NP-Complete

CSCI 338
Can all problems that are verifiable in polynomial time be solved in polynomial time?

History Lesson:
- P vs NP concepts first discussed in 1950’s
- P vs NP formalized in 1971
SAT & 3SAT

\[\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2) \]

\(\phi \) is a formula with clauses composed of Boolean variables connected by ORs, and clauses connected by ANDs.
$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

ϕ is a formula with clauses composed of Boolean variables connected by ORs, and clauses connected by ANDs.
\(SAT \ & \ 3SAT \)

\[
\phi = (x_1 \lor x_1 \lor x_2) \land (x_1 \lor x_2 \lor x_2) \land (x_1 \lor x_2 \lor x_2)
\]

\(\phi \) is a formula with clauses composed of Boolean variables connected by ORs, and clauses connected by ANDs.
SAT & 3SAT

\[\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor x_2) \land (\overline{x_1} \lor x_2 \lor \overline{x_2}) \]

\(\phi \) is a formula with clauses composed of Boolean variables connected by ORs, and clauses connected by ANDs.
SAT & 3SAT

\[\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor x_2) \land (\overline{x_1} \lor x_2 \lor \overline{x_2}) \]

\(\phi \) is a formula with clauses composed of Boolean variables connected by ORs, and clauses connected by ANDs.

(called conjunctive normal form – CNF)
SAT & 3SAT

\[\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor \overline{x_2}) \]

\(\phi \) is a formula with clauses composed of Boolean variables connected by ORs, and clauses connected by ANDs.

Can you set the variables to **true** or **false** so that \(\phi \) evaluates to **true**?
SAT & 3SAT

\[\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2) \]

\[x_1 = false \]
\[x_2 = true \]
\[\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2) \]

\[(F \lor F \lor T) \quad (T \lor F \lor F) \quad (T \lor T \lor T) \]

\[x_1 = false \]
\[x_2 = true \]
SAT & 3SAT

\[\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor x_2) \land (x_1 \lor x_2 \lor x_2) \]

\[(F \lor F \lor T) \quad (T \lor F \lor F) \quad (T \lor T \lor T) \]

\[T \quad T \quad T \]

\[x_1 = false \]

\[x_2 = true \]
SAT & 3SAT

\[\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2) \]

\[(F \lor F \lor T) \quad (T \lor F \lor F) \quad (T \lor T \lor T) \]

\[x_1 = false \]
\[x_2 = true \]
\[\phi = (x_1 \lor x_1 \lor x_2) \land \overline{(x_1 \lor x_2 \lor x_2)} \land (x_1 \lor x_2 \lor x_2) \]

\[
\begin{align*}
& (F \lor F \lor T) \\
& (T \lor F \lor F) \\
& (T \lor T \lor T)
\end{align*}
\]

- \(x_1 = false\)
- \(x_2 = true\)

\[SAT = \{ ⟨\phi⟩: \phi \text{ is a satisfiable formula} \} \]
\[3SAT = \{ ⟨\phi⟩: \phi \text{ is a satisfiable formula with 3 variables per clause} \} \]
Cook-Levin Theorem: Every problem in NP can be solved by a solver for SAT with at most polynomial extra time.

Proof:
Cook-Levin Theorem: Every problem in NP can be solved by a solver for SAT with at most polynomial extra time.

Proof:

- **History Lesson:**
 - P vs NP concepts first discussed in 1950’s
 - P vs NP formalized in 1971
 - SAT proven to solve everything in NP in 1971
P versus NP

Cook-Levin Theorem: Every problem in \(NP \) can be solved by a solver for \(SAT \) with at most polynomial extra time.

Proof:

History Lesson:
- \(P \) vs \(NP \) concepts first discussed in 1950’s
- \(P \) vs \(NP \) formalized in 1971
- \(SAT \) proven to solve everything in \(NP \) in 1971
Cook-Levin Theorem: Every problem in NP can be solved by a solver for SAT with at most polynomial extra time.

Proof:

P versus NP

History Lesson:
- P vs NP concepts first discussed in 1950’s
- P vs NP formalized in 1971
- SAT proven to solve everything in NP in 1971
NP-Complete

History Lesson:
- *P vs NP* concepts first discussed in 1950’s
- *P vs NP* formalized in 1971
- *SAT* proven to solve everything in *NP* in 1971
- *NP*-Complete defined in 1972

SAT:
The NP Super-Problem
NP-Complete

\[B \text{ is in } NP-\text{Complete if it satisfies two conditions:} \]

1. \(B \in NP \).
2. For every \(A \in NP \), \(A \leq_p B \).

History Lesson:

- \(P \) vs \(NP \) concepts first discussed in the 1950’s.
- \(P \) vs \(NP \) formalized in 1971.
- \(SAT \) proven to solve everything in \(NP \) in 1971.
- \(NP \)-Complete defined in 1972.
B is in NP-Complete if it satisfies two conditions:

1. $B \in NP$.
2. For every $A \in NP$, $A \leq_P B$.

"Every problem in NP can be solved by an algorithm for B in polynomial extra time."

History Lesson:
- P vs NP concepts first discussed in 1950’s
- P vs NP formalized in 1971
- SAT proven to solve everything in NP in 1971
- NP-Complete defined in 1972
B is in NP-Complete if it satisfies two conditions:
1. $B \in NP$.
2. For every $A \in NP$, $A \leq_P B$.

B is in NP-Complete if it satisfies two conditions:
1. $B \in NP$.
2. For some $A \in NP-C$, $A \leq_P B$.

History Lesson:
- P vs NP concepts first discussed in 1950’s
- P vs NP formalized in 1971
- SAT proven to solve everything in NP in 1971
- NP-Complete defined in 1972
NP-Complete

B is in NP-Complete if it satisfies two conditions:
1. $B \in NP$.
2. For every $A \in NP$, $A \leq_p B$.

History Lesson:
• P vs NP concepts first discussed in 1950's
• P vs NP formalized in 1971
• SAT proven to solve everything in NP in 1971
• NP-Complete defined in 1972
• 20 more problems shown to be in NP-Complete in 1972

SAT: The NP Super-Problem

B is in NP-Complete if it satisfies two conditions:
1. $B \in NP$.
2. For some $A \in NP-C$, $A \leq_p B$.
A solution to an *NP-Complete* problem can be used to solve any problem in *NP*, with just polynomial extra time.
A solution to an \textit{NP}-Complete problem can be used to solve any problem in \textit{NP}, with just polynomial extra time.
A solution to an NP-Complete problem can be used to solve any problem in NP, with just polynomial extra time.
A solution to an *NP*-Complete problem can be used to solve any problem in *NP*, with just polynomial extra time.

What if ∃ polynomial time algorithm for **Vertex Cover**?
A solution to an NP-Complete problem can be used to solve any problem in NP, with just polynomial extra time.

What if \exists polynomial time algorithm for Vertex Cover?
- It could be used to solve any problem in NP in polynomial time.
A solution to an \textit{NP}-Complete problem can be used to solve \textbf{any problem in NP}, with just polynomial extra time.

\textit{NP}-Complete Problems:
- Vertex Cover
- Independent Set
- SAT
- 3-SAT

What if \exists polynomial time algorithm for \textbf{Vertex Cover}?
- It could be used to solve \textbf{any problem in NP} in polynomial time.
- \(P = NP \).
NP-Complete

A solution to an *NP-Complete* problem can be used to solve any problem in *NP*, with just polynomial extra time.

What if \exists polynomial time algorithm for *Vertex Cover*?
- It could be used to solve any problem in *NP* in polynomial time.
- $P = NP$.

NP-Complete Problems:
- Vertex Cover
- Independent Set
- SAT
- 3-SAT
Are there problems in \(NP\), but not \(P\) or \(NP\)-Complete?

P Problems:
- Shortest Path
- Searching
- Sorting

NP-Complete Problems:
- Vertex Cover
- Independent Set
- SAT
- 3-SAT
Are there problems in NP, but not P or NP-Complete?

- We don’t know. If so, $P \neq NP$.
- Suspected problems in NP but not P or NP-Complete:
 - Graph Isomorphism.
 - Integer Factorization.
NP-Complete
How to show something (B) is in NP-Complete?

\[B \text{ is in } NP\text{-Complete if it satisfies two conditions:} \]
\begin{enumerate}
 \item $B \in NP$.
 \item For some $A \in NP\text{-C}$, $A \leq_p B$.
\end{enumerate}