NP CSCI 338

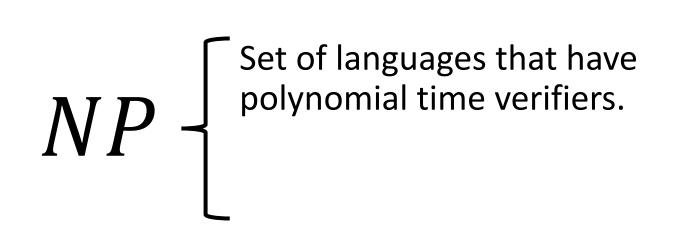
P is the set of languages that are solvable (decidable) in polynomial time.

P is the set of languages that are solvable (decidable) in polynomial time.

To show something is in *P*, build a polynomial time decider for it.

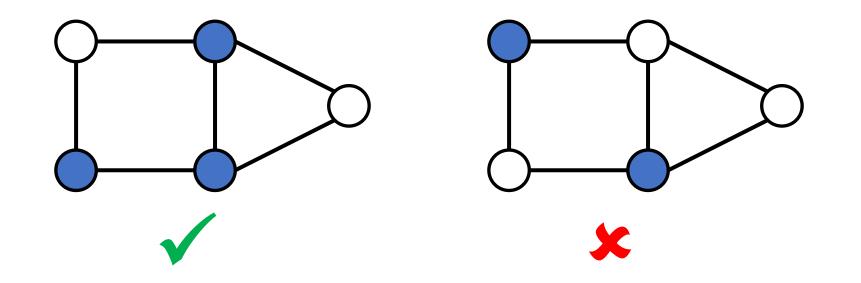
P is the set of languages that are solvable (decidable) in polynomial time.

To show something is in *P*, build a polynomial time decider for it.



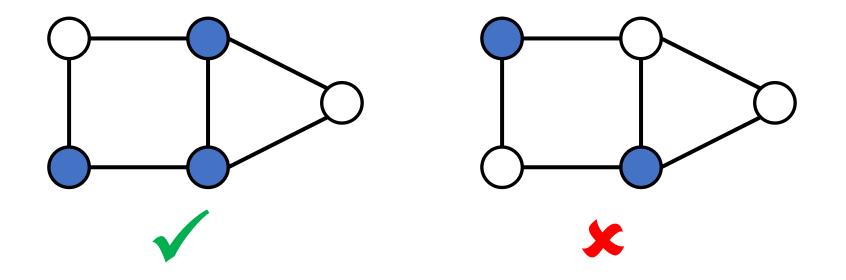
Vertex Cover = { $\langle G, k \rangle$: G = (V, E) is a graph and k is an integer $\leq |V|$ such that there exists some $V' \subseteq V$ with $|V'| \leq k$, such that each edge in E contains an end point in V'}

Vertex Cover = { $\langle G, k \rangle$: G = (V, E) is a graph and k is an integer $\leq |V|$ such that there exists some $V' \subseteq V$ with $|V'| \leq k$, such that each edge in E contains an end point in V'}



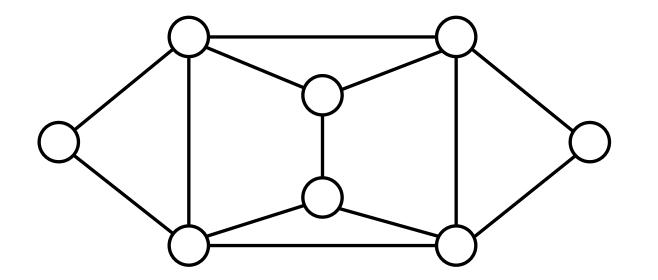
Vertex Cover = { $\langle G, k \rangle$: G = (V, E) is a graph and k is an integer $\leq |V|$ such that there exists some $V' \subseteq V$ with $|V'| \leq k$, such that each edge in E contains an end point in V'}

Vertex Cover: Given graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \le k$, such that each edge in E contains an end point in V'?



Vertex Cover = { $\langle G, k \rangle$: G = (V, E) is a graph and k is an integer $\leq |V|$ such that there exists some $V' \subseteq V$ with $|V'| \leq k$, such that each edge in E contains an end point in V'}

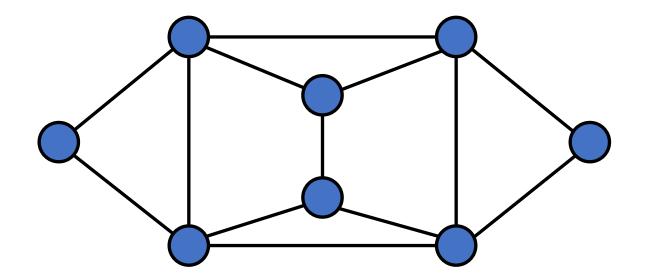
Vertex Cover: Given graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \le k$, such that each edge in E contains an end point in V'?



Is there a VC $\leq k$ for k = 8?

Vertex Cover = { $\langle G, k \rangle$: G = (V, E) is a graph and k is an integer $\leq |V|$ such that there exists some $V' \subseteq V$ with $|V'| \leq k$, such that each edge in E contains an end point in V'}

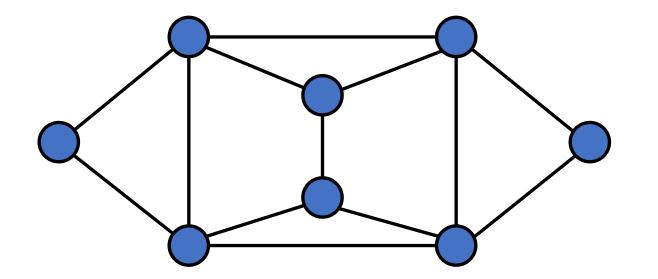
Vertex Cover: Given graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \le k$, such that each edge in E contains an end point in V'?



Is there a VC $\leq k$ for k = 8?

Vertex Cover = { $\langle G, k \rangle$: G = (V, E) is a graph and k is an integer $\leq |V|$ such that there exists some $V' \subseteq V$ with $|V'| \leq k$, such that each edge in E contains an end point in V'}

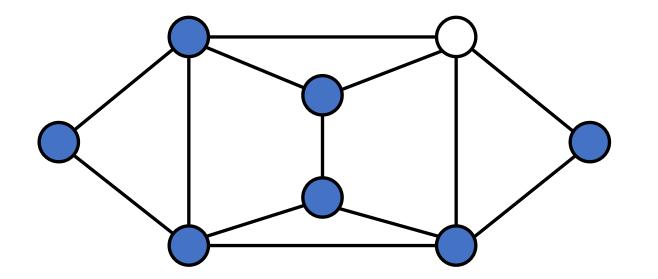
Vertex Cover: Given graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \le k$, such that each edge in E contains an end point in V'?



Is there a VC $\leq k$ for k = 7?

Vertex Cover = { $\langle G, k \rangle$: G = (V, E) is a graph and k is an integer $\leq |V|$ such that there exists some $V' \subseteq V$ with $|V'| \leq k$, such that each edge in E contains an end point in V'}

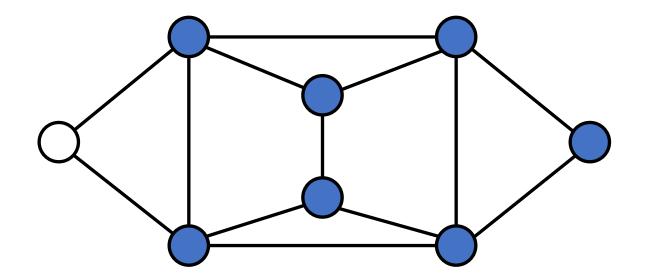
Vertex Cover: Given graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \le k$, such that each edge in E contains an end point in V'?



Is there a VC $\leq k$ for k = 7?

Vertex Cover = { $\langle G, k \rangle$: G = (V, E) is a graph and k is an integer $\leq |V|$ such that there exists some $V' \subseteq V$ with $|V'| \leq k$, such that each edge in E contains an end point in V'}

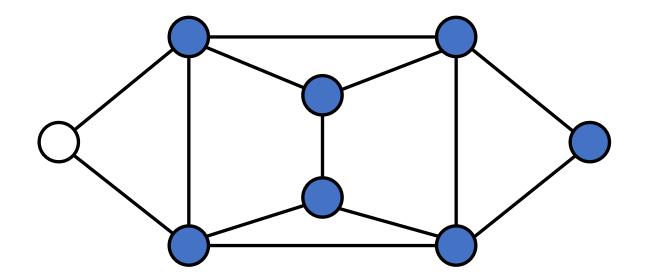
Vertex Cover: Given graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \le k$, such that each edge in E contains an end point in V'?



Is there a VC $\leq k$ for k = 7?

Vertex Cover = { $\langle G, k \rangle$: G = (V, E) is a graph and k is an integer $\leq |V|$ such that there exists some $V' \subseteq V$ with $|V'| \leq k$, such that each edge in E contains an end point in V'}

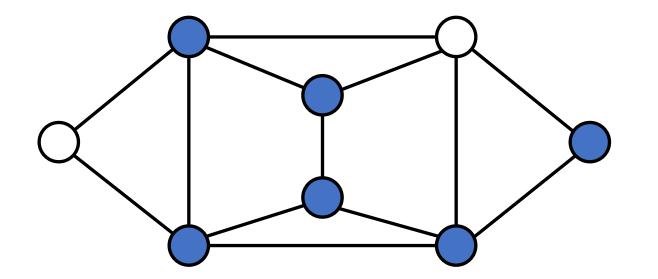
Vertex Cover: Given graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \le k$, such that each edge in E contains an end point in V'?



Is there a VC $\leq k$ for k = 6?

Vertex Cover = { $\langle G, k \rangle$: G = (V, E) is a graph and k is an integer $\leq |V|$ such that there exists some $V' \subseteq V$ with $|V'| \leq k$, such that each edge in E contains an end point in V'}

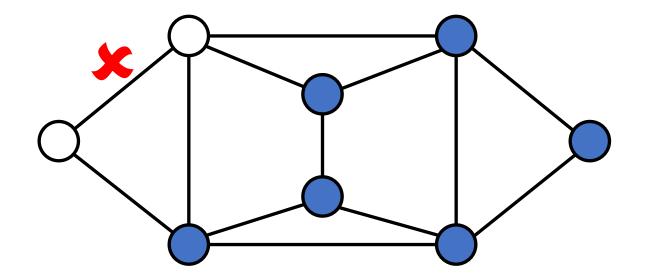
Vertex Cover: Given graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \le k$, such that each edge in E contains an end point in V'?



Is there a VC $\leq k$ for k = 6?

Vertex Cover = { $\langle G, k \rangle$: G = (V, E) is a graph and k is an integer $\leq |V|$ such that there exists some $V' \subseteq V$ with $|V'| \leq k$, such that each edge in E contains an end point in V'}

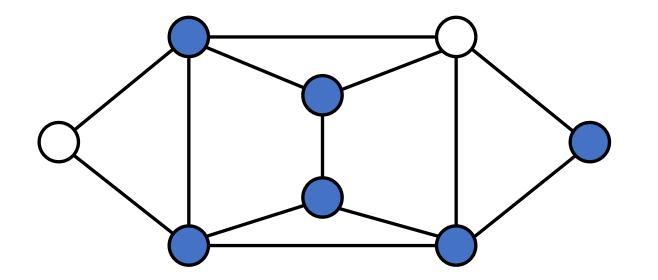
Vertex Cover: Given graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \le k$, such that each edge in E contains an end point in V'?



Is there a VC $\leq k$ for k = 6?

Vertex Cover = { $\langle G, k \rangle$: G = (V, E) is a graph and k is an integer $\leq |V|$ such that there exists some $V' \subseteq V$ with $|V'| \leq k$, such that each edge in E contains an end point in V'}

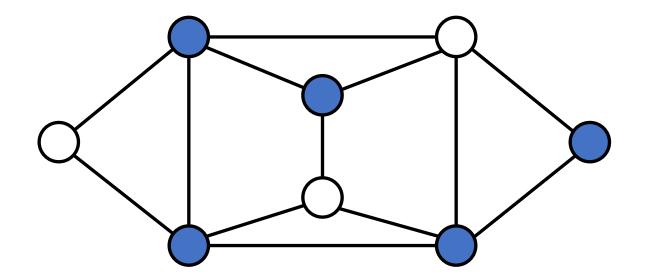
Vertex Cover: Given graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \le k$, such that each edge in E contains an end point in V'?



Is there a VC $\leq k$ for k = 5?

Vertex Cover = { $\langle G, k \rangle$: G = (V, E) is a graph and k is an integer $\leq |V|$ such that there exists some $V' \subseteq V$ with $|V'| \leq k$, such that each edge in E contains an end point in V'}

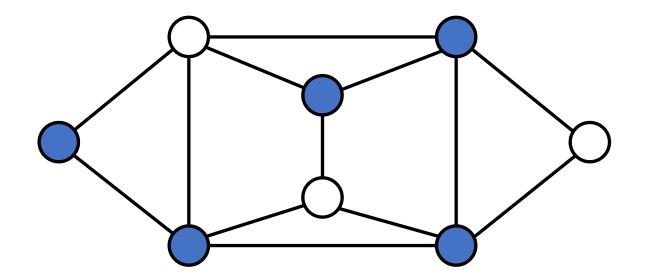
Vertex Cover: Given graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \le k$, such that each edge in E contains an end point in V'?



Is there a VC $\leq k$ for k = 5?

Vertex Cover = { $\langle G, k \rangle$: G = (V, E) is a graph and k is an integer $\leq |V|$ such that there exists some $V' \subseteq V$ with $|V'| \leq k$, such that each edge in E contains an end point in V'}

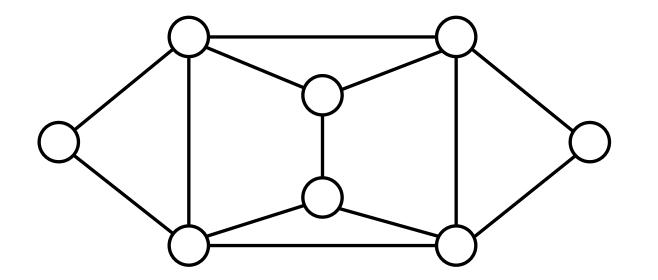
Vertex Cover: Given graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \le k$, such that each edge in E contains an end point in V'?



Is there a VC $\leq k$ for k = 5?

Vertex Cover = { $\langle G, k \rangle$: G = (V, E) is a graph and k is an integer $\leq |V|$ such that there exists some $V' \subseteq V$ with $|V'| \leq k$, such that each edge in E contains an end point in V'}

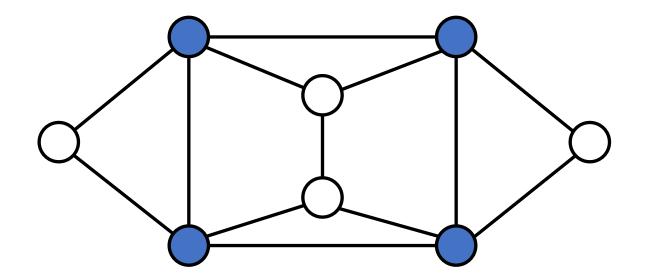
Vertex Cover: Given graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \le k$, such that each edge in E contains an end point in V'?



Is there a VC $\leq k$ for k = 4?

Vertex Cover = { $\langle G, k \rangle$: G = (V, E) is a graph and k is an integer $\leq |V|$ such that there exists some $V' \subseteq V$ with $|V'| \leq k$, such that each edge in E contains an end point in V'}

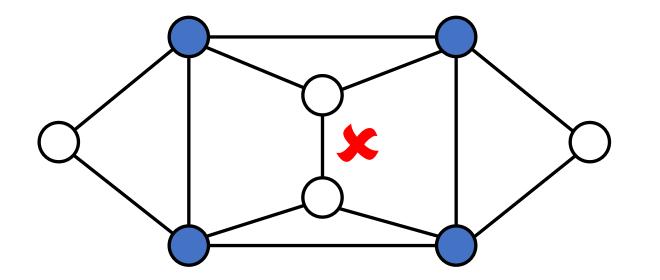
Vertex Cover: Given graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \le k$, such that each edge in E contains an end point in V'?



Is there a VC $\leq k$ for k = 4?

Vertex Cover = { $\langle G, k \rangle$: G = (V, E) is a graph and k is an integer $\leq |V|$ such that there exists some $V' \subseteq V$ with $|V'| \leq k$, such that each edge in E contains an end point in V'}

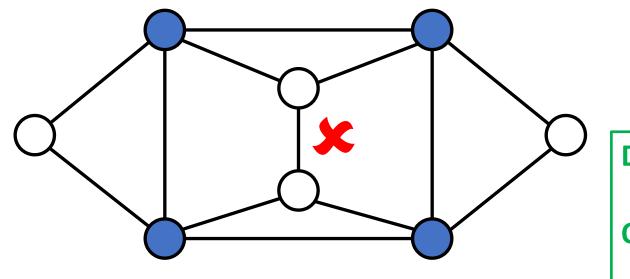
Vertex Cover: Given graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \le k$, such that each edge in E contains an end point in V'?



Is there a VC $\leq k$ for k = 4?

Vertex Cover = { $\langle G, k \rangle$: G = (V, E) is a graph and k is an integer $\leq |V|$ such that there exists some $V' \subseteq V$ with $|V'| \leq k$, such that each edge in E contains an end point in V'}

Vertex Cover: Given graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \le k$, such that each edge in E contains an end point in V'?



Is there a VC $\leq k$ for k = 4?

Decision problem: "Yes/No" – Is there a VC $\leq k$? Optimization problem: "Best" – What is the smallest VC?

Vertex Cover (VC)

Claim: $VC \in NP$

Proof:

Decider: Is $\langle G, k \rangle \in VC$?

Vertex Cover (VC)

Claim: $VC \in NP$

Proof:

Decider: Is $\langle G, k \rangle \in VC$? Verifier: Is $\langle G, k \rangle \in VC$, given a candidate solution?

Vertex Cover (VC)

Claim: $VC \in NP$

Proof:

Decider: Is $\langle G, k \rangle \in VC$? Verifier: Is $\langle G, k \rangle \in VC$, given a <u>candidate solution</u>?

Vertex Cover (VC)

Claim: $VC \in NP$

Proof:

Build a polynomial time verifier.

Vertex Cover (VC)

Claim: $VC \in NP$

Proof:

Build a polynomial time verifier.

$$M = \text{on input } \langle \langle G, k \rangle, V' \rangle$$
, where V' is a subset of V .
1. ???.

Vertex Cover (VC)

Claim: $VC \in NP$

Proof:

Build a polynomial time verifier.

 $M = \text{on input } \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of V. 1. Test if $|V'| \leq k$, reject if not.

Vertex Cover (VC)

Claim: $VC \in NP$

Proof:

Build a polynomial time verifier.

 $M = \text{on input } \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of V. 1. Test if $|V'| \leq k$, reject if not. 2. ???

Vertex Cover (VC)

Claim: $VC \in NP$

Proof:

Build a polynomial time verifier.

 $M = \text{ on input } \langle \langle G, k \rangle, V' \rangle, \text{ where } V' \text{ is a subset of } V.$ 1. Test if $|V'| \leq k$, reject if not. 2. For each edge e = (a, b) in E, 2.1 ???

Vertex Cover (VC)

Claim: $VC \in NP$

Proof:

Build a polynomial time verifier.

M = on input $\langle \langle G, k \rangle, V' \rangle$, where *V'* is a subset of *V*. 1. Test if $|V'| \leq k$, reject if not. 2. For each edge *e* = (*a*, *b*) in *E*, 2.1 Test if *a* ∈ *V'* or *b* ∈ *V'*, ???.

Vertex Cover (VC)

Claim: $VC \in NP$

Proof:

Build a polynomial time verifier.

M = on input $\langle \langle G, k \rangle, V' \rangle$, where *V'* is a subset of *V*. 1. Test if $|V'| \leq k$, <u>reject</u> if not. 2. For each edge *e* = (*a*, *b*) in *E*, 2.1 Test if *a* ∈ *V'* or *b* ∈ *V'*, <u>reject</u> if neither.

Vertex Cover (VC)

Claim: $VC \in NP$

Proof:

Build a polynomial time verifier.

 $M = \text{ on input } \langle \langle G, k \rangle, V' \rangle, \text{ where } V' \text{ is a subset of } V.$ 1. Test if $|V'| \leq k$, reject if not. 2. For each edge e = (a, b) in E, 2.1 Test if $a \in V'$ or $b \in V'$, reject if neither. 3. ???.

Vertex Cover (VC)

Claim: $VC \in NP$

Proof:

Build a polynomial time verifier.

 $M = \text{ on input } \langle \langle G, k \rangle, V' \rangle, \text{ where } V' \text{ is a subset of } V.$ 1. Test if $|V'| \leq k$, <u>reject</u> if not. 2. For each edge e = (a, b) in E, 2.1 Test if $a \in V'$ or $b \in V'$, <u>reject</u> if neither.

Vertex Cover (VC)

Claim: $VC \in NP$

Proof:

Build a polynomial time verifier.

$$|V| = n$$
.
 $M = \text{ on input } \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of V .
 $O(?) \longrightarrow 1$. Test if $|V'| \leq k$, reject if not.
2. For each edge $e = (a, b)$ in E ,
2.1 Test if $a \in V'$ or $b \in V'$, reject if neither.

Vertex Cover (VC)

Claim: $VC \in NP$

Proof:

Build a polynomial time verifier.

$$|V| = n$$
.
 $M = \text{ on input } \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of V .
 $O(1) \longrightarrow 1$. Test if $|V'| \leq k$, reject if not.
2. For each edge $e = (a, b)$ in E ,
2.1 Test if $a \in V'$ or $b \in V'$, reject if neither.

Vertex Cover (VC)

Claim: $VC \in NP$

Proof:

Build a polynomial time verifier.

$$|V| = n$$
.
 $M = \text{ on input } \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of V .
 $O(1) \longrightarrow 1$. Test if $|V'| \le k$, reject if not.
 $O(?) \longrightarrow 2$. For each edge $e = (a, b)$ in E ,
 2.1 Test if $a \in V'$ or $b \in V'$, reject if neither.

Vertex Cover (VC)

e

Claim: $VC \in NP$

Proof At most, how many edges are in an undirected graph with n vertices? What graph has the most number of edges? Complete graph (every pair of vertices have an edge). How many edges does a complete graph with *n* vertices have? **0**(1 How many edges leave each vertex? n-1**0**(? How much does that all add up to? n(n-1)Did we double count any edges? Yes So how many edges are there? $\frac{n(n-1)}{2} \in O(n^2)$ What if it is directed? $n(n-1) \in O(n^2)$ (no double counts)

Vertex Cover (VC)

Claim: $VC \in NP$

Proof:

Build a polynomial time verifier.

$$|V| = n$$
.
 $M = \text{ on input } \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of V .
 $O(1) \longrightarrow 1$. Test if $|V'| \le k$, reject if not.
 $O(n^2) \longrightarrow 2$. For each edge $e = (a, b)$ in E ,
 2.1 Test if $a \in V'$ or $b \in V'$, reject if neither.

Vertex Cover (VC)

Claim: $VC \in NP$

Proof:

Build a polynomial time verifier.

$$|V| = n.$$

 $M = \text{ on input } \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of $V.$
 $O(1) \longrightarrow 1$. Test if $|V'| \leq k$, reject if not.
 $O(n^2) \longrightarrow 2$. For each edge $e = (a, b)$ in E ,
 $O(?) \longrightarrow 2.1$ Test if $a \in V'$ or $b \in V'$, reject if neither.
3. accept.

Vertex Cover (VC)

Claim: $VC \in NP$

Proof:

Build a polynomial time verifier.

$$|V| = n$$
.
 $M = \text{ on input } \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of V .
 $O(1) \longrightarrow 1$. Test if $|V'| \leq k$, reject if not.
 $O(n^2) \longrightarrow 2$. For each edge $e = (a, b)$ in E ,
 $O(n) \longrightarrow 2.1$ Test if $a \in V'$ or $b \in V'$, reject if neither.
3. accept.

Vertex Cover (VC)

Claim: $VC \in NP$

Proof:

Build a polynomial time verifier.

|V| = n. $M = \text{ on input } \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of V. $O(1) \longrightarrow 1$. Test if $|V'| \le k$, reject if not. $O(n^2) \longrightarrow 2$. For each edge e = (a, b) in E, $O(n) \longrightarrow 2.1$ Test if $a \in V'$ or $b \in V'$, reject if neither. $O(?) \longrightarrow 3$. accept.

Vertex Cover (VC)

Claim: $VC \in NP$

Proof:

Build a polynomial time verifier.

|V| = n. $M = \text{ on input } \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of V. $O(1) \longrightarrow 1$. Test if $|V'| \le k$, reject if not. $O(n^2) \longrightarrow 2$. For each edge e = (a, b) in E, $O(n) \longrightarrow 2.1$ Test if $a \in V'$ or $b \in V'$, reject if neither. $O(1) \longrightarrow 3$. accept.

Vertex Cover (VC)

Claim: $VC \in NP$

Proof:

Build a polynomial time verifier.

|V| = n. $M = \text{ on input } \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of V. $O(1) \longrightarrow 1.$ Test if $|V'| \le k$, reject if not. $O(n^2) \longrightarrow 2.$ For each edge e = (a, b) in E, $O(n) \longrightarrow 2.1$ Test if $a \in V'$ or $b \in V'$, reject if neither. $O(1) \longrightarrow 3.$ accept.

For |V| = n, M runs in $O(n^3)$ time, therefore $VC \in NP$.