> CLIQUE CSCI 338

Project 3

What performance metrics do we care about?
Accuracy, speed.

$N P$-Complete

How to show problem B is in $N P$-Complete:

1. Show B is in $N P$.
2. Pick some known $N P$-Complete problem A.
3. Show how generic instances of A can be translated into instances of B.
4. Show that the translation process runs in polynomial time.
5. Show that if the answer to A 's instance is 'yes', the answer to B 's instance is also 'yes'.
6. Show that if the answer to B 's instance is 'yes', the answer to A 's instance is also 'yes'.

CLIQUE

Clique: a subgraph where every pair of nodes share an edge (i.e. a complete subgraph).
k-Clique: A clique that contains k vertices.

CLIQUE $=\{\langle G, k\rangle: G$ is an undirected graph with a k-clique $\}$

CLIQUE

Claim: CLIQUE $\in N P$-Complete Proof:

CLIQUE

Claim: CLIQUE $\in N P$-Complete Proof:

1. CLIQUE $\in N P$

CLIQUE

Claim: CLIQUE $\in N P$-Complete
Proof:

1. CLIQUE $\in N P$

Given a graph $G=(V, E)$, where $|V|=n$, and a subset $S \subseteq V$, where $|S| \geq k$, check if all pairs of vertices in S are in E. Running time: $O\left(n^{2}\right)$.

CLIQUE

Claim: CLIQUE $\in N P$-Complete
Proof:

1. CLIQUE $\in N P$

Given a graph $G=(V, E)$, where $|V|=n$, and a subset $S \subseteq V$, where $|S| \geq k$, check if all pairs of vertices in S are in E. Running time: $O\left(n^{2}\right)$.
2. ???

CLIQUE

Claim: CLIQUE $\in N P$-Complete
Proof:

1. CLIQUE $\in N P$

Given a graph $G=(V, E)$, where $|V|=n$, and a subset $S \subseteq V$, where $|S| \geq k$, check if all pairs of vertices in S are in E. Running time: $O\left(n^{2}\right)$.
2. $3 S A T \leq_{P}$ CLIQUE

$N P$-Complete

How to show problem B is in $N P$-Complete:

1. Show B is in NP.
2. Pick some known $N P$-Complete problem A.
3. Show how generic instances of A can be translated into instances of B.
4. Show that the translation process runs in polynomial time.
5. Show that if the answer to A 's instance is 'yes', the answer to B 's instance is also 'yes'.
6. Show that if the answer to B 's instance is 'yes', the answer to A 's instance is also 'yes'.

CLIQUE

Claim: $3 S A T \leq_{P}$ CLIQUE
 Proof:

How to show problem B is in $N P$-Complete:

1. Show B is in $N P$.
2. Pick some known $N P$-Complete problem A.
3. Show how generic instances of A can be translated into instances of B.
4. Show that the translation process runs in polynomial time.
5. Show that if the answer to A 's instance is 'yes', the answer to B 's instance is also 'yes'.
6. Show that if the answer to B 's instance is ' y es', the answer to A 's instance is also 'yes'.

CLIQUE

Claim: 3 SAT \leq_{P} CLIQUE
Proof:

3SAT Solver

3 SAT

Input \rightarrow\begin{tabular}{c}
CLIQUE

Input

\rightarrow

CLIQUE

Solver

\rightarrow

CLIQUE

Solution

\rightarrow

3 SAT

Solution
\end{tabular}

$$
\begin{aligned}
\phi= & \left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge \\
& \left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge \\
& \left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)
\end{aligned}
$$

ϕ - Satisfiable

CLIQUE

Claim: 3 SAT \leq_{P} CLIQUE
Proof: Let ϕ be a formula with k clauses. Generate an undirected graph G :

$$
\begin{aligned}
\phi= & \left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge \\
& \left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge \\
& \left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)
\end{aligned}
$$

CLIQUE

Claim: $3 S A T \leq_{P}$ CLIQUE
Proof: Let ϕ be a formula with k clauses. Generate an undirected graph G :
For each clause in ϕ, make a node for each literal.

CLIQUE

Claim: 3 SAT \leq_{P} CLIQUE

Proof: Let ϕ be a formula with k clauses. Generate an undirected graph G :
For each clause in ϕ, make a node for each literal. Make edge between every pair of nodes, except:

1. Nodes in the same clause
2. Nodes that are negations of each other.

$N P$-Complete

How to show problem B is in $N P$-Complete:

1. Show B is in NP.
Z. Pick some known NP-Complete problem A.
2. Show how generic instances of A-can be translated inte instances of B -
3. Show that the translation process runs in polynomial time.
4. Show that if the answer to A 's instance is 'yes', the answer to B 's instance is also 'yes'.
5. Show that if the answer to B 's instance is 'yes', the answer to A 's instance is also 'yes'.

CLIQUE

Claim: 3 SAT \leq_{P} CLIQUE

Proof: Let ϕ be a formula with k clauses. Generate an undirected graph G :
For each clause in ϕ, make a node for each literal. Make edge between every pair of nodes, except:

1. Nodes in the same clause
2. Nodes that are negations of each other.

Polynomial Time?

$$
\begin{aligned}
\phi= & \left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge \\
& \left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge \\
& \left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)
\end{aligned}
$$

CLIQUE

Claim: 3 SAT \leq_{P} CLIQUE

Proof: Let ϕ be a formula with k clauses. Generate an undirected graph G :
For each clause in ϕ, make a node for each literal. Make edge between every pair of nodes, except:

1. Nodes in the same clause
2. Nodes that are negations of each other.

Polynomial Time?

Yes. ($k=$ num clauses) $\quad \phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge$
$-3 k$ nodes

- $\boldsymbol{O}\left(\boldsymbol{k}^{2}\right)$ edges (fewer than complete graph)

$N P$-Complete

How to show problem B is in $N P$-Complete:

1. Show B is in NP.
Z. Pick some known NP-Complete problem A.
2. Show how generic instances of A can be translated inte instances of B -
3. Show that the transtation process runs in polynomial time.
4. Show that if the answer to A 's instance is 'yes', the answer to B 's instance is also 'yes'.
5. Show that if the answer to B 's instance is 'yes', the answer to A 's instance is also 'yes'.

CLIQUE

Claim: 3 SAT \leq_{P} CLIQUE

Proof: Let ϕ be a formula with k clauses. Generate an undirected graph G :
For each clause in ϕ, make a node for each literal. Make edge between every pair of nodes, except:

1. Nodes in the same clause
2. Nodes that are negations of each other.

Need to show: $\boldsymbol{\phi}$ is satisfiable $\Leftrightarrow \boldsymbol{G}$ has a \boldsymbol{k}-clique.

$$
\begin{aligned}
\phi= & \left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge \\
& \left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge \\
& \left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)
\end{aligned}
$$

