NP-Complete CSCI 338

$N P$-Complete

How to show something (B) is in $N P$-Complete?

1. Show it is in NP.
2. Pick some known $N P$-Complete problem A.
3. Show that a solver for B can solve A in polynomial extra time.

Problem A Solver

To show A reduces to B:

- Show every instance of A can be translated to some instance of B.
- The solution to B can be translated back to a solution to A .
B is in $N P$-Complete if it satisfies two conditions:

1. $B \in N P$.
2. For some $A \in N P-C$, $A \leq_{P} B$.

3SAT

Claim: $3 S A T$ is in $N P$-Complete.
Proof:
$3 S A T=\{\langle\phi\rangle: \phi$ is a satisfiable formula with 3 variables per clause $\}$

$$
\begin{aligned}
& \phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right) \\
& \begin{array}{c}
(F \vee \stackrel{\downarrow}{F} \vee T) \\
x_{1}=F \\
x_{2} \\
x_{2} \\
T
\end{array}
\end{aligned}
$$

3SAT

Claim: $3 S A T$ is in $N P$-Complete.
Proof:

1. $3 S A T$ is in $N P$.
2. $S A T \leq_{P} 3 S A T$
B is in $N P$-Complete if it satisfies two conditions:
3. $B \in N P$.
4. For some $A \in N P-C$, $A \leq_{P} B$.

$S A T \leq_{P} 3 S A T$

Claim: $S A T \leq_{P} 3 S A T$

Proof:

We need to turn instances of SAT into instances of 3SAT. If a clause has one literal? $\quad\left(x_{1}\right) \rightarrow\left(x_{1} \vee x_{1} \vee x_{1}\right)$ If a clause has two literals? $\left(x_{1} \vee x_{2}\right) \rightarrow\left(x_{1} \vee x_{1} \vee x_{2}\right)$ If a clause had three literals? No change.
If a clause has more than three literals?

| $S A T$
 Input |
| :---: |\rightarrow| $3 S A T$ |
| :---: |
| Input |\rightarrow| $3 S A T$ |
| :---: |
| Solver |\rightarrow| $3 S A T$ |
| :---: |
| Solution |\rightarrow| $S A T$ |
| :---: |
| Solution |

$S A T \leq_{P} 3 S A T$

Claim: $S A T \leq_{P} 3 S A T$
Proof: Convert SAT clauses with >3 literals into $3 S A T$ clauses.

$$
\begin{aligned}
& \phi_{S A T}=\left(x_{1} \vee x_{2} \vee x_{3} \vee \cdots \vee x_{k}\right) \\
& \quad \rightarrow \phi_{3 S A T}=\left(x_{1} \vee x_{2} \vee z_{1}\right) \wedge\left(\overline{z_{1}} \vee x_{3} \vee z_{2}\right) \wedge \cdots \wedge\left(\overline{z_{k-3}} \vee x_{k-1} \vee x_{k}\right)
\end{aligned}
$$

$\begin{aligned} & \text { SAT } \\ & \text { Input } \end{aligned}$	$\begin{aligned} & \text { 3SAT } \\ & \text { Input } \end{aligned}$	$\begin{aligned} & \text { 3SAT } \\ & \text { Solver } \end{aligned}$	$\begin{gathered} \text { 3SAT } \end{gathered}$	SAT Solution

$S A T \leq_{P} 3 S A T$

Claim: $S A T \leq_{P} 3 S A T$
Proof: Convert SAT clauses with >3 literals into $3 S A T$ clauses.

$$
\begin{aligned}
& \phi_{S A T}=\left(x_{1} \vee x_{2} \vee x_{3} \vee \cdots \vee x_{k}\right) \\
& \rightarrow \phi_{3 S A T}=\left(x_{1} \vee x_{2} \vee z_{1}\right) \wedge\left(\overline{z_{1}} \vee x_{3} \vee z_{2}\right) \wedge \cdots \wedge\left(\overline{z_{k-3}} \vee x_{k-1} \vee x_{k}\right)
\end{aligned}
$$

Need to show: $\phi_{S A T}$ can be true $\Leftrightarrow \phi_{3 S A T}$ can be true.

$S A T \leq_{P} 3 S A T$

Claim: $S A T \leq_{P} 3 S A T$
Proof: Convert SAT clauses with >3 literals into $3 S A T$ clauses.

$$
\begin{aligned}
& \phi_{S A T}=\left(x_{1} \vee x_{2} \vee x_{3} \vee \cdots \vee x_{k}\right) \\
& \quad \rightarrow \phi_{3 S A T}=\left(x_{1} \vee x_{2} \vee z_{1}\right) \wedge\left(\overline{z_{1}} \vee x_{3} \vee z_{2}\right) \wedge \cdots \wedge\left(\overline{z_{k-3}} \vee x_{k-1} \vee x_{k}\right)
\end{aligned}
$$

Need to show: $\phi_{S A T}$ can be true $\Leftrightarrow \phi_{3 S A T}$ can be true.
Suppose $\phi_{S A T}$ can be true.

$S A T \leq_{P} 3 S A T$

Claim: $S A T \leq_{P} 3 S A T$
Proof: Convert SAT clauses with >3 literals into $3 S A T$ clauses.

$$
\begin{aligned}
& \phi_{S A T}=\left(x_{1} \vee x_{2} \vee x_{3} \vee \cdots \vee x_{k}\right) \\
& \quad \rightarrow \phi_{3 S A T}=\left(x_{1} \vee x_{2} \vee z_{1}\right) \wedge\left(\overline{z_{1}} \vee x_{3} \vee z_{2}\right) \wedge \cdots \wedge\left(\overline{z_{k-3}} \vee x_{k-1} \vee x_{k}\right)
\end{aligned}
$$

Need to show: $\phi_{S A T}$ can be true $\Leftrightarrow \phi_{3 S A T}$ can be true.
Suppose $\phi_{S A T}$ can be true. Then some x_{m} is true.

$S A T \leq_{P} 3 S A T$

Claim: $S A T \leq_{P} 3 S A T$
Proof: Convert SAT clauses with >3 literals into $3 S A T$ clauses.

$$
\begin{aligned}
& \phi_{S A T}=\left(x_{1} \vee x_{2} \vee x_{3} \vee \cdots \vee x_{k}\right) \\
& \rightarrow \phi_{3 S A T}=\left(x_{1} \vee x_{2} \vee z_{1}\right) \wedge\left(\overline{z_{1}} \vee x_{3} \vee z_{2}\right) \wedge \cdots \wedge\left(\overline{z_{k-3}} \vee x_{k-1} \vee x_{k}\right)
\end{aligned}
$$

Need to show: $\phi_{S A T}$ can be true $\Leftrightarrow \phi_{3 S A T}$ can be true.
Suppose $\phi_{S A T}$ can be true. Then some x_{m} is true.
$\ldots \wedge\left(\overline{z_{i-1}} \vee x_{m-1} \vee z_{i}\right) \wedge\left(\overline{z_{i}} \vee x_{m} \vee z_{i+1}\right) \wedge\left(\overline{z_{i+1}} \vee x_{m+1} \vee z_{i+2}\right) \wedge \ldots$

$S A T \leq_{P} 3 S A T$

Claim: $S A T \leq_{P} 3 S A T$
Proof: Convert SAT clauses with >3 literals into $3 S A T$ clauses.

$$
\begin{aligned}
& \phi_{S A T}=\left(x_{1} \vee x_{2} \vee x_{3} \vee \cdots \vee x_{k}\right) \\
& \rightarrow \phi_{3 S A T}=\left(x_{1} \vee x_{2} \vee z_{1}\right) \wedge\left(\overline{z_{1}} \vee x_{3} \vee z_{2}\right) \wedge \cdots \wedge\left(\overline{z_{k-3}} \vee x_{k-1} \vee x_{k}\right)
\end{aligned}
$$

Need to show: $\phi_{S A T}$ can be true $\Leftrightarrow \phi_{3 S A T}$ can be true.
Suppose $\phi_{S A T}$ can be true. Then some x_{m} is true. Let x_{m} be true in $\phi_{3 S A T}$.
$\ldots \wedge\left(\overline{z_{i-1}} \vee x_{m-1} \vee z_{i}\right) \wedge\left(\overline{z_{i}} \vee x_{m} \vee z_{i+1}\right) \wedge\left(\overline{z_{i+1}} \vee x_{m+1} \vee z_{i+2}\right) \wedge \ldots$

$S A T \leq_{P} 3 S A T$

Claim: $S A T \leq_{P} 3 S A T$

Proof: Convert SAT clauses with >3 literals into $3 S A T$ clauses.

$$
\begin{aligned}
& \phi_{S A T}=\left(x_{1} \vee x_{2} \vee x_{3} \vee \cdots \vee x_{k}\right) \\
& \rightarrow \phi_{3 S A T}=\left(x_{1} \vee x_{2} \vee z_{1}\right) \wedge\left(\overline{z_{1}} \vee x_{3} \vee z_{2}\right) \wedge \cdots \wedge\left(\overline{z_{k-3}} \vee x_{k-1} \vee x_{k}\right)
\end{aligned}
$$

Need to show: $\phi_{S A T}$ can be true $\Leftrightarrow \phi_{3 S A T}$ can be true.
Suppose $\phi_{S A T}$ can be true. Then some x_{m} is true. Let x_{m} be true in $\phi_{3 S A T}$. Let all z_{i} 's before x_{m} be true...
$\ldots \wedge\left(\overline{z_{i-1}} \vee x_{m-1} \vee \overline{z_{i}}\right) \wedge\left(\overline{z_{i}} \vee \overline{x_{m}} \vee z_{i+1}\right) \wedge\left(\overline{z_{i+1}} \vee x_{m+1} \vee z_{i+2}\right) \wedge \ldots$

$S A T \leq_{P} 3 S A T$

Claim: $S A T \leq_{P} 3 S A T$

Proof: Convert $S A T$ clauses with >3 literals into $3 S A T$ clauses.

$$
\begin{aligned}
& \phi_{S A T}=\left(x_{1} \vee x_{2} \vee x_{3} \vee \cdots \vee x_{k}\right) \\
& \quad \rightarrow \phi_{3 S A T}=\left(x_{1} \vee x_{2} \vee z_{1}\right) \wedge\left(\overline{z_{1}} \vee x_{3} \vee z_{2}\right) \wedge \cdots \wedge\left(\overline{z_{k-3}} \vee x_{k-1} \vee x_{k}\right)
\end{aligned}
$$

Need to show: $\phi_{S A T}$ can be true $\Leftrightarrow \phi_{3 S A T}$ can be true.
Suppose $\phi_{S A T}$ can be true. Then some x_{m} is true. Let x_{m} be true in $\phi_{3 S A T}$. Let all z_{i} 's before x_{m} be true and all z_{i} 's after be false.
$\ldots \wedge\left(\overline{z_{i-1}} \vee x_{m-1} \vee \overline{z_{i}}\right) \wedge\left(\overline{z_{i}} \vee \overline{x_{m}} \vee \overline{z_{i+1}}\right) \wedge\left(\overline{z_{i+1}} \vee x_{m+1} \vee \overline{z_{i+2}}\right) \wedge \ldots$

$S A T \leq_{P} 3 S A T$

Claim: $S A T \leq_{P} 3 S A T$

Proof: Convert $S A T$ clauses with >3 literals into $3 S A T$ clauses.

$$
\begin{aligned}
& \phi_{S A T}=\left(x_{1} \vee x_{2} \vee x_{3} \vee \cdots \vee x_{k}\right) \\
& \quad \rightarrow \phi_{3 S A T}=\left(x_{1} \vee x_{2} \vee z_{1}\right) \wedge\left(\overline{z_{1}} \vee x_{3} \vee z_{2}\right) \wedge \cdots \wedge\left(\overline{z_{k-3}} \vee x_{k-1} \vee x_{k}\right)
\end{aligned}
$$

Need to show: $\phi_{S A T}$ can be true $\Leftrightarrow \phi_{3 S A T}$ can be true.
Suppose $\phi_{S A T}$ can be true. Then some x_{m} is true. Let x_{m} be true in $\phi_{3 S A T}$. Let all z_{i} 's before x_{m} be true and all z_{i} 's after be false.

$$
\ldots \wedge\left(\overline{z_{i-1}} \vee x_{m-1} \vee \overline{z_{i}}\right) \wedge\left(\overline{z_{i}} \vee \overline{x_{m}} \vee \overline{z_{i+1}}\right) \wedge\left(\overline{\overline{z_{i+1}}} \vee x_{m+1} \vee \overline{z_{i+2}}\right) \wedge \ldots
$$

$S A T \leq_{P} 3 S A T$

Claim: $S A T \leq_{P} 3 S A T$

Proof: Convert $S A T$ clauses with >3 literals into $3 S A T$ clauses.

$$
\begin{aligned}
& \phi_{S A T}=\left(x_{1} \vee x_{2} \vee x_{3} \vee \cdots \vee x_{k}\right) \\
& \quad \rightarrow \phi_{3 S A T}=\left(x_{1} \vee x_{2} \vee z_{1}\right) \wedge\left(\overline{z_{1}} \vee x_{3} \vee z_{2}\right) \wedge \cdots \wedge\left(\overline{z_{k-3}} \vee x_{k-1} \vee x_{k}\right)
\end{aligned}
$$

Need to show: $\phi_{S A T}$ can be true $\Leftrightarrow \phi_{3 S A T}$ can be true.
Suppose $\phi_{S A T}$ can be true. Then some x_{m} is true. Let x_{m} be true in $\phi_{3 S A T}$. Let all z_{i} 's before x_{m} be true and all z_{i} 's after be false.
\Rightarrow Every clause has a variable set to true.

$S A T \leq_{P} 3 S A T$

Claim: $S A T \leq_{P} 3 S A T$

Proof: Convert $S A T$ clauses with >3 literals into $3 S A T$ clauses.

$$
\begin{aligned}
& \phi_{S A T}=\left(x_{1} \vee x_{2} \vee x_{3} \vee \cdots \vee x_{k}\right) \\
& \quad \rightarrow \phi_{3 S A T}=\left(x_{1} \vee x_{2} \vee z_{1}\right) \wedge\left(\overline{z_{1}} \vee x_{3} \vee z_{2}\right) \wedge \cdots \wedge\left(\overline{z_{k-3}} \vee x_{k-1} \vee x_{k}\right)
\end{aligned}
$$

Need to show: $\phi_{S A T}$ can be true $\Leftrightarrow \phi_{3 S A T}$ can be true.
Suppose $\phi_{S A T}$ can be true. Then some x_{m} is true. Let x_{m} be true in $\phi_{3 S A T}$. Let all z_{i} 's before x_{m} be true and all z_{i} 's after be false. \Rightarrow Every clause has a variable set to true. $\therefore \phi_{3 S A T}=T$.

$S A T \leq_{P} 3 S A T$

Claim: $S A T \leq_{P} 3 S A T$

Proof: Convert $S A T$ clauses with >3 literals into $3 S A T$ clauses.

$$
\begin{aligned}
& \phi_{S A T}=\left(x_{1} \vee x_{2} \vee x_{3} \vee \cdots \vee x_{k}\right) \\
& \quad \rightarrow \phi_{3 S A T}=\left(x_{1} \vee x_{2} \vee z_{1}\right) \wedge\left(\overline{z_{1}} \vee x_{3} \vee z_{2}\right) \wedge \cdots \wedge\left(\overline{z_{k-3}} \vee x_{k-1} \vee x_{k}\right)
\end{aligned}
$$

Need to show: $\phi_{S A T}$ can be true $\Leftrightarrow \phi_{3 S A T}$ can be true.
Suppose $\phi_{S A T}$ can be true. Then some x_{m} is true. Let x_{m} be true in $\phi_{3 S A T}$. Let all z_{i} 's before x_{m} be true and all z_{i} 's after be false. \Rightarrow Every clause has a variable set to true. $\therefore \phi_{3 S A T}=T$.

Suppose $\phi_{3 S A T}$ can be true.

$S A T \leq_{P} 3 S A T$

Claim: $S A T \leq_{P} 3 S A T$

Proof: Convert $S A T$ clauses with >3 literals into $3 S A T$ clauses.

$$
\begin{aligned}
& \phi_{S A T}=\left(x_{1} \vee x_{2} \vee x_{3} \vee \cdots \vee x_{k}\right) \\
& \xrightarrow[\rightarrow \phi_{3 S A T}]{ }=\left(x_{1} \vee x_{2} \vee z_{1}\right) \wedge\left(\overline{z_{1}} \vee x_{3} \vee z_{2}\right) \wedge \cdots \wedge\left(\overline{z_{k-3}} \vee x_{k-1} \vee x_{k}\right)
\end{aligned}
$$

Need to show: $\phi_{S A T}$ can be true $\Leftrightarrow \phi_{3 S A T}$ can be true.
Suppose $\phi_{S A T}$ can be true. Then some x_{m} is true. Let x_{m} be true in $\phi_{3 S A T}$. Let all z_{i} 's before x_{m} be true and all z_{i} 's after be false.
\Rightarrow Every clause has a variable set to true. $\therefore \phi_{3 S A T}=T$.
Suppose $\phi_{3 S A T}$ can be true. Some x_{m} must be true. If not, all z_{i} 's must be true, and last clause would be false.

$S A T \leq_{P} 3 S A T$

Claim: $S A T \leq_{P} 3 S A T$

Proof: Convert $S A T$ clauses with >3 literals into $3 S A T$ clauses.

$$
\begin{aligned}
& \phi_{S A T}=\left(x_{1} \vee x_{2} \vee x_{3} \vee \cdots \vee x_{k}\right) \\
& \quad \rightarrow \phi_{3 S A T}=\left(x_{1} \vee x_{2} \vee z_{1}\right) \wedge\left(\overline{z_{1}} \vee x_{3} \vee z_{2}\right) \wedge \cdots \wedge\left(\overline{z_{k-3}} \vee x_{k-1} \vee x_{k}\right)
\end{aligned}
$$

Need to show: $\phi_{S A T}$ can be true $\Leftrightarrow \phi_{3 S A T}$ can be true.
Suppose $\phi_{S A T}$ can be true. Then some x_{m} is true. Let x_{m} be true in $\phi_{3 S A T}$. Let all z_{i} 's before x_{m} be true and all z_{i} 's after be false.
\Rightarrow Every clause has a variable set to true. $\therefore \phi_{3 S A T}=T$.
Suppose $\phi_{3 S A T}$ can be true. Some x_{m} must be true. If not, all z_{i} 's must be true, and last clause would be false. $\therefore \phi_{S A T}=T$.

$S A T \leq_{P} 3 S A T$

Claim: $S A T \leq_{P} 3 S A T$

Proof: Convert SAT clauses with > 3 literals into $3 S A T$ clauses.

$$
\begin{aligned}
& \phi_{S A T}=\left(x_{1} \vee x_{2} \vee x_{3} \vee \cdots \vee x_{k}\right) \\
& \xrightarrow[\rightarrow \phi_{3 S A T}]{ }=\left(x_{1} \vee x_{2} \vee z_{1}\right) \wedge\left(\overline{z_{1}} \vee x_{3} \vee z_{2}\right) \wedge \cdots \wedge\left(\overline{z_{k-3}} \vee x_{k-1} \vee x_{k}\right)
\end{aligned}
$$

Need to show: $\phi_{S A T}$ can be true $\Leftrightarrow \phi_{3 S A T}$ can be true.
Suppose $\phi_{S A T}$ can be true. Then some x_{m} is true. Let x_{m} be true in $\phi_{3 S A T}$. Let all z_{i} 's before x_{m} be true and all z_{i} 's after be false.
\Rightarrow Every clause has a variable set to true. $\therefore \phi_{3 S A T}=T$.
Suppose $\phi_{3 S A T}$ can be true. Some x_{m} must be true. If not, all z_{i} 's must be true, and last clause would be false. $\therefore \phi_{S A T}=T$.
$\therefore S A T \leq_{P} 3 S A T$

3SAT

Claim: $3 S A T$ is in $N P$-Complete.
Proof:

1. $3 S A T$ is in $N P$.
2. $S A T \leq_{P} 3 S A T$

Therefore, $3 S A T$ is in $N P$-Complete.
B is in $N P$-Complete if it satisfies two conditions:

1. $B \in N P$.
2. For some $A \in N P-C$, $A \leq_{P} B$.

$N P-C$

$N P-C$

Project 3

What performance metrics do we care about?

Project 3

What performance metrics do we care about?
Accuracy, speed.

Project 3

What performance metrics do we care about?
 Accuracy, speed.

Project 3

What performance metrics do we care about?
Accuracy, speed.

Project 3

What performance metrics do we care about?
Accuracy, speed.

Project 3

What performance metrics do we care about?
Accuracy, speed.

Project 3

What performance metrics do we care about?
Accuracy, speed.

Project 3

What performance metrics do we care about?
Accuracy, speed.

Project 3

What performance metrics do we care about?
Accuracy, speed.

