Finite Automata CSCI 338

DFAs either accept or reject strings.

Deterministic Finite Automaton (DFA)

DFA string processing:

- 1. Start at start state.
- 2. Select first character in string.
- 3. Update state by following transition that corresponds to character.
- 4. Select next character in string.
- 5. Repeat step 3 and 4 until no characters remain.
- If final state is accept state, <u>accept</u>.
 Otherwise, <u>reject</u>.

DFAs either accept or reject strings.

Given string $\omega = 01101$, does this DFA accept or reject?

DFAs consist of:

DFAs consist of:

1. Finite set of states, *Q*.

DFAs consist of:

- 1. Finite set of states, Q.
- 2. Finite alphabet, Σ .

 Σ consists of the transition characters (i.e. characters in the strings the DFA processes).

DFAs consist of:

- 1. Finite set of states, Q.
- 2. Finite alphabet, Σ .
- 3. Transition function, $\delta: Q \times \Sigma \to Q$.

DFAs consist of:

- 1. Finite set of states, Q.
- 2. Finite alphabet, Σ .
- 3. Transition function, $\delta: Q \times \Sigma \to Q$.

 $\delta: Q \times \Sigma \rightarrow Q$ means that *every* state needs to handle *every* element of the alphabet.

DFAs consist of:

- 1. Finite set of states, Q.
- 2. Finite alphabet, Σ .
- 3. Transition function, $\delta: Q \times \Sigma \to Q$.

```
\delta: Q \times \Sigma \rightarrow Q means that

every state needs to

handle every element of

the alphabet.
```


DFAs consist of:

- 1. Finite set of states, Q.
- 2. Finite alphabet, Σ .
- 3. Transition function, $\delta: Q \times \Sigma \to Q$.

```
\delta: Q \times \Sigma \rightarrow Q means that

every state needs to

handle every element of

the alphabet.
```

<u>??</u>

DFAs consist of:

- 1. Finite set of states, Q.
- 2. Finite alphabet, Σ .
- 3. Transition function, $\delta: Q \times \Sigma \rightarrow Q$.

```
\delta: Q \times \Sigma \rightarrow Q means that

every state needs to

handle every element of

the alphabet.
```


DFAs consist of:

- 1. Finite set of states, Q.
- 2. Finite alphabet, Σ .
- 3. Transition function, $\delta: Q \times \Sigma \to Q$.
- 4. Start state, $q_0 \in Q$.

Exactly one start state needed.

DFAs consist of:

- 1. Finite set of states, Q.
- 2. Finite alphabet, Σ .
- 3. Transition function, $\delta: Q \times \Sigma \to Q$.
- 4. Start state, $q_0 \in Q$.
- 5. Set of accept states, $\mathbf{F} \subseteq Q$.

F is allowed to equal *Q* or be empty.

DFAs consist of:

- 1. Finite set of states, Q.
- 2. Finite alphabet, Σ .
- 3. Transition function, $\delta: Q \times \Sigma \to Q$.
- 4. Start state, $q_0 \in Q$.

5. Set of accept states, $F \subseteq Q$.

 $\begin{array}{c}
Q = \{q_1, q_2, q_3\} \\
\Sigma = \{0, 1\} \\
\delta: & 0 \quad 1 \\
\hline q_1 & q_1 & q_2 \\
q_2 & q_3 & q_2 \\
q_3 & q_2 & q_2
\end{array}$

Start state =
$$q_1$$

 $F = \{q_2\}$

Definitions:

The set of all strings A that a DFA M accepts is called its <u>language</u>, L(M) = A.

 $M \operatorname{recognizes} A.$

Definitions:

The set of all strings A that a DFA M accepts is called its <u>language</u>, L(M) = A.

 $M \operatorname{recognizes} A$.

 $L(M) = \begin{cases} \omega: \omega \text{ contains at least one 1 and an} \\ \text{even number of 0s following the final 1} \end{cases}$

Definitions:

The set of all strings A that a DFA M accepts is called its <u>language</u>, L(M) = A.

 $M \operatorname{recognizes} A$.

A language is called a <u>regular language</u> if some DFA recognizes it.

Definitions:

The set of all strings A that a DFA M accepts is called its <u>language</u>, L(M) = A.

 $M \operatorname{recognizes} A$.

A language is called a <u>regular language</u> if some DFA recognizes it.

How do you prove a language is regular?

Definitions:

The set of all strings A that a DFA M accepts is called its <u>language</u>, L(M) = A.

 $M \operatorname{recognizes} A$.

A language is called a <u>regular language</u> if some DFA recognizes it.

How do you prove a language is regular? Make a DFA that recognizes it.

Definitions:

The set of all strings A that a DFA M accepts is called its <u>language</u>, L(M) = A.

 $M \operatorname{recognizes} A$.

A language is called a <u>regular language</u> if some DFA recognizes it.

How do you prove a language is regular? Make a DFA that recognizes it.

Set of regular languages are "things we can do" with DFAs.

Prove that the following languages are regular:

1. Set of all strings over {0,1}.

Prove that the following languages are regular:

1. Set of all strings over $\{0,1\}$. 0,1

Prove that the following languages are regular:

1. Set of all strings over $\{0,1\}$. 0,1

Prove that the following languages are regular:

1. Set of all strings over $\{0,1\}$. 0,1

2. Set of all strings with an even number of 0s. 0,1

Prove that the following languages are regular:

1. Set of all strings over $\{0,1\}$. 0,1

The set of **all** strings A that a DFA M accepts is called its <u>language</u>, L(M) = A.

Prove that the following languages are regular:

1. Set of all strings over $\{0,1\}$. 0,1

The set of **all** strings *A* that a DFA *M*

accepts is called its <u>language</u>, L(M) = A.

DFA Language Rules:

- 1. If the DFA accepts it, it is in the language.
- 2. If it is in the language, the DFA must accept it.

Prove that the following languages are regular:

1. Set of all strings over $\{0,1\}$. 0,1

Prove that the following languages are regular:

1. Set of all strings over $\{0,1\}$. 0,1

2. Set of all strings with an even number of 0s.

Prove that the following languages are regular:

1. Set of all strings over $\{0,1\}$. 0,1

2. Set of all strings with an even number of 0s.

0

 \mathbf{q}_2

3. Set of all strings that contain the substring: 10.

Prove that the following languages are regular:

1. Set of all strings over $\{0,1\}$. 0,1

2. Set of all strings with an even number of 0s.

0

0

 \mathbf{q}_2

 \mathbf{q}_1

 \mathbf{q}_2

0,1

q₃

3. Set of all strings that contain the substring: 10.