NP-Complete CSCI 338

- P vs NP concepts first discussed in 1950's
- \boldsymbol{P} vs $\boldsymbol{N P}$ formalized in 1971

Can all problems that are verifiable in polynomial time be solved in polynomial time?

SAT \& 3SAT

$$
\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)
$$

ϕ is a formula with clauses composed of Boolean variables connected by ORs, and clauses connected by ANDs.

SAT \& 3SAT

$$
\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)
$$

ϕ is a formula with clauses composed of Boolean variables connected by ORs, and clauses connected by ANDs.

SAT \& 3SAT

$$
\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)
$$

ϕ is a formula with clauses composed of Boolean variables connected by ORs, and clauses connected by ANDs.

SAT \& 3SAT

$$
\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)
$$

ϕ is a formula with clauses composed of Boolean variables connected by ORs, and clauses connected by ANDs.

SAT \& 3SAT

$$
\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)
$$

ϕ is a formula with clauses composed of Boolean variables connected by ORs, and clauses connected by ANDs.
(called conjunctive normal form - CNF)

SAT \& 3SAT

$$
\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)
$$

ϕ is a formula with clauses composed of Boolean variables connected by ORs, and clauses connected by ANDs.

Can you set the variables to true or false so that ϕ evaluates to true?

SAT \& 3SAT

$$
\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)
$$

$$
\begin{aligned}
& x_{1}=\text { false } \\
& x_{2}=\text { true }
\end{aligned}
$$

SAT \& 3SAT

$$
\begin{gathered}
\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right) \\
\downarrow \\
(F \vee \stackrel{\downarrow}{\downarrow} \vee T) \quad(T \vee F \vee F) \quad(T \vee T \vee T)
\end{gathered}
$$

$$
\begin{aligned}
& x_{1}=\text { false } \\
& x_{2}=\text { true }
\end{aligned}
$$

SAT \& 3SAT

$\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)$
 $\begin{array}{ccc}\stackrel{\downarrow}{\downarrow} & (F \vee \underset{F}{F} \vee T) & (T \vee \stackrel{\downarrow}{F} \vee F) \\ \downarrow & (T \vee \stackrel{\downarrow}{t} \vee T) \\ T & \stackrel{\downarrow}{\downarrow} & \stackrel{\rightharpoonup}{T}\end{array}$

$$
\begin{aligned}
& x_{1}=\text { false } \\
& x_{2}=\text { true }
\end{aligned}
$$

SAT \& 3SAT

SAT \& 3SAT

SAT $=\{\langle\phi\rangle: \phi$ is a satisfiable formula $\}$
$3 S A T=\{\langle\phi\rangle: \phi$ is a satisfiable formula with 3 variables per clause $\}$

History Lesson:

P versus $N P$

Cook-Levin Theorem: Every problem in NP can be solved by a solver for $S A T$ with at most polynomial extra time.

Proof:

History Lesson:

P versus $N P$

- \boldsymbol{P} vs $N P$ formalized in 1971
- SAT proven to solve everything in NP in 1971

Cook-Levin Theorem: Every problem in NP can be solved by a solver for $S A T$ with at most polynomial extra time.

Proof:

History Lesson:

P versus $N P$

Cook-Levin Theorem: Every problem in NP can be solved by a solver for $S A T$ with at most polynomial extra time.

Proof:

History Lesson:

P versus $N P$

Cook-Levin Theorem: Every problem in NP can be solved by a solver for $S A T$ with at most polynomial extra time.

Proof:
Polynomial NP Problem A Solver

History Lesson:

$N P$-Complete

- P vs NP concepts first discussed in 1950's
- P vs NP formalized in 1971
- SAT proven to solve everything in NP in 1971
- NP-Complete defined in 1972

Complete

SAT:
The NP Super-Problem

History Lesson:

$N P$-Complete

B is in $N P$-Complete if it satisfies two conditions:

1. $B \in N P$.
2. For every $A \in N P, A \leq_{P} B$.

History Lesson:

$N P$-Complete

B is in $N P$-Complete if it satisfies two conditions:

1. $B \in N P$.
2. For every $A \in N P, A \leq_{P} B$.
"Every problem in NP can be solved by an algorithm for \boldsymbol{B} in polynomial extra time."

History Lesson:

$N P$-Complete

- P vs NP concepts first discussed in 1950's
- P vs $N P$ formalized in 1971
- SAT proven to solve everything in NP in 1971
- NP-Complete defined in 1972 SAT:
The NP Super-Problem
B is in $N P$-Complete if it satisfies two conditions:

1. $B \in N P$.
2. For every $A \in N P, A \leq_{P} B$.
B is in NP-Complete if it satisfies two conditions:
3. $B \in N P$.
4. For some $A \in N P-C$, $A \leq_{P} B$.

History Lesson:

$N P$-Complete

The NP Super-Problem
B is in $N P$-Complete if it satisfies two conditions:

1. $B \in N P$.
2. For every $A \in N P, A \leq_{P} B$.
B is in NP-Complete if it satisfies two conditions:
3. $B \in N P$.
4. For some $A \in N P-C$, $A \leq_{P} B$.

$N P$-Complete

A solution to an NP-Complete problem can be used to solve any problem in $N P$, with just polynomial extra time.

$N P$-Complete

A solution to an NP-Complete problem
can be used to solve any problem in NP, with just polynomial extra time.

$N P$-Complete

$N P$-Complete Problems:

- Vertex Cover
- Independent Set
- SAT
- 3-SAT

A solution to an NP-Complete problem
can be used to solve any problem in NP, with just polynomial extra time.

$N P$-Complete

$N P$-Complete Problems:

- Vertex Cover

A solution to an NP-Complete problem can be used to solve any problem in $N P$, with just polynomial extra time.

$N P$-Complete

A solution to an NP-Complete problem can be used to solve any problem in $N P$, with just polynomial extra time.
$N P$-Complete Problems:

- Vertex Cover
- Independent Set
- SAT
- 3-SAT

What if \exists polynomial time algorithm for Vertex Cover?

- It could be used to solve any problem in $N P$ in polynomial time.

$N P$-Complete

A solution to an NP-Complete problem can be used to solve any problem in $N P$, with just polynomial extra time.
$N P$-Complete Problems:

- Vertex Cover
- Independent Set
- SAT
- 3-SAT

What if \exists polynomial time algorithm for Vertex Cover?

- It could be used to solve any problem in $N P$ in polynomial time.
- $P=N P$.

$N P$-Complete

A solution to an NP-Complete problem can be used to solve any problem in $N P$, with just polynomial extra time.
$N P$-Complete Problems:

- Vertex Cover
- Independent Set
- SAT
- 3-SAT

What if \exists polynomial time algorithm for Vertex Cover?

- It could be used to solve any problem in $N P$ in polynomial time.
- $P=N P$.
$N P$-Complete

NP-Complete Problems:

- Vertex Cover
- Independent Set
- SAT
- Searching
- Sorting

P Problems:

- Shortest Path
- 3-SAT

Are there problems in $N P$, but not P or $N P$-Complete?
$N P$-Complete

P Problems:

- Shortest Path
- Searching
- Sorting

NP-Complete Problems:

- Vertex Cover

Are there problems in $N P$, but not P or $N P$-Complete?

- We don't know. If so, $P \neq N P$.
- Suspected problems in $N P$ but not P or $N P$-Complete:
- Graph Isomorphism.
- Integer Factorization.

$N P$-Complete

How to show something (B) is in $N P$-Complete?
> B is in $N P$-Complete if it satisfies two conditions:
> 1. $B \in N P$.
> 2. For some $A \in N P-C$, $A \leq_{P} B$.

