
NP-Complete
CSCI 338

P: Set of problems
we can solve in
polynomial time.

𝑁𝑃-Complete

𝑃
𝑁𝑃

𝑵𝑷-
Complete

NP: Set of problems we can
verify (non-deterministically
solve) in polynomial time.

NP-Complete: Set of problems in NP
whose solutions can solve everything
in NP in polynomial extra time.

𝑁𝑃-Complete

𝐵 is in 𝑁𝑃-Complete if it
satisfies two conditions:

1. 𝐵 ∈ 𝑁𝑃.
2. For some 𝐴 ∈ 𝑁𝑃-C,
𝐴 ≤! 𝐵.

How to show something (𝐵) is in 𝑁𝑃-Complete?

𝑁𝑃-Complete

𝐵 is in 𝑁𝑃-Complete if it
satisfies two conditions:

1. 𝐵 ∈ 𝑁𝑃.
2. For some 𝐴 ∈ 𝑁𝑃-C,
𝐴 ≤! 𝐵.

How to show something (𝐵) is in 𝑁𝑃-Complete?
1. Show it is in 𝑁𝑃.

𝑁𝑃-Complete

𝐵 is in 𝑁𝑃-Complete if it
satisfies two conditions:

1. 𝐵 ∈ 𝑁𝑃.
2. For some 𝐴 ∈ 𝑁𝑃-C,
𝐴 ≤! 𝐵.

How to show something (𝐵) is in 𝑁𝑃-Complete?
1. Show it is in 𝑁𝑃.
2. Pick some known 𝑁𝑃-Complete problem 𝐴.

𝑁𝑃-Complete

𝐵 is in 𝑁𝑃-Complete if it
satisfies two conditions:

1. 𝐵 ∈ 𝑁𝑃.
2. For some 𝐴 ∈ 𝑁𝑃-C,
𝐴 ≤! 𝐵.

How to show something (𝐵) is in 𝑁𝑃-Complete?
1. Show it is in 𝑁𝑃.
2. Pick some known 𝑁𝑃-Complete problem 𝐴.
3. Show that a solver for 𝐵 can solve 𝐴 in polynomial extra time.

𝑁𝑃-Complete

𝐵 is in 𝑁𝑃-Complete if it
satisfies two conditions:

1. 𝐵 ∈ 𝑁𝑃.
2. For some 𝐴 ∈ 𝑁𝑃-C,
𝐴 ≤! 𝐵.

How to show something (𝐵) is in 𝑁𝑃-Complete?
1. Show it is in 𝑁𝑃.
2. Pick some known 𝑁𝑃-Complete problem 𝐴.
3. Show that a solver for 𝐵 can solve 𝐴 in polynomial extra time.

A
Input

B
Input

B
Solver

B
Solution

A
Solution

Problem A Solver

A reduces to B if A can be
solved with a solver for B.

𝑁𝑃-Complete

𝐵 is in 𝑁𝑃-Complete if it
satisfies two conditions:

1. 𝐵 ∈ 𝑁𝑃.
2. For some 𝐴 ∈ 𝑁𝑃-C,
𝐴 ≤! 𝐵.

How to show something (𝐵) is in 𝑁𝑃-Complete?
1. Show it is in 𝑁𝑃.
2. Pick some known 𝑁𝑃-Complete problem 𝐴.
3. Show that a solver for 𝐵 can solve 𝐴 in polynomial extra time.

A
Input

B
Input

B
Solver

B
Solution

A
Solution

Problem A Solver

Our Responsibility
(Polynomial Time)

A reduces to B if A can be
solved with a solver for B.

𝑁𝑃-Complete

𝐵 is in 𝑁𝑃-Complete if it
satisfies two conditions:

1. 𝐵 ∈ 𝑁𝑃.
2. For some 𝐴 ∈ 𝑁𝑃-C,
𝐴 ≤! 𝐵.

How to show something (𝐵) is in 𝑁𝑃-Complete?
1. Show it is in 𝑁𝑃.
2. Pick some known 𝑁𝑃-Complete problem 𝐴.
3. Show that a solver for 𝐵 can solve 𝐴 in polynomial extra time.

A
Input

B
Input

B
Solver

B
Solution

A
Solution

Problem A Solver

To show A reduces to B:
• Show every instance of A can be

translated to some instance of B.
• The solution to B can be translated

back to a solution to A.

3𝑆𝐴𝑇
Claim: 3𝑆𝐴𝑇 is in 𝑁𝑃-Complete.

Proof:

3𝑆𝐴𝑇
Claim: 3𝑆𝐴𝑇 is in 𝑁𝑃-Complete.

Proof:
3𝑆𝐴𝑇 = 𝜙 : 𝜙 is a sa>sfiable formula with 3 variables per clause

𝜙 = 𝑥" ∨ 𝑥" ∨ 𝑥# ∧ 𝑥" ∨ 𝑥# ∨ 𝑥# ∧ 𝑥" ∨ 𝑥# ∨ 𝑥#

𝑥" = 𝐹
𝑥# = 𝑇

𝐹 ∨ 𝐹 ∨ 𝑇 𝑇 ∨ 𝐹 ∨ 𝐹 𝑇 ∨ 𝑇 ∨ 𝑇

𝑇 𝑇 𝑇

𝑇

3𝑆𝐴𝑇
Claim: 3𝑆𝐴𝑇 is in 𝑁𝑃-Complete.

Proof:

𝐵 is in 𝑁𝑃-Complete if it
satisfies two conditions:

1. 𝐵 ∈ 𝑁𝑃.
2. For some 𝐴 ∈ 𝑁𝑃-C,
𝐴 ≤! 𝐵.

3𝑆𝐴𝑇
Claim: 3𝑆𝐴𝑇 is in 𝑁𝑃-Complete.

Proof:

1. Show 3𝑆𝐴𝑇 is in 𝑁𝑃.

𝐵 is in 𝑁𝑃-Complete if it
satisfies two conditions:

1. 𝐵 ∈ 𝑁𝑃.
2. For some 𝐴 ∈ 𝑁𝑃-C,
𝐴 ≤! 𝐵.

3𝑆𝐴𝑇
Claim: 3𝑆𝐴𝑇 is in 𝑁𝑃-Complete.

Proof:

1. Show 3𝑆𝐴𝑇 is in 𝑁𝑃.

𝐵 is in 𝑁𝑃-Complete if it
satisfies two conditions:

1. 𝐵 ∈ 𝑁𝑃.
2. For some 𝐴 ∈ 𝑁𝑃-C,
𝐴 ≤! 𝐵.

Given the Boolean formula and variable assignments,
evaluate the formula and accept if true and reject if
false. This can be done in 𝑂(𝑛) time where 𝑛 is the
number of clauses.

3𝑆𝐴𝑇
Claim: 3𝑆𝐴𝑇 is in 𝑁𝑃-Complete.

Proof:

1. Show 3𝑆𝐴𝑇 is in 𝑁𝑃.

2. Show some 𝑁𝑃-C problem can be
solved using an algorithm for 3𝑆𝐴𝑇.

𝐵 is in 𝑁𝑃-Complete if it
satisfies two conditions:

1. 𝐵 ∈ 𝑁𝑃.
2. For some 𝐴 ∈ 𝑁𝑃-C,
𝐴 ≤! 𝐵.

3𝑆𝐴𝑇
Claim: 3𝑆𝐴𝑇 is in 𝑁𝑃-Complete.

Proof:

1. Show 3𝑆𝐴𝑇 is in 𝑁𝑃.

2. Show some 𝑁𝑃-C problem can be
solved using an algorithm for 3𝑆𝐴𝑇.

𝐵 is in 𝑁𝑃-Complete if it
satisfies two conditions:

1. 𝐵 ∈ 𝑁𝑃.
2. For some 𝐴 ∈ 𝑁𝑃-C,
𝐴 ≤! 𝐵.

𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Solver

3𝑆𝐴𝑇
Solution

𝑆𝐴𝑇
Solution

𝑺𝑨𝑻 Solver

𝑺𝑨𝑻

𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof:

𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Solver

3𝑆𝐴𝑇
Solution

𝑆𝐴𝑇
Solution

𝑺𝑨𝑻 Solver

𝑺𝑨𝑻 is reducible to 𝟑𝑺𝑨𝑻 in polynomial time.

𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof:
We need to turn instances of 𝑆𝐴𝑇 into instances of 3𝑆𝐴𝑇.

So we can use
our 3𝑆𝐴𝑇 solver.

𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Solver

3𝑆𝐴𝑇
Solution

𝑆𝐴𝑇
Solution

𝑺𝑨𝑻 Solver

𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof:
We need to turn instances of 𝑆𝐴𝑇 into instances of 3𝑆𝐴𝑇.

What is keeping our 𝑆𝐴𝑇 instance from being a 3𝑆𝐴𝑇 instance?

𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Solver

3𝑆𝐴𝑇
Solution

𝑆𝐴𝑇
Solution

𝑺𝑨𝑻 Solver

𝝓 = 𝒙𝟏 ∧ 𝒙𝟏 ∨ 𝒙𝟐 ∨ 𝒙𝟐 ∨ 𝒙𝟏 ∧ 𝒙𝟏 ∨ 𝒙𝟐
vs

𝝓 = 𝒙𝟏 ∨ 𝒙𝟏 ∨ 𝒙𝟐 ∧ 𝒙𝟏 ∨ 𝒙𝟐 ∨ 𝒙𝟐 ∧ 𝒙𝟏 ∨ 𝒙𝟐 ∨ 𝒙𝟐

𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof:
We need to turn instances of 𝑆𝐴𝑇 into instances of 3𝑆𝐴𝑇.
If a clause has one literal?

𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Solver

3𝑆𝐴𝑇
Solution

𝑆𝐴𝑇
Solution

𝑺𝑨𝑻 Solver

𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof:
We need to turn instances of 𝑆𝐴𝑇 into instances of 3𝑆𝐴𝑇.
If a clause has one literal? (𝑥") → (𝑥" ∨ 𝑥" ∨ 𝑥")
If a clause has two literals?

𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Solver

3𝑆𝐴𝑇
Solution

𝑆𝐴𝑇
Solution

𝑺𝑨𝑻 Solver

𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof:
We need to turn instances of 𝑆𝐴𝑇 into instances of 3𝑆𝐴𝑇.
If a clause has one literal? (𝑥") → (𝑥" ∨ 𝑥" ∨ 𝑥")
If a clause has two literals? 𝑥" ∨ 𝑥# → 𝑥" ∨ 𝑥" ∨ 𝑥#
If a clause had three literals?

𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Solver

3𝑆𝐴𝑇
Solution

𝑆𝐴𝑇
Solution

𝑺𝑨𝑻 Solver

𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof:
We need to turn instances of 𝑆𝐴𝑇 into instances of 3𝑆𝐴𝑇.
If a clause has one literal? (𝑥") → (𝑥" ∨ 𝑥" ∨ 𝑥")
If a clause has two literals? 𝑥" ∨ 𝑥# → 𝑥" ∨ 𝑥" ∨ 𝑥#
If a clause had three literals? No change.
If a clause has more than three literals?

𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Solver

3𝑆𝐴𝑇
Solution

𝑆𝐴𝑇
Solution

𝑺𝑨𝑻 Solver

𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.

𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Solver

3𝑆𝐴𝑇
Solution

𝑆𝐴𝑇
Solution

𝑺𝑨𝑻 Solver

𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(

𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Solver

3𝑆𝐴𝑇
Solution

𝑆𝐴𝑇
Solution

𝑺𝑨𝑻 Solver

𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
→ 𝜙'$%& = ?

𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Solver

3𝑆𝐴𝑇
Solution

𝑆𝐴𝑇
Solution

𝑺𝑨𝑻 Solver

𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
→ 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Solver

3𝑆𝐴𝑇
Solution

𝑆𝐴𝑇
Solution

𝑺𝑨𝑻 Solver

𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
→ 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Solver

3𝑆𝐴𝑇
Solution

𝑆𝐴𝑇
Solution

𝑺𝑨𝑻 Solver

Polynomial Time?

𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
→ 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Solver

3𝑆𝐴𝑇
Solution

𝑆𝐴𝑇
Solution

𝑺𝑨𝑻 Solver

We need to show that if the 3SAT Solver says the 3SAT input is satisfiable,
the SAT input is too AND if the 3SAT input is not, the SAT input isn’t either.

𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
→ 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

Suppose 𝜙$%& can be true.

𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
→ 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

Suppose 𝜙$%& can be true. Then some 𝑥. is true.

𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
→ 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

Suppose 𝜙$%& can be true. Then some 𝑥. is true.

… ∧ 𝑧/," ∨ 𝑥.," ∨ 𝑧/ ∧ (;𝑧/ ∨ 𝑥. ∨ 𝑧/0") ∧ (𝑧/0" ∨ 𝑥.0" ∨ 𝑧/0#) ∧ ...

𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
→ 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

Suppose 𝜙$%& can be true. Then some 𝑥. is true. Let 𝑥. be true in
𝜙'$%&.

… ∧ 𝑧/," ∨ 𝑥.," ∨ 𝑧/ ∧ (;𝑧/ ∨ 𝑥. ∨ 𝑧/0") ∧ (𝑧/0" ∨ 𝑥.0" ∨ 𝑧/0#) ∧ ...

𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
→ 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

Suppose 𝜙$%& can be true. Then some 𝑥. is true. Let 𝑥. be true in
𝜙'$%&. Let all 𝑧/’s before 𝑥. be true…

… ∧ 𝑧/," ∨ 𝑥.," ∨ 𝑧/ ∧ (;𝑧/ ∨ 𝑥. ∨ 𝑧/0") ∧ (𝑧/0" ∨ 𝑥.0" ∨ 𝑧/0#) ∧ ...

𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
→ 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

Suppose 𝜙$%& can be true. Then some 𝑥. is true. Let 𝑥. be true in
𝜙'$%&. Let all 𝑧/’s before 𝑥. be true and all 𝑧/’s after be false.

… ∧ 𝑧/," ∨ 𝑥.," ∨ 𝑧/ ∧ (;𝑧/ ∨ 𝑥. ∨ 𝑧/0") ∧ (𝑧/0" ∨ 𝑥.0" ∨ 𝑧/0#) ∧ ...

𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
→ 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

Suppose 𝜙$%& can be true. Then some 𝑥. is true. Let 𝑥. be true in
𝜙'$%&. Let all 𝑧/’s before 𝑥. be true and all 𝑧/’s after be false.

… ∧ 𝑧/," ∨ 𝑥.," ∨ 𝑧/ ∧ (;𝑧/ ∨ 𝑥. ∨ 𝑧/0") ∧ (𝑧/0" ∨ 𝑥.0" ∨ 𝑧/0#) ∧ ...

𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
→ 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

Suppose 𝜙$%& can be true. Then some 𝑥. is true. Let 𝑥. be true in
𝜙'$%&. Let all 𝑧/’s before 𝑥. be true and all 𝑧/’s after be false.
⇒ Every clause has a variable set to true.

𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
→ 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

Suppose 𝜙$%& can be true. Then some 𝑥. is true. Let 𝑥. be true in
𝜙'$%&. Let all 𝑧/’s before 𝑥. be true and all 𝑧/’s after be false.
⇒ Every clause has a variable set to true. ∴ 𝜙'$%& = 𝑇.

𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
→ 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

Suppose 𝜙$%& can be true. Then some 𝑥. is true. Let 𝑥. be true in
𝜙'$%&. Let all 𝑧/’s before 𝑥. be true and all 𝑧/’s after be false.
⇒ Every clause has a variable set to true. ∴ 𝜙'$%& = 𝑇.

Suppose 𝜙'$%& can be true.

