Finite Automata CSCI 338

Deterministic Finite Automaton (DFA)

DFAs either accept or reject strings.

Deterministic Finite Automaton (DFA)

DFA string processing:

1. Start at start state.
2. Select first character in string.
3. Update state by following transition that corresponds to character.
4. Select next character in string.
5. Repeat step 3 and 4 until no
 characters remain.
6. If final state is accept state, accept. Otherwise, reject.

DFAs either accept or reject strings.
Given string $\omega=01101$, does this DFA accept or reject?

DFA Formal Definition

DFAs consist of:

DFA Formal Definition

DFAs consist of:

1. Finite set of states, Q.

DFA Formal Definition

DFAs consist of:

1. Finite set of states, Q.
2. Finite alphabet, Σ.
Σ consists of the transition characters (i.e. characters in the strings the DFA processes).

DFA Formal Definition

DFAs consist of:

1. Finite set of states, Q.
2. Finite alphabet, Σ.
3. Transition function, $\delta: Q \times \Sigma \rightarrow \boldsymbol{Q}$.

DFA Formal Definition

DFAs consist of:

1. Finite set of states, Q.
2. Finite alphabet, Σ.
3. Transition function, $\delta: Q \times \Sigma \rightarrow \boldsymbol{Q}$.
$\delta: Q \times \Sigma \rightarrow Q$ means that every state needs to handle every element of the alphabet.

DFA Formal Definition

DFAs consist of:

1. Finite set of states, Q.
2. Finite alphabet, Σ.
3. Transition function, $\delta: Q \times \Sigma \rightarrow \boldsymbol{Q}$.
$\delta: Q \times \Sigma \rightarrow Q$ means that every state needs to handle every element of the alphabet.

Not allowed! q_{3}
needs to handle the value 1 somehow!

DFA Formal Definition

DFAs consist of:

1. Finite set of states, Q.
2. Finite alphabet, Σ.
3. Transition function, $\delta: Q \times \Sigma \rightarrow \boldsymbol{Q}$.
$\delta: Q \times \Sigma \rightarrow Q$ means that every state needs to handle every element of the alphabet.

DFA Formal Definition

DFAs consist of:

1. Finite set of states, Q.
2. Finite alphabet, Σ.
3. Transition function, $\delta: Q \times \Sigma \rightarrow \boldsymbol{Q}$.
$\delta: Q \times \Sigma \rightarrow Q$ means that every state needs to handle every element of the alphabet.

DFA Formal Definition

DFAs consist of:

1. Finite set of states, Q.
2. Finite alphabet, Σ.
3. Transition function, $\delta: Q \times \Sigma \rightarrow Q$.

Exactly one start state needed.
4. Start state, $q_{0} \in Q$.

DFA Formal Definition

DFAs consist of:

1. Finite set of states, Q.
2. Finite alphabet, Σ.
3. Transition function, $\delta: Q \times \Sigma \rightarrow Q$.
F is allowed to equal Q or be empty.
4. Start state, $q_{0} \in Q$.
5. Set of accept states, $F \subseteq Q$.

DFA Formal Definition

DFAs consist of:

1. Finite set of states, Q.
2. Finite alphabet, Σ.
3. Transition function, $\delta: Q \times \Sigma \rightarrow Q$.
4. Start state, $q_{0} \in Q$.
5. Set of accept states, $F \subseteq Q$.

$$
\left\{\begin{array}{l}
Q=\left\{q_{1}, q_{2}, q_{3}\right\} \\
\Sigma=\{0,1\} \\
\delta: \\
\\
\\
\hline
\end{array} \left\lvert\, \begin{array}{l|l}
\\
\hline \mathrm{q}_{1} & \mathrm{q}_{1} \\
\mathrm{q}_{2} & \mathrm{q}_{2} \\
& \mathrm{q}_{2} \\
\mathrm{q}_{3} & \mathrm{q}_{2} \\
& \mathrm{q}_{3} \\
\mathrm{q}_{2} & \mathrm{q}_{2}
\end{array}\right.\right.
$$

Start state $=q_{1}$
$F=\left\{q_{2}\right\}$

DFA Language

Definitions:
The set of all strings A that a DFA M accepts is called its language, $L(M)=A$.
M recognizes A.

DFA Language

Definitions:
The set of all strings A that a DFA M accepts is called its language, $L(M)=A$.
M recognizes A.

$L(M)=\begin{aligned} & \{\omega: \omega \text { contains at least one } 1 \text { and an } \\ & \text { even number of } 0 \mathrm{~s} \text { following the final } 1\}\end{aligned}$

DFA Language

Definitions:
The set of all strings A that a DFA M accepts is called its language, $L(M)=A$.
M recognizes A.
A language is called a regular language if some DFA recognizes it.

DFA Language

Definitions:
The set of all strings A that a DFA M accepts is called its language, $L(M)=A$.
M recognizes A.
A language is called a regular language if some DFA recognizes it.

How do you prove a language is regular?

DFA Language

Definitions:
The set of all strings A that a DFA M accepts is called its language, $L(M)=A$.
M recognizes A.
A language is called a regular language if some DFA recognizes it.

How do you prove a language is regular?
Make a DFA that recognizes it.

DFA Language

Definitions:
The set of all strings A that a DFA M accepts is called its language, $L(M)=A$.
M recognizes A.
A language is called a regular language if some DFA recognizes it.

How do you prove a language is regular? Make a DFA that recognizes it.

Set of regular languages are "things we can do" with DFAs.

DFA Practice
Prove that the following languages are regular:

1. Set of all strings over $\{0,1\}$.

DFA Practice

Prove that the following languages are regular:

1. Set of all strings over $\{0,1\}$. 0,1

DFA Practice

Prove that the following languages are regular:

1. Set of all strings over $\{0,1\}$. 0,1

2. Set of all strings with an even number of Os.

DFA Practice
Prove that the following languages are regular:

1. Set of all strings over $\{0,1\}$. 0,1

2. Set of all strings with an even number of 0 s . 0,1

DFA Practice

Prove that the following languages are regular:

1. Set of all strings over $\{0,1\}$. 0,1

2. Set of all strings with an even number of 0 s . 0,1
```
The set of all strings \(A\) that a DFA \(M\) accepts is called its language, \(L(M)=A\).
```


DFA Practice

Prove that the following languages are regular:

1. Set of all strings over $\{0,1\}$. 0,1

2. Set of all strings with an even number of 0 s . 0,1

The set of all strings A that a DFA M accepts is called its language, $L(M)=A$.

DFA Language Rules:

1. If the DFA accepts it, it is in the language.
2. If it is in the language, the DFA must accept it.

DFA Practice

Prove that the following languages are regular:

1. Set of all strings over $\{0,1\}$. 0,1

2. Set of all strings with an even number of Os.

DFA Practice

Prove that the following languages are regular:

1. Set of all strings over $\{0,1\}$. 0,1

2. Set of all strings with an even number of 0 s.

DFA Practice
Prove that the following languages are regular:

1. Set of all strings over $\{0,1\}$. 0,1

2. Set of all strings with an even number of 0 s.

3. Set of all strings that contain the substring: 10.

DFA Practice
Prove that the following languages are regular:

1. Set of all strings over $\{0,1\}$.

2. Set of all strings with an even number of 0 s .

3. Set of all strings that contain the substring: 10 .

