NP-Complete CSCI 338

NP-Complete

How to show something (*B*) is in *NP*-Complete?

- 1. Show it is in NP.
- 2. Pick some known *NP*-Complete problem *A*.
- 3. Show that a solver for *B* can solve *A* in polynomial extra time.

Problem A Solver

To show A reduces to B:

- Show <u>every</u> instance of A can be translated to <u>some</u> instance of B.
- The solution to B can be translated back to a solution to A.

B is in NP-Complete if it satisfies two conditions: 1. B ∈ NP. 2. For some A ∈ NP-C, $A ≤_P B$.

3SAT

Claim: 3*SAT* is in *NP*-Complete.

Proof:

 $3SAT = \{\langle \phi \rangle: \phi \text{ is a satisfiable formula with 3 variables per clause}\}$

3*SAT*

Claim: 3*SAT* is in *NP*-Complete.

Proof:

B is in NP-Complete if it satisfies two conditions: 1. B ∈ NP. 2. For some A ∈ NP-C, $A ≤_P B$.

2. $SAT \leq_P 3SAT$

Claim: $SAT \leq_P 3SAT$

Proof:

We need to turn instances of *SAT* into instances of *3SAT*. If a clause has one literal? $(x_1) \rightarrow (x_1 \lor x_1 \lor x_1)$ If a clause has two literals? $(x_1 \lor x_2) \rightarrow (x_1 \lor x_1 \lor x_2)$ If a clause had three literals? No change. If a clause has more than three literals?

Claim: $SAT \leq_P 3SAT$

Proof: Convert *SAT* clauses with > 3 literals into 3*SAT* clauses. $\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)$ $\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor \mathbf{z_1}) \land (\overline{\mathbf{z_1}} \lor x_3 \lor \mathbf{z_2}) \land \cdots \land (\overline{\mathbf{z_{k-3}}} \lor x_{k-1} \lor x_k)$

Claim: $SAT \leq_P 3SAT$

Proof: Convert *SAT* clauses with > 3 literals into 3*SAT* clauses. $\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)$ $\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor \mathbf{z_1}) \land (\overline{\mathbf{z_1}} \lor x_3 \lor \mathbf{z_2}) \land \cdots \land (\overline{\mathbf{z_{k-3}}} \lor x_{k-1} \lor x_k)$

Need to show: ϕ_{SAT} can be true $\Leftrightarrow \phi_{3SAT}$ can be true.

Claim: $SAT \leq_P 3SAT$

Proof: Convert SAT clauses with > 3 literals into 3SAT clauses. $\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)$ $\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z_1} \lor x_3 \lor z_2) \land \cdots \land (\overline{z_{k-3}} \lor x_{k-1} \lor x_k)$

Need to show: ϕ_{SAT} can be true $\Leftrightarrow \phi_{3SAT}$ can be true.

Suppose ϕ_{SAT} can be true.

Claim: $SAT \leq_P 3SAT$

Proof: Convert *SAT* clauses with > 3 literals into 3*SAT* clauses. $\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)$ $\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z_1} \lor x_3 \lor z_2) \land \cdots \land (\overline{z_{k-3}} \lor x_{k-1} \lor x_k)$

Need to show: ϕ_{SAT} can be true $\Leftrightarrow \phi_{3SAT}$ can be true.

Suppose ϕ_{SAT} can be true. Then some x_m is true.

Claim: $SAT \leq_P 3SAT$

Proof: Convert *SAT* clauses with > 3 literals into 3*SAT* clauses. $\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)$ $\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z_1} \lor x_3 \lor z_2) \land \cdots \land (\overline{z_{k-3}} \lor x_{k-1} \lor x_k)$ Need to show: ϕ_{SAT} can be true $\Leftrightarrow \phi_{3SAT}$ can be true.

Suppose ϕ_{SAT} can be true. Then some x_m is true.

$$\dots \wedge (\overline{z_{i-1}} \vee x_{m-1} \vee z_i) \wedge (\overline{z_i} \vee x_m \vee z_{i+1}) \wedge (\overline{z_{i+1}} \vee x_{m+1} \vee z_{i+2}) \wedge \dots$$

Claim: $SAT \leq_P 3SAT$

Proof: Convert SAT clauses with > 3 literals into 3SAT clauses. $\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)$ $\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z_1} \lor x_3 \lor z_2) \land \cdots \land (\overline{z_{k-3}} \lor x_{k-1} \lor x_k)$

Need to show: ϕ_{SAT} can be true $\Leftrightarrow \phi_{3SAT}$ can be true.

Suppose ϕ_{SAT} can be true. Then some x_m is true. Let x_m be true in ϕ_{3SAT} .

$$\dots \wedge (\overline{z_{i-1}} \vee x_{m-1} \vee z_i) \wedge (\overline{z_i} \vee x_m \vee z_{i+1}) \wedge (\overline{z_{i+1}} \vee x_{m+1} \vee z_{i+2}) \wedge \dots$$

Claim: $SAT \leq_P 3SAT$

Proof: Convert *SAT* clauses with > 3 literals into 3*SAT* clauses. $\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)$ $\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor \mathbf{z_1}) \land (\mathbf{\overline{z_1}} \lor x_3 \lor \mathbf{z_2}) \land \cdots \land (\mathbf{\overline{z_{k-3}}} \lor x_{k-1} \lor x_k)$

Need to show: ϕ_{SAT} can be true $\Leftrightarrow \phi_{3SAT}$ can be true.

Suppose ϕ_{SAT} can be true. Then some x_m is true. Let x_m be true in ϕ_{3SAT} . Let all z_i 's before x_m be true...

$$\dots \wedge (\overline{z_{i-1}} \vee x_{m-1} \vee z_i) \wedge (\overline{z_i} \vee x_m \vee z_{i+1}) \wedge (\overline{z_{i+1}} \vee x_{m+1} \vee z_{i+2}) \wedge \dots$$

Claim: $SAT \leq_P 3SAT$

Proof: Convert *SAT* clauses with > 3 literals into 3*SAT* clauses. $\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)$ $\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z_1} \lor x_3 \lor z_2) \land \cdots \land (\overline{z_{k-3}} \lor x_{k-1} \lor x_k)$

Need to show: ϕ_{SAT} can be true $\Leftrightarrow \phi_{3SAT}$ can be true.

Suppose ϕ_{SAT} can be true. Then some x_m is true. Let x_m be true in ϕ_{3SAT} . Let all z_i 's before x_m be true and all z_i 's after be false.

$$\dots \wedge (\overline{z_{i-1}} \vee x_{m-1} \vee \overline{z_i}) \wedge (\overline{z_i} \vee x_m \vee \overline{z_{i+1}}) \wedge (\overline{z_{i+1}} \vee x_{m+1} \vee \overline{z_{i+2}}) \wedge \dots$$

Claim: $SAT \leq_P 3SAT$

Proof: Convert *SAT* clauses with > 3 literals into 3*SAT* clauses. $\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)$ $\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z_1} \lor x_3 \lor z_2) \land \cdots \land (\overline{z_{k-3}} \lor x_{k-1} \lor x_k)$

Need to show: ϕ_{SAT} can be true $\Leftrightarrow \phi_{3SAT}$ can be true.

Suppose ϕ_{SAT} can be true. Then some x_m is true. Let x_m be true in ϕ_{3SAT} . Let all z_i 's before x_m be true and all z_i 's after be false.

$$\dots \wedge (\overline{z_{i-1}} \vee x_{m-1} \vee z_i) \wedge (\overline{z_i} \vee x_m \vee z_{i+1}) \wedge (\overline{z_{i+1}} \vee x_{m+1} \vee z_{i+2}) \wedge \dots$$

Claim: $SAT \leq_P 3SAT$

Proof: Convert *SAT* clauses with > 3 literals into 3*SAT* clauses. $\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)$ $\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor \mathbf{z_1}) \land (\overline{\mathbf{z_1}} \lor x_3 \lor \mathbf{z_2}) \land \cdots \land (\overline{\mathbf{z_{k-3}}} \lor x_{k-1} \lor x_k)$

Need to show: ϕ_{SAT} can be true $\Leftrightarrow \phi_{3SAT}$ can be true.

Suppose ϕ_{SAT} can be true. Then some x_m is true. Let x_m be true in ϕ_{3SAT} . Let all z_i 's before x_m be true and all z_i 's after be false. \Rightarrow Every clause has a variable set to true.

Claim: $SAT \leq_P 3SAT$

Proof: Convert *SAT* clauses with > 3 literals into 3*SAT* clauses. $\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)$ $\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z_1} \lor x_3 \lor z_2) \land \cdots \land (\overline{z_{k-3}} \lor x_{k-1} \lor x_k)$

Need to show: ϕ_{SAT} can be true $\Leftrightarrow \phi_{3SAT}$ can be true.

Suppose ϕ_{SAT} can be true. Then some x_m is true. Let x_m be true in ϕ_{3SAT} . Let all z_i 's before x_m be true and all z_i 's after be false. \Rightarrow Every clause has a variable set to true. $\therefore \phi_{3SAT} = T$.

Claim: $SAT \leq_P 3SAT$

Proof: Convert *SAT* clauses with > 3 literals into 3*SAT* clauses. $\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)$ $\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z_1} \lor x_3 \lor z_2) \land \cdots \land (\overline{z_{k-3}} \lor x_{k-1} \lor x_k)$

Need to show: ϕ_{SAT} can be true $\Leftrightarrow \phi_{3SAT}$ can be true.

Suppose ϕ_{SAT} can be true. Then some x_m is true. Let x_m be true in ϕ_{3SAT} . Let all z_i 's before x_m be true and all z_i 's after be false. \Rightarrow Every clause has a variable set to true. $\therefore \phi_{3SAT} = T$.

Suppose ϕ_{3SAT} can be true.

Claim: $SAT \leq_P 3SAT$

Proof: Convert *SAT* clauses with > 3 literals into 3*SAT* clauses. $\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)$ $\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor \mathbf{z_1}) \land (\overline{\mathbf{z_1}} \lor x_3 \lor \mathbf{z_2}) \land \cdots \land (\overline{\mathbf{z_{k-3}}} \lor x_{k-1} \lor x_k)$

Need to show: ϕ_{SAT} can be true $\Leftrightarrow \phi_{3SAT}$ can be true.

Suppose ϕ_{SAT} can be true. Then some x_m is true. Let x_m be true in ϕ_{3SAT} . Let all z_i 's before x_m be true and all z_i 's after be false. \Rightarrow Every clause has a variable set to true. $\therefore \phi_{3SAT} = T$.

Suppose ϕ_{3SAT} can be true. Some x_m must be true. If not, all z_i 's must be true, and last clause would be false.

Claim: $SAT \leq_P 3SAT$

Proof: Convert *SAT* clauses with > 3 literals into 3*SAT* clauses. $\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)$ $\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor \mathbf{z_1}) \land (\overline{\mathbf{z_1}} \lor x_3 \lor \mathbf{z_2}) \land \cdots \land (\overline{\mathbf{z_{k-3}}} \lor x_{k-1} \lor x_k)$

Need to show: ϕ_{SAT} can be true $\Leftrightarrow \phi_{3SAT}$ can be true.

Suppose ϕ_{SAT} can be true. Then some x_m is true. Let x_m be true in ϕ_{3SAT} . Let all z_i 's before x_m be true and all z_i 's after be false. \Rightarrow Every clause has a variable set to true. $\therefore \phi_{3SAT} = T$.

Suppose ϕ_{3SAT} can be true. Some x_m must be true. If not, all z_i 's must be true, and last clause would be false. $\therefore \phi_{SAT} = T$.

Claim: $SAT \leq_P 3SAT$

Proof: Convert *SAT* clauses with > 3 literals into 3*SAT* clauses. $\phi_{SAT} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)$ $\rightarrow \phi_{3SAT} = (x_1 \lor x_2 \lor z_1) \land (\overline{z_1} \lor x_3 \lor z_2) \land \cdots \land (\overline{z_{k-3}} \lor x_{k-1} \lor x_k)$

Need to show: ϕ_{SAT} can be true $\Leftrightarrow \phi_{3SAT}$ can be true.

Suppose ϕ_{SAT} can be true. Then some x_m is true. Let x_m be true in ϕ_{3SAT} . Let all z_i 's before x_m be true and all z_i 's after be false. \Rightarrow Every clause has a variable set to true. $\therefore \phi_{3SAT} = T$.

Suppose ϕ_{3SAT} can be true. Some x_m must be true. If not, all z_i 's must be true, and last clause would be false. $\therefore \phi_{SAT} = T$. $\therefore SAT \leq_P 3SAT$

3*SAT*

Claim: 3SAT is in NP-Complete.

Proof:

1. 3SAT is in NP. \checkmark

2. $SAT \leq_P 3SAT$

Therefore, 3SAT is in NP-Complete.

B is in NP-Complete if it satisfies two conditions: 1. B ∈ NP. 2. For some A ∈ NP-C, $A ≤_P B$.

What performance metrics do we care about?

Size of VC (IS) found

Running time

What performance metrics do we care about? Accuracy, speed. Exact result on random

What performance metrics do we care about? Accuracy, speed. Exact result on random

