NP CSCI 338

P is the set of languages that are decidable in polynomial time on a deterministic single-tape TM.

To show something is in *P*, build a polynomial time decider for it.

NP - Set of languages that have polynomial time verifiers.

Vertex Cover (VC)

Vertex Cover = { $\langle G, k \rangle$: G = (V, E) is a graph and k is an integer $\leq |V|$ such that there exists some $V' \subseteq V$ with $|V'| \leq k$, such that each edge in E contains an end point in V'}

Vertex Cover: Given graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \le k$, such that each edge in E contains an end point in V'?

Vertex Cover (VC)

Vertex Cover: Given graph G = (V, E) and integer $k \leq |V|$, is there $V' \subseteq V$, with $|V'| \leq k$, such that each edge in E contains an end point in V'?

Claim: $VC \in NP$

Proof:

Build a polynomial time verifier.

|V| = n. $M = \text{ on input } \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of V. $O(1) \longrightarrow 1.$ Test if $|V'| \le k$, reject if not. $O(n^2) \longrightarrow 2.$ For each edge e = (a, b) in E, $O(n) \longrightarrow 2.1$ Test if $a \in V'$ or $b \in V'$, reject if neither. $O(1) \longrightarrow 3.$ accept.

For |V| = n, M runs in $O(n^3)$ time, therefore $VC \in NP$.

Independent Set: Given a graph G = (V, E) and integer $k \leq |V|$, is there a subset V' of size $\geq k$, such that no two vertices $\in V'$ are adjacent?

Independent Set: Given a graph G = (V, E) and integer $k \le |V|$, is there a subset V' of size $\ge k$, such that no two vertices $\in V'$ are adjacent?

Is there an IS $\leq k$ for k = 1?

Independent Set: Given a graph G = (V, E) and integer $k \le |V|$, is there a subset V' of size $\ge k$, such that no two vertices $\in V'$ are adjacent?

Is there an IS $\leq k$ for k = 1?

Yes! Any vertex by itself is an IS!

Independent Set: Given a graph G = (V, E) and integer $k \le |V|$, is there a subset V' of size $\ge k$, such that no two vertices $\in V'$ are adjacent?

What is the optimal (i.e., largest) independent set?

Independent Set: Given a graph G = (V, E) and integer $k \le |V|$, is there a subset V' of size $\ge k$, such that no two vertices $\in V'$ are adjacent?

What is the optimal (i.e., largest) independent set?

Independent Set: Given a graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \ge k$, such that no two vertices $\in V'$ are adjacent?

Claim: $IS \in NP$

Proof:

Independent Set: Given a graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \ge k$, such that no two vertices $\in V'$ are adjacent?

Claim: $IS \in NP$

Proof:

Build a polynomial time verifier.

$$M = \text{on input} \left\langle \langle G, k \rangle, ? ? \right\rangle$$

Independent Set: Given a graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \ge k$, such that no two vertices $\in V'$ are adjacent?

Claim: $IS \in NP$

Proof:

Build a polynomial time verifier.

 $M = \text{on input} \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of V.

Independent Set: Given a graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \ge k$, such that no two vertices $\in V'$ are adjacent?

Claim: $IS \in NP$

Proof:

Build a polynomial time verifier.

 $M = \text{on input } \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of V. 1. ???

Independent Set: Given a graph G = (V, E) and integer $k \leq |V|$, is there $V' \subseteq V$, with $|V'| \geq k$, such that no two vertices $\in V'$ are adjacent?

Claim: $IS \in NP$

Proof:

Build a polynomial time verifier.

 $M = \text{on input } \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of V. 1. Test if $|V'| \ge k$, reject if not. 2. ???

Independent Set: Given a graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \ge k$, such that no two vertices $\in V'$ are adjacent?

Claim: $IS \in NP$

Proof:

Build a polynomial time verifier.

 $M = \text{ on input } \langle \langle G, k \rangle, V' \rangle, \text{ where } V' \text{ is a subset of } V.$ 1. Test if $|V'| \ge k$, reject if not. 2. For each pair of vertices v_1 , v_2 in V', 2.1 ???

Independent Set: Given a graph G = (V, E) and integer $k \leq |V|$, is there $V' \subseteq V$, with $|V'| \geq k$, such that no two vertices $\in V'$ are adjacent?

Claim: $IS \in NP$

Proof:

Build a polynomial time verifier.

 $M = \text{ on input } \langle \langle G, k \rangle, V' \rangle, \text{ where } V' \text{ is a subset of } V.$ 1. Test if $|V'| \ge k$, reject if not. 2. For each pair of vertices v_1, v_2 in V', 2.1 Test if $(v_1, v_2) \in E$ and reject if it is. 3. ???

Independent Set: Given a graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \ge k$, such that no two vertices $\in V'$ are adjacent?

Claim: $IS \in NP$

Proof:

Build a polynomial time verifier.

 $M = \text{ on input } \langle \langle G, k \rangle, V' \rangle, \text{ where } V' \text{ is a subset of } V.$ 1. Test if $|V'| \ge k$, <u>reject</u> if not. 2. For each pair of vertices v_1, v_2 in V', 2.1 Test if $(v_1, v_2) \in E$ and <u>reject</u> if it is.

Independent Set: Given a graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \ge k$, such that no two vertices $\in V'$ are adjacent?

Claim: $IS \in NP$

Proof:

Build a polynomial time verifier.

$$|V| = n$$
.
 $M = \text{ on input } \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of V .
 $O(?) \longrightarrow 1$. Test if $|V'| \ge k$, reject if not.
2. For each pair of vertices v_1, v_2 in V' ,
2.1 Test if $(v_1, v_2) \in E$ and reject if it is.

Independent Set: Given a graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \ge k$, such that no two vertices $\in V'$ are adjacent?

Claim: $IS \in NP$

Proof:

Build a polynomial time verifier.

$$|V| = n$$
.
 $M = \text{ on input } \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of V .
 $O(1) \longrightarrow 1$. Test if $|V'| \ge k$, reject if not.
2. For each pair of vertices v_1, v_2 in V' ,
2.1 Test if $(v_1, v_2) \in E$ and reject if it is.

Independent Set: Given a graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \ge k$, such that no two vertices $\in V'$ are adjacent?

Claim: $IS \in NP$

Proof:

Build a polynomial time verifier.

$$|V| = n$$
.
 $M = \text{ on input } \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of V .
 $O(1) \longrightarrow 1$. Test if $|V'| \ge k$, reject if not.
 $O(?) \longrightarrow 2$. For each pair of vertices v_1, v_2 in V' ,
 2.1 Test if $(v_1, v_2) \in E$ and reject if it is.

Independent Set: Given a graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \ge k$, such that no two vertices $\in V'$ are adjacent?

Claim: $IS \in NP$

Proof:

Build a polynomial time verifier.

$$|V| = n$$
.
 $M = \text{ on input } \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of V .
 $O(1) \longrightarrow 1$. Test if $|V'| \ge k$, reject if not.
 $O(n^2) \longrightarrow 2$. For each pair of vertices v_1, v_2 in V' ,
 2.1 Test if $(v_1, v_2) \in E$ and reject if it is.

Independent Set: Given a graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \ge k$, such that no two vertices $\in V'$ are adjacent?

Claim: $IS \in NP$

Proof:

Build a polynomial time verifier.

$$|V| = n$$
.
 $M = \text{ on input } \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of V .
 $O(1) \longrightarrow 1$. Test if $|V'| \ge k$, reject if not.
 $O(n^2) \longrightarrow 2$. For each pair of vertices v_1, v_2 in V' ,
 $O(?) \longrightarrow 2.1$ Test if $(v_1, v_2) \in E$ and reject if it is.

Independent Set: Given a graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \ge k$, such that no two vertices $\in V'$ are adjacent?

Claim: $IS \in NP$

Proof:

Build a polynomial time verifier.

$$|V| = n$$
.
 $M = \text{ on input } \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of V .
 $O(1) \longrightarrow 1$. Test if $|V'| \ge k$, reject if not.
 $O(n^2) \longrightarrow 2$. For each pair of vertices v_1, v_2 in V' ,
 $O(n^2) \longrightarrow 2.1$ Test if $(v_1, v_2) \in E$ and reject if it is.

Independent Set: Given a graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \ge k$, such that no two vertices $\in V'$ are adjacent?

Claim: $IS \in NP$

Proof:

Build a polynomial time verifier.

|V| = n. $M = \text{ on input } \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of V. $O(1) \longrightarrow 1$. Test if $|V'| \ge k$, reject if not. $O(n^2) \longrightarrow 2$. For each pair of vertices v_1, v_2 in V', $O(n^2) \longrightarrow 2.1$ Test if $(v_1, v_2) \in E$ and reject if it is. $O(?) \longrightarrow 3.$ accept.

Independent Set: Given a graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \ge k$, such that no two vertices $\in V'$ are adjacent?

Claim: $IS \in NP$

Proof:

Build a polynomial time verifier.

|V| = n. $M = \text{ on input } \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of V. $O(1) \longrightarrow 1$. Test if $|V'| \ge k$, reject if not. $O(n^2) \longrightarrow 2$. For each pair of vertices v_1, v_2 in V', $O(n^2) \longrightarrow 2.1$ Test if $(v_1, v_2) \in E$ and reject if it is. $O(1) \longrightarrow 3$. accept.

Independent Set: Given a graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \ge k$, such that no two vertices $\in V'$ are adjacent?

Claim: $IS \in NP$

Proof:

Build a polynomial time verifier.

|V| = n. $M = \text{ on input } \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of V. $O(1) \longrightarrow 1$. Test if $|V'| \ge k$, reject if not. $O(n^2) \longrightarrow 2$. For each pair of vertices v_1, v_2 in V', $O(n^2) \longrightarrow 2.1$ Test if $(v_1, v_2) \in E$ and reject if it is. $O(1) \longrightarrow 3.$ accept.

For |V| = n, M runs in $O(n^4)$ time, therefore IS $\in NP$.

P is the set of languages that are decidable in polynomial time on a deterministic single-tape TM.

To show something is in *P*, build a polynomial time decider for it.

NP - Set of languages that have polynomial time verifiers.

P is the set of languages that are decidable in polynomial time on a deterministic single-tape TM.

To show something is in *P*, build a polynomial time decider for it.

NP - Set of languages that have polynomial time verifiers. Set of languages that are decidable by nondeterministic polynomial time TMs.

P is the set of languages that are decidable in polynomial time on a deterministic single-tape TM.

To show something is in P, build a polynomial time decider for it.

NP - Set of languages that have polynomial time verifiers. Set of languages that are decidable by nondeterministic polynomial time TMs.

Nondeterministic polynomial time decider:

- 1. Pick a potential solution.
- 2. Verify its correctness.

Vertex Cover (VC)

Claim: $VC \in NP$ Proof:

 $M = \text{on input } \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of V.

- 1. Test if $|V'| \leq k$, reject if not.
- 2. For each edge e = (a, b) in E, 2.1 Test if $a \in V'$ or $b \in V'$, reject if neither.
- 3. <u>accept</u>.

Vertex Cover: Given graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \le k$, such that each edge in E contains an end point in V'?

Vertex Cover (VC)

Claim: $VC \in NP$ Proof:

 $M = \text{on input } \langle \langle G, k \rangle, V' \rangle$, where V' is a subset of V.

- 1. Test if $|V'| \le k$, reject if not.
- 2. For each edge e = (a, b) in E, 2.1 Test if $a \in V'$ or $b \in V'$, reject if neither.
- 3. <u>accept</u>.

Vertex Cover: Given graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \le k$, such that each edge in E contains an end point in V'?

 $M = \text{on input } \langle G, k \rangle.$

- 1. Nondeterministically select a subset V' of V of size k.
- 2. For each edge e = (a, b) in E, 2.1 Test if $a \in V'$ or $b \in V'$, reject if neither.
- 3. <u>accept</u>.

P is the set of languages that are decidable in polynomial time on a deterministic single-tape TM.

To show something is in *P*, build a polynomial time decider for it.

NP - Set of languages that have polynomial time verifiers. Set of languages that are decidable by nondeterministic polynomial time TMs.

To show something is in NP, build a polynomial time verifier (or nondeterministic decider) for it.

P versus NP

$P \stackrel{?}{=} NP$

Solvable in polynomial time

Verifiable in polynomial time

Can all problems that are verifiable in polynomial time be solved in polynomial time?