
NP-Complete
CSCI 338

𝑁𝑃-Complete

𝐵 is in 𝑁𝑃-Complete if it
satisfies two conditions:

1. 𝐵 ∈ 𝑁𝑃.
2. For some 𝐴 ∈ 𝑁𝑃-C,
𝐴 ≤! 𝐵.

How to show something (𝐵) is in 𝑁𝑃-Complete?
1. Show it is in 𝑁𝑃.
2. Pick some known 𝑁𝑃-Complete problem 𝐴.
3. Show that a solver for 𝐵 can solve 𝐴 in polynomial extra time.

A
Input

B
Input

B
Solver

B
Solution

A
Solution

Problem A Solver

To show A reduces to B:
• Show every instance of A can be

translated to some instance of B.
• The solution to B can be translated

back to a solution to A.

3𝑆𝐴𝑇
Claim: 3𝑆𝐴𝑇 is in 𝑁𝑃-Complete.

Proof:
 3𝑆𝐴𝑇 = 𝜙 : 	𝜙	is a sa>sfiable formula with 3 variables per clause

𝜙 = 𝑥" ∨ 𝑥" ∨ 𝑥# ∧ 𝑥" ∨ 𝑥# ∨ 𝑥# ∧ 𝑥" ∨ 𝑥# ∨ 𝑥#

 𝑥" = 𝐹
𝑥# = 𝑇

𝐹 ∨ 𝐹 ∨ 𝑇 𝑇 ∨ 𝐹 ∨ 𝐹 𝑇 ∨ 𝑇 ∨ 𝑇

𝑇 𝑇 𝑇

𝑇

3𝑆𝐴𝑇
Claim: 3𝑆𝐴𝑇 is in 𝑁𝑃-Complete.

Proof:

1. 3𝑆𝐴𝑇 is in 𝑁𝑃.

2. 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇	

𝐵 is in 𝑁𝑃-Complete if it
satisfies two conditions:

1. 𝐵 ∈ 𝑁𝑃.
2. For some 𝐴 ∈ 𝑁𝑃-C,
𝐴 ≤! 𝐵.ü

𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof:
 We need to turn instances of 𝑆𝐴𝑇 into instances of 3𝑆𝐴𝑇.
 If a clause has one literal? (𝑥") → (𝑥" ∨ 𝑥" ∨ 𝑥")
 If a clause has two literals? 𝑥" ∨ 𝑥# → 𝑥" ∨ 𝑥" ∨ 𝑥#
 If a clause had three literals? No change.
 If a clause has more than three literals?

𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Solver

3𝑆𝐴𝑇
Solution

𝑆𝐴𝑇
Solution

𝑺𝑨𝑻 Solver

𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
 𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
 → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Solver

3𝑆𝐴𝑇
Solution

𝑆𝐴𝑇
Solution

𝑺𝑨𝑻 Solver

𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
 𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
 → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

 Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Input

3𝑆𝐴𝑇
Solver

3𝑆𝐴𝑇
Solution

𝑆𝐴𝑇
Solution

𝑺𝑨𝑻 Solver

𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
 𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
 → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

 Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

 Suppose 𝜙$%& can be true.

𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
 𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
 → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

 Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

 Suppose 𝜙$%& can be true. Then some 𝑥. is true.

𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
 𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
 → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

 Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

 Suppose 𝜙$%& can be true. Then some 𝑥. is true.

 …	∧ 𝑧/," ∨ 𝑥.," ∨ 𝑧/ ∧ (;𝑧/ ∨ 𝑥. ∨ 𝑧/0") ∧ (𝑧/0" ∨ 𝑥.0" ∨ 𝑧/0#) ∧ ...

𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
 𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
 → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

 Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

 Suppose 𝜙$%& can be true. Then some 𝑥. is true. Let 𝑥. be true in
 𝜙'$%&.

 …	∧ 𝑧/," ∨ 𝑥.," ∨ 𝑧/ ∧ (;𝑧/ ∨ 𝑥. ∨ 𝑧/0") ∧ (𝑧/0" ∨ 𝑥.0" ∨ 𝑧/0#) ∧ ...

𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
 𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
 → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

 Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

 Suppose 𝜙$%& can be true. Then some 𝑥. is true. Let 𝑥. be true in
 𝜙'$%&. Let all 𝑧/’s before 𝑥. be true…

 …	∧ 𝑧/," ∨ 𝑥.," ∨ 𝑧/ ∧ (;𝑧/ ∨ 𝑥. ∨ 𝑧/0") ∧ (𝑧/0" ∨ 𝑥.0" ∨ 𝑧/0#) ∧ ...

𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
 𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
 → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

 Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

 Suppose 𝜙$%& can be true. Then some 𝑥. is true. Let 𝑥. be true in
 𝜙'$%&. Let all 𝑧/’s before 𝑥. be true and all 𝑧/’s after be false.

 …	∧ 𝑧/," ∨ 𝑥.," ∨ 𝑧/ ∧ (;𝑧/ ∨ 𝑥. ∨ 𝑧/0") ∧ (𝑧/0" ∨ 𝑥.0" ∨ 𝑧/0#) ∧ ...

𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
 𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
 → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

 Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

 Suppose 𝜙$%& can be true. Then some 𝑥. is true. Let 𝑥. be true in
 𝜙'$%&. Let all 𝑧/’s before 𝑥. be true and all 𝑧/’s after be false.

 …	∧ 𝑧/," ∨ 𝑥.," ∨ 𝑧/ ∧ (;𝑧/ ∨ 𝑥. ∨ 𝑧/0") ∧ (𝑧/0" ∨ 𝑥.0" ∨ 𝑧/0#) ∧ ...

𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
 𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
 → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

 Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

 Suppose 𝜙$%& can be true. Then some 𝑥. is true. Let 𝑥. be true in
 𝜙'$%&. Let all 𝑧/’s before 𝑥. be true and all 𝑧/’s after be false.
 ⇒ Every clause has a variable set to true.

𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
 𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
 → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

 Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

 Suppose 𝜙$%& can be true. Then some 𝑥. is true. Let 𝑥. be true in
 𝜙'$%&. Let all 𝑧/’s before 𝑥. be true and all 𝑧/’s after be false.
 ⇒ Every clause has a variable set to true. ∴ 𝜙'$%& = 𝑇.

𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
 𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
 → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

 Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

 Suppose 𝜙$%& can be true. Then some 𝑥. is true. Let 𝑥. be true in
 𝜙'$%&. Let all 𝑧/’s before 𝑥. be true and all 𝑧/’s after be false.
 ⇒ Every clause has a variable set to true. ∴ 𝜙'$%& = 𝑇.

 Suppose 𝜙'$%& can be true.

𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
 𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
 → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

 Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

 Suppose 𝜙$%& can be true. Then some 𝑥. is true. Let 𝑥. be true in
 𝜙'$%&. Let all 𝑧/’s before 𝑥. be true and all 𝑧/’s after be false.
 ⇒ Every clause has a variable set to true. ∴ 𝜙'$%& = 𝑇.

 Suppose 𝜙'$%& can be true. Some 𝑥. must be true. If not, all 𝑧/’s
 must be true, and last clause would be false.

𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
 𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
 → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

 Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

 Suppose 𝜙$%& can be true. Then some 𝑥. is true. Let 𝑥. be true in
 𝜙'$%&. Let all 𝑧/’s before 𝑥. be true and all 𝑧/’s after be false.
 ⇒ Every clause has a variable set to true. ∴ 𝜙'$%& = 𝑇.

 Suppose 𝜙'$%& can be true. Some 𝑥. must be true. If not, all 𝑧/’s
 must be true, and last clause would be false. ∴ 𝜙$%& = 𝑇.

𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
 𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
 → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

 Need to show: 𝜙$%& can be true ⟺𝜙'$%& can be true.

 Suppose 𝜙$%& can be true. Then some 𝑥. is true. Let 𝑥. be true in
 𝜙'$%&. Let all 𝑧/’s before 𝑥. be true and all 𝑧/’s after be false.
 ⇒ Every clause has a variable set to true. ∴ 𝜙'$%& = 𝑇.

 Suppose 𝜙'$%& can be true. Some 𝑥. must be true. If not, all 𝑧/’s
 must be true, and last clause would be false. ∴ 𝜙$%& = 𝑇.
 ∴ 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

3𝑆𝐴𝑇
Claim: 3𝑆𝐴𝑇 is in 𝑁𝑃-Complete.

Proof:

1. 3𝑆𝐴𝑇 is in 𝑁𝑃.

2. 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇	

Therefore, 3𝑆𝐴𝑇 is in 𝑁𝑃-Complete.

𝐵 is in 𝑁𝑃-Complete if it
satisfies two conditions:

1. 𝐵 ∈ 𝑁𝑃.
2. For some 𝐴 ∈ 𝑁𝑃-C,
𝐴 ≤! 𝐵.

ü
ü

𝑁𝑃 − 𝐶

SAT

All of NP “Can be
solved by”

Cook-Levin
Theorem

𝑃
𝑁𝑃

𝑵𝑷-
Complete

𝑺𝑨𝑻

𝑁𝑃 − 𝐶

SAT

3SAT

All of NP “Can be
solved by”

Cook-Levin
Theorem

Today’s Class

𝑃
𝑁𝑃

𝑵𝑷-
Complete

𝑺𝑨𝑻

𝟑𝑺𝑨𝑻

Project 3

What performance metrics do we care about?

Project 3

What performance metrics do we care about?
 Accuracy, speed.

Project 3

What performance metrics do we care about?
 Accuracy, speed.

Si
ze

 o
f V

C
(IS

) f
ou

nd

Ru
nn

in
g

tim
e

Project 3

What performance metrics do we care about?
 Accuracy, speed.

Si
ze

 o
f V

C
(IS

) f
ou

nd

Ru
nn

in
g

tim
e

??

Project 3

What performance metrics do we care about?
 Accuracy, speed.

Si
ze

 o
f V

C
(IS

) f
ou

nd

Ru
nn

in
g

tim
e

“Size” of graph (# vertices, # edges, connectivity)
Graph sizeGraph size

Project 3

What performance metrics do we care about?
 Accuracy, speed.

Si
ze

 o
f V

C
(IS

) f
ou

nd

Ru
nn

in
g

tim
e

“Size” of graph (# vertices, # edges, connectivity)
Graph sizeGraph size

One test on a graph of
30 vertices?

Project 3

What performance metrics do we care about?
 Accuracy, speed.

Si
ze

 o
f V

C
(IS

) f
ou

nd

Ru
nn

in
g

tim
e

“Size” of graph (# vertices, # edges, connectivity)
Graph sizeGraph size

One test on a graph of
30 vertices?
 No! Average of X

iterations.

Project 3

What performance metrics do we care about?
 Accuracy, speed.

Si
ze

 o
f V

C
(IS

) f
ou

nd

Ru
nn

in
g

tim
e

“Size” of graph (# vertices, # edges, connectivity)
Graph sizeGraph size

One test on a graph of
30 vertices?
 No! Average of X

iterations.

Exact result on random
graph of 30 vertices and
inexact result on
different random graph
of 30 vertices?

Project 3

What performance metrics do we care about?
 Accuracy, speed.

Si
ze

 o
f V

C
(IS

) f
ou

nd

Ru
nn

in
g

tim
e

“Size” of graph (# vertices, # edges, connectivity)
Graph sizeGraph size

One test on a graph of
30 vertices?
 No! Average of X

iterations.

Exact result on random
graph of 30 vertices and
inexact result on
different random graph
of 30 vertices?
 No! results on

same random
graph.

