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𝑁𝑃-Complete

𝐵 is in 𝑁𝑃-Complete if it 
satisfies two conditions:

1. 𝐵 ∈ 𝑁𝑃.
2. For some 𝐴 ∈ 𝑁𝑃-C, 
𝐴 ≤! 𝐵.

How to show something (𝐵) is in 𝑁𝑃-Complete?
1. Show it is in 𝑁𝑃.
2. Pick some known 𝑁𝑃-Complete problem 𝐴.
3. Show that a solver for 𝐵 can solve 𝐴 in polynomial extra time.
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To show A reduces to B:
• Show every instance of A can be 

translated to some instance of B.
• The solution to B can be translated 

back to a solution to A.



3𝑆𝐴𝑇
Claim: 3𝑆𝐴𝑇 is in 𝑁𝑃-Complete.

Proof: 
 3𝑆𝐴𝑇 = 𝜙 : 	𝜙	is a sa>sfiable formula with 3 variables per clause

𝜙 = 𝑥" ∨ 𝑥" ∨ 𝑥# ∧ 𝑥" ∨ 𝑥# ∨ 𝑥# ∧ 𝑥" ∨ 𝑥# ∨ 𝑥#
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3𝑆𝐴𝑇
Claim: 3𝑆𝐴𝑇 is in 𝑁𝑃-Complete.

Proof: 
 

1.  3𝑆𝐴𝑇 is in 𝑁𝑃.
   

2.  𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇	

𝐵 is in 𝑁𝑃-Complete if it 
satisfies two conditions:

1. 𝐵 ∈ 𝑁𝑃.
2. For some 𝐴 ∈ 𝑁𝑃-C, 
𝐴 ≤! 𝐵.ü



𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: 
 We need to turn instances of 𝑆𝐴𝑇 into instances of 3𝑆𝐴𝑇.
 If a clause has one literal? (𝑥") → (𝑥" ∨ 𝑥" ∨ 𝑥")
 If a clause has two literals? 𝑥" ∨ 𝑥# → 𝑥" ∨ 𝑥" ∨ 𝑥#
 If a clause had three literals? No change.
 If a clause has more than three literals?
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𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
  𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
   → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()
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𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
  𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
   → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

  Need to show: 𝜙$%&  can be true ⟺𝜙'$%&  can be true.
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𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
  𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
   → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

  Need to show: 𝜙$%&  can be true ⟺𝜙'$%&  can be true.

   Suppose 𝜙$%&  can be true. 

 



𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
  𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
   → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

  Need to show: 𝜙$%&  can be true ⟺𝜙'$%&  can be true.

   Suppose 𝜙$%&  can be true. Then some 𝑥.  is true. 

 



𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
  𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
   → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

  Need to show: 𝜙$%&  can be true ⟺𝜙'$%&  can be true.

   Suppose 𝜙$%&  can be true. Then some 𝑥.  is true. 

 …	∧ 𝑧/," ∨ 𝑥.," ∨ 𝑧/ ∧ (;𝑧/ ∨ 𝑥. ∨ 𝑧/0") ∧ (𝑧/0" ∨ 𝑥.0" ∨ 𝑧/0#) ∧ ...

 



𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
  𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
   → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

  Need to show: 𝜙$%&  can be true ⟺𝜙'$%&  can be true.

   Suppose 𝜙$%&  can be true. Then some 𝑥.  is true. Let 𝑥.  be true in 
   𝜙'$%&. 

 …	∧ 𝑧/," ∨ 𝑥.," ∨ 𝑧/ ∧ (;𝑧/ ∨ 𝑥. ∨ 𝑧/0") ∧ (𝑧/0" ∨ 𝑥.0" ∨ 𝑧/0#) ∧ ...

 



𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
  𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
   → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

  Need to show: 𝜙$%&  can be true ⟺𝜙'$%&  can be true.

   Suppose 𝜙$%&  can be true. Then some 𝑥.  is true. Let 𝑥.  be true in 
   𝜙'$%&. Let all 𝑧/’s before 𝑥.  be true…

 …	∧ 𝑧/," ∨ 𝑥.," ∨ 𝑧/ ∧ (;𝑧/ ∨ 𝑥. ∨ 𝑧/0") ∧ (𝑧/0" ∨ 𝑥.0" ∨ 𝑧/0#) ∧ ...
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  𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
   → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

  Need to show: 𝜙$%&  can be true ⟺𝜙'$%&  can be true.

   Suppose 𝜙$%&  can be true. Then some 𝑥.  is true. Let 𝑥.  be true in 
   𝜙'$%&. Let all 𝑧/’s before 𝑥.  be true and all 𝑧/’s after be false.

 …	∧ 𝑧/," ∨ 𝑥.," ∨ 𝑧/ ∧ (;𝑧/ ∨ 𝑥. ∨ 𝑧/0") ∧ (𝑧/0" ∨ 𝑥.0" ∨ 𝑧/0#) ∧ ...
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Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
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𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
  𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
   → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

  Need to show: 𝜙$%&  can be true ⟺𝜙'$%&  can be true.

   Suppose 𝜙$%&  can be true. Then some 𝑥.  is true. Let 𝑥.  be true in 
   𝜙'$%&. Let all 𝑧/’s before 𝑥.  be true and all 𝑧/’s after be false.
   ⇒ Every clause has a variable set to true. 



𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
  𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
   → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

  Need to show: 𝜙$%&  can be true ⟺𝜙'$%&  can be true.

   Suppose 𝜙$%&  can be true. Then some 𝑥.  is true. Let 𝑥.  be true in 
   𝜙'$%&. Let all 𝑧/’s before 𝑥.  be true and all 𝑧/’s after be false.
   ⇒ Every clause has a variable set to true.  ∴ 𝜙'$%& = 𝑇.

    
 



𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
  𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
   → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

  Need to show: 𝜙$%&  can be true ⟺𝜙'$%&  can be true.

   Suppose 𝜙$%&  can be true. Then some 𝑥.  is true. Let 𝑥.  be true in 
   𝜙'$%&. Let all 𝑧/’s before 𝑥.  be true and all 𝑧/’s after be false.
   ⇒ Every clause has a variable set to true.  ∴ 𝜙'$%& = 𝑇.

   Suppose 𝜙'$%&  can be true. 



𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
  𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
   → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

  Need to show: 𝜙$%&  can be true ⟺𝜙'$%&  can be true.

   Suppose 𝜙$%&  can be true. Then some 𝑥.  is true. Let 𝑥.  be true in 
   𝜙'$%&. Let all 𝑧/’s before 𝑥.  be true and all 𝑧/’s after be false.
   ⇒ Every clause has a variable set to true.  ∴ 𝜙'$%& = 𝑇.

   Suppose 𝜙'$%&  can be true. Some 𝑥.  must be true. If not, all 𝑧/’s  
   must be true, and last clause would be false. 



𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
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  Need to show: 𝜙$%&  can be true ⟺𝜙'$%&  can be true.

   Suppose 𝜙$%&  can be true. Then some 𝑥.  is true. Let 𝑥.  be true in 
   𝜙'$%&. Let all 𝑧/’s before 𝑥.  be true and all 𝑧/’s after be false.
   ⇒ Every clause has a variable set to true.  ∴ 𝜙'$%& = 𝑇.

   Suppose 𝜙'$%&  can be true. Some 𝑥.  must be true. If not, all 𝑧/’s  
   must be true, and last clause would be false.  ∴ 𝜙$%& = 𝑇. 



𝑆𝐴𝑇 ≤. 3𝑆𝐴𝑇
Claim: 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇

Proof: Convert 𝑆𝐴𝑇 clauses with > 3 literals into 3𝑆𝐴𝑇 clauses.
  𝜙$%& = 𝑥" ∨ 𝑥# ∨ 𝑥' ∨ ⋯∨ 𝑥(
   → 𝜙'$%& = 𝑥" ∨ 𝑥# ∨ 𝒛𝟏 ∧ 𝒛𝟏 ∨ 𝑥' ∨ 𝒛𝟐 ∧ ⋯∧ (𝒛𝒌,𝟑 ∨ 𝑥(," ∨ 𝑥()

  Need to show: 𝜙$%&  can be true ⟺𝜙'$%&  can be true.

   Suppose 𝜙$%&  can be true. Then some 𝑥.  is true. Let 𝑥.  be true in 
   𝜙'$%&. Let all 𝑧/’s before 𝑥.  be true and all 𝑧/’s after be false.
   ⇒ Every clause has a variable set to true.  ∴ 𝜙'$%& = 𝑇.

   Suppose 𝜙'$%&  can be true. Some 𝑥.  must be true. If not, all 𝑧/’s  
   must be true, and last clause would be false.  ∴ 𝜙$%& = 𝑇. 
 ∴ 𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇



3𝑆𝐴𝑇
Claim: 3𝑆𝐴𝑇 is in 𝑁𝑃-Complete.

Proof: 
 

1.  3𝑆𝐴𝑇 is in 𝑁𝑃.
   

2.  𝑆𝐴𝑇 ≤! 3𝑆𝐴𝑇	

Therefore, 3𝑆𝐴𝑇 is in 𝑁𝑃-Complete.

𝐵 is in 𝑁𝑃-Complete if it 
satisfies two conditions:

1. 𝐵 ∈ 𝑁𝑃.
2. For some 𝐴 ∈ 𝑁𝑃-C, 
𝐴 ≤! 𝐵.

ü
ü
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