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P: Set of problems 
we can solve in 
polynomial time.

𝑁𝑃-Complete

𝑃
𝑁𝑃

𝑵𝑷-
Complete

NP: Set of problems we can 
verify (non-deterministically 
solve) in polynomial time.

NP-Complete: Set of problems in NP 
whose solutions can solve everything 
in NP in polynomial extra time.
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To show A reduces to B:
• Show every instance of A can be 

translated to some instance of B.
• The solution to B can be translated 

back to a solution to A.
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3𝑆𝐴𝑇
Claim: 3𝑆𝐴𝑇 is in 𝑁𝑃-Complete.

Proof: 
3𝑆𝐴𝑇 = 𝜙 : 𝜙 is a sa>sfiable formula with 3 variables per clause

𝜙 = 𝑥" ∨ 𝑥" ∨ 𝑥# ∧ 𝑥" ∨ 𝑥# ∨ 𝑥# ∧ 𝑥" ∨ 𝑥# ∨ 𝑥#

𝑥" = 𝐹
𝑥# = 𝑇
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𝐵 is in 𝑁𝑃-Complete if it 
satisfies two conditions:

1. 𝐵 ∈ 𝑁𝑃.
2. For some 𝐴 ∈ 𝑁𝑃-C, 
𝐴 ≤! 𝐵.



3𝑆𝐴𝑇
Claim: 3𝑆𝐴𝑇 is in 𝑁𝑃-Complete.

Proof: 

1. Show 3𝑆𝐴𝑇 is in 𝑁𝑃.

𝐵 is in 𝑁𝑃-Complete if it 
satisfies two conditions:

1. 𝐵 ∈ 𝑁𝑃.
2. For some 𝐴 ∈ 𝑁𝑃-C, 
𝐴 ≤! 𝐵.



3𝑆𝐴𝑇
Claim: 3𝑆𝐴𝑇 is in 𝑁𝑃-Complete.

Proof: 

1. Show 3𝑆𝐴𝑇 is in 𝑁𝑃.

𝐵 is in 𝑁𝑃-Complete if it 
satisfies two conditions:

1. 𝐵 ∈ 𝑁𝑃.
2. For some 𝐴 ∈ 𝑁𝑃-C, 
𝐴 ≤! 𝐵.

Given the Boolean formula and variable assignments, 
evaluate the formula and accept if true and reject if 
false. This can be done in 𝑂(𝑛) time where 𝑛 is the 
number of clauses.



3𝑆𝐴𝑇
Claim: 3𝑆𝐴𝑇 is in 𝑁𝑃-Complete.

Proof: 

1. Show 3𝑆𝐴𝑇 is in 𝑁𝑃.

2. Show some 𝑁𝑃-C problem can be 
solved using an algorithm for 3𝑆𝐴𝑇.
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2. Show some 𝑁𝑃-C problem can be 
solved using an algorithm for 3𝑆𝐴𝑇.
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𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: 
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𝑺𝑨𝑻 is reducible to 𝟑𝑺𝑨𝑻 in polynomial time.



𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: 
We need to turn instances of 𝑆𝐴𝑇 into instances of 3𝑆𝐴𝑇.

So we can use 
our 3𝑆𝐴𝑇 solver.
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Proof: 
We need to turn instances of 𝑆𝐴𝑇 into instances of 3𝑆𝐴𝑇.

What is keeping our 𝑆𝐴𝑇 instance from being a 3𝑆𝐴𝑇 instance?
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𝝓 = 𝒙𝟏 ∧ 𝒙𝟏 ∨ 𝒙𝟐 ∨ 𝒙𝟐 ∨ 𝒙𝟏 ∧ 𝒙𝟏 ∨ 𝒙𝟐
vs

𝝓 = 𝒙𝟏 ∨ 𝒙𝟏 ∨ 𝒙𝟐 ∧ 𝒙𝟏 ∨ 𝒙𝟐 ∨ 𝒙𝟐 ∧ 𝒙𝟏 ∨ 𝒙𝟐 ∨ 𝒙𝟐
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Proof: 
We need to turn instances of 𝑆𝐴𝑇 into instances of 3𝑆𝐴𝑇.
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𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Solver

3𝑆𝐴𝑇
Solution

𝑆𝐴𝑇
Solution

𝑺𝑨𝑻 Solver



𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: 
We need to turn instances of 𝑆𝐴𝑇 into instances of 3𝑆𝐴𝑇.
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If a clause has two literals? 𝑥" ∨ 𝑥# → 𝑥" ∨ 𝑥" ∨ 𝑥#
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𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
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Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
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Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Solver

3𝑆𝐴𝑇
Solution

𝑆𝐴𝑇
Solution

𝑺𝑨𝑻 Solver

We need to show that if the 3SAT Solver says the 3SAT input is satisfiable, 
the SAT input is too AND if the 3SAT input is not, the SAT input isn’t either.
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𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
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Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

Suppose 𝜙$%& can be true. Then some 𝑥. is true. 

… ∧ 𝑧/," ∨ 𝑥.," ∨ 𝑧/ ∧ (;𝑧/ ∨ 𝑥. ∨ 𝑧/0") ∧ (𝑧/0" ∨ 𝑥.0" ∨ 𝑧/0#) ∧ ...



𝑆𝐴𝑇 ≤7 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
→ 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

Suppose 𝜙$%& can be true. Then some 𝑥. is true. Let 𝑥. be true in 
𝜙'$%&. 

… ∧ 𝑧/," ∨ 𝑥.," ∨ 𝑧/ ∧ (;𝑧/ ∨ 𝑥. ∨ 𝑧/0") ∧ (𝑧/0" ∨ 𝑥.0" ∨ 𝑧/0#) ∧ ...
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