{VC} \in \mathcal{NP}$

Proof:

1. **Test if** $|V'| \leq k$, **reject** if not.
2. For each edge $e = (a, b)$ in E, **2.1 Test if** $a \in V'$ or $b \in V'$, **reject** if neither.
3. **accept**.

Vertex Cover:
Given graph $G = (V, E)$ and integer $k \leq |V|$, is there $V' \subseteq V$, with $|V'| \leq k$, such that each edge in E contains an end point in V'?

At most, how many edges are in an undirected graph with n vertices?

What graph has the most number of edges?

Complete graph (every pair of vertices have an edge).

How many edges does a complete graph with n vertices have?

How many edges leave each vertex? $n - 1$

How much does that all add up to? $n(n - 1)$

Did we double count any edges? Yes

So how many edges are there? $\frac{n(n-1)}{2} \in O(n^2)$

What if it is directed? $n(n - 1) \in O(n^2)$ (no double counts)
Vertex Cover (VC)

Claim: VC ∈ \(NP \)

Proof:

Build a polynomial time verifier.

\(|V| = n.\)

\(M = \) on input \(\langle G, k \rangle, V' \), where \(V' \) is a subset of \(V \).

\(O(1) \rightarrow 1. \) Test if \(|V'| \leq k \), reject if not.

\(O(n^2) \rightarrow 2. \) For each edge \(e = (a, b) \) in \(E \),

\(\quad 2.1 \) Test if \(a \in V' \) or \(b \in V' \), reject if neither.

3. accept.
Vertex Cover (VC)

Claim: VC \in NP

Proof:

Build a polynomial time verifier.

1. Test if \(|V'| \leq k\), reject if not.

2. For each edge \(e = (a, b)\) in \(E\),
 2.1 Test if \(a \in V'\) or \(b \in V'\), reject if neither.

3. accept.
Vertex Cover (VC)

Claim: VC ∈ NP

Proof:

Build a polynomial time verifier.

$|V| = n.$

$M = \text{on input } \langle G, k \rangle, V', \text{ where } V' \text{ is a subset of } V.$

$O(1) \rightarrow 1. \text{ Test if } |V'| \leq k, \text{ reject if not.}$

$O(n^2) \rightarrow 2. \text{ For each edge } e = (a, b) \text{ in } E,$

$O(n) \rightarrow 2.1 \text{ Test if } a \in V' \text{ or } b \in V', \text{ reject if neither.}$

3. accept.
Vertex Cover (VC)

Claim: VC $\in NP$

Proof:

Build a polynomial time verifier.

$|V| = n$. $M = \text{on input } \langle G, k \rangle, V'$, where V' is a subset of V.

$O(1) \rightarrow 1. \text{ Test if } |V'| \leq k, \text{ reject if not.}$

$O(n^2) \rightarrow 2. \text{ For each edge } e = (a, b) \text{ in } E,$

$O(n) \rightarrow 2.1 \text{ Test if } a \in V' \text{ or } b \in V', \text{ reject if neither.}$

$O(?) \rightarrow 3. \text{ accept.}$
Claim: \(\text{VC} \in \mathcal{NP} \)

Proof:

Build a polynomial time verifier.

1. Test if \(|V'| \leq k \), reject if not.

2. For each edge \(e = (a, b) \) in \(E \),

2.1 Test if \(a \in V' \) or \(b \in V' \), reject if neither.

3. accept.

\[|V| = n. \]

\[M = \text{on input } \langle \langle G, k \rangle, V' \rangle, \text{ where } V' \text{ is a subset of } V. \]

\[O(1) \rightarrow 1. \] Test if \(|V'| \leq k \), reject if not.

\[O(n^2) \rightarrow 2. \] For each edge \(e = (a, b) \) in \(E \),

\[O(n) \rightarrow 2.1 \] Test if \(a \in V' \) or \(b \in V' \), reject if neither.

\[O(1) \rightarrow 3. \] accept.

Vertex Cover: Given graph \(G = (V, E) \) and integer \(k \leq |V| \), is there \(V' \subseteq V \), with \(|V'| \leq k \), such that each edge in \(E \) contains an end point in \(V' \)?
Vertex Cover (VC)

Claim: VC ∈ NP

Proof:

Build a polynomial time verifier.

$|V| = n$. $M = \text{on input } \langle G, k \rangle, V', \text{ where } V' \text{ is a subset of } V$.

$O(1) \rightarrow 1. \text{ Test if } |V'| \leq k, \text{ reject if not.}$

$O(n^2) \rightarrow 2. \text{ For each edge } e = (a, b) \in E,$

$O(n) \rightarrow 2.1 \text{ Test if } a \in V' \text{ or } b \in V', \text{ reject if neither.}$

$O(1) \rightarrow 3. \text{ accept.}$

For $|V| = n$, M runs in $O(n^3)$ time, therefore $VC \in NP$.