CLIQUE CSCI 338 Announcement:

- CIA representatives speaking to ESOF 322 for first 10-20 minutes.
- REID 103 @ 12:00.
- You are invited.

NP-Complete

How to show problem *B* is in *NP*-Complete:

- 1. Show *B* is in *NP*.
- 2. Pick some known *NP*-Complete problem *A*.
- 3. Show how generic instances of A can be translated into instances of B.
- 4. Show that the translation process runs in polynomial time.
- 5. Show that if the answer to A's instance is 'yes', the answer to B's instance is also 'yes'.
- 6. Show that if the answer to *B*'s instance is 'yes', the answer to *A*'s instance is also 'yes'.

<u>Clique</u>: a subgraph where every pair of nodes share an edge (i.e. a complete subgraph).

<u>*k*-Clique</u>: A clique that contains k vertices.

 $CLIQUE = \{\langle G, k \rangle: G \text{ is an undirected graph with a } k$ -clique $\}$

NP-Complete

How to show problem *B* is in *NP*-Complete:

1. Show *B* is in *NP*.

2. Pick some known *NP*-Complete problem *A*.

- 3. Show how generic instances of A can be translated into instances of B.
- 4. Show that the translation process runs in polynomial time.
- 5. Show that if the answer to A's instance is 'yes', the answer to B's instance is also 'yes'.
- 6. Show that if the answer to *B*'s instance is 'yes', the answer to *A*'s instance is also 'yes'.

Claim: $3SAT \leq_P CLIQUE$

Proof: Let ϕ be a formula with k clauses. Generate an undirected graph G:

For each Need to show: ϕ is satisfiable \Leftrightarrow *G* has a *k*-clique. en every pair of noues, except:

 χ_2

 $\overline{\chi_1}$

 χ_2

 x_2

 χ_2

 χ_1

 χ_1

 χ_1

 χ_2

- 1. Nodes in the same clause
- 2. Nodes that are negations of each other.

$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

Claim: $3SAT \leq_P CLIQUE$ Proof: ϕ is satisfiable $\Leftrightarrow G$ has a k-clique.

- 1. Nodes in the same clause
- 2. Nodes that are negations of each other.

Claim: $3SAT \leq_P CLIQUE$ Proof: ϕ is satisfiable $\Leftrightarrow G$ has a k-clique.

 \Rightarrow Suppose ϕ is satisfiable. Then...

- 1. Nodes in the same clause
- 2. Nodes that are negations of each other.

$$\phi = (x_1 \lor x_1 \lor x_2) \land \\ (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land \\ (\overline{x_1} \lor x_2 \lor x_2)$$

Claim: $3SAT \leq_P CLIQUE$ Proof: ϕ is satisfiable $\Leftrightarrow G$ has a k-clique.

 \Rightarrow Suppose ϕ is satisfiable. Then at least one literal is true in each clause.

- 1. Nodes in the same clause
- 2. Nodes that are negations of each other.

$$\phi = (x_1 \lor x_1 \lor x_2) \land \\ (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land \\ (\overline{x_1} \lor x_2 \lor x_2)$$

Claim: $3SAT \leq_P CLIQUE$ Proof: ϕ is satisfiable \Leftrightarrow G has a k-clique.

⇒ Suppose ϕ is satisfiable. Then at least one literal is true in each clause. For each clause, select a node in *G* for one of the true literals.

$$\phi = (x_1 \lor x_1 \lor x_2) \land \\ (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land \\ (\overline{x_1} \lor x_2 \lor x_2)$$

- 1. Nodes in the same clause
- 2. Nodes that are negations of each other.

Claim: $3SAT \leq_P CLIQUE$ Proof: ϕ is satisfiable $\Leftrightarrow G$ has a k-clique.

⇒ Suppose ϕ is satisfiable. Then at least one literal is true in each clause. For each clause, select a node in *G* for one of the true literals. This forms a *k*-clique, since...

$$\phi = (x_1 \lor x_1 \lor x_2) \land \\ (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land \\ (\overline{x_1} \lor x_2 \lor x_2)$$

- 1. Nodes in the same clause
- 2. Nodes that are negations of each other.

Claim: $3SAT \leq_P CLIQUE$ Proof: ϕ is satisfiable $\Leftrightarrow G$ has a k-clique.

⇒ Suppose ϕ is satisfiable. Then at least one literal is true in each clause. For each clause, select a node in *G* for one of the true literals. This forms a *k*-clique, since *k* nodes are selected and each is joined by an edge.

$$\phi = (x_1 \lor x_1 \lor x_2) \land \\ (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land \\ (\overline{x_1} \lor x_2 \lor x_2)$$

- 1. Nodes in the same clause
- 2. Nodes that are negations of each other.

Claim: $3SAT \leq_P CLIQUE$ Proof: ϕ is satisfiable $\Leftrightarrow G$ has a k-clique.

⇒ Suppose ϕ is satisfiable. Then at least one literal is true in each clause. For each clause, select a node in *G* for one of the true literals. This forms a *k*-clique, since *k* nodes are selected and each is joined by an edge.

$$\phi = (x_1 \lor x_1 \lor x_2) \land \\ (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land \\ (\overline{x_1} \lor x_2 \lor x_2)$$

For each clause in ϕ , make a node for each literal. Make edge between every pair of nodes, except:

- 1. Nodes in the same clause
- 2. Nodes that are negations of

 χ_2

 χ_2

 $\overline{\chi_1}$

 χ_2

 χ_2

each other.

 χ_1

NP-Complete

How to show problem *B* is in *NP*-Complete:

1. Show *B* is in *NP*.

2. Pick some known *NP*-Complete problem *A*.

- 3. Show how generic instances of A can be translated into instances of B.
- 4. Show that the translation process runs in polynomial time.

5. Show that if the answer to A's instance is 'yes', the answer to

B's instance is also 'yes'.

6. Show that if the answer to *B*'s instance is 'yes', the answer to *A*'s instance is also 'yes'.

Claim: $3SAT \leq_P CLIQUE$ Proof: ϕ is satisfiable $\Leftrightarrow G$ has a k-clique.

 \Rightarrow Suppose ϕ is satisfiable. Then at least one literal is true in each clause. For each clause, select a node in G for one of the true literals. This forms a k-clique, since k nodes are selected and each is joined by an edge.

 \leftarrow Suppose *G* has a *k*-clique.

- 1. Nodes in the same clause
- 2. Nodes that are negations of each other.

Claim: $3SAT \leq_P CLIQUE$ Proof: ϕ is satisfiable $\Leftrightarrow G$ has a k-clique.

 \Rightarrow Suppose ϕ is satisfiable. Then at least one literal is true in each clause. For each clause, select a node in G for one of the true literals. This forms a k-clique, since k nodes are selected and each is joined by an edge.

 \Leftarrow Suppose *G* has a *k*-clique. Then there is a non-contradictory **node** from the *k*-clique in each clause.

- 1. Nodes in the same clause
- 2. Nodes that are negations of each other.

Claim: $3SAT \leq_P CLIQUE$ Proof: ϕ is satisfiable $\Leftrightarrow G$ has a k-clique.

⇒ Suppose ϕ is satisfiable. Then at least one literal is true in each clause. For each clause, select a node in *G* for one of the true literals. This forms a *k*-clique, since *k* nodes are selected and each is joined by an edge.

 \Leftarrow Suppose *G* has a *k*-clique. Then there is a **non-contradictory node** from the *k*-clique in each clause. (nodes in the same clause can't share an edge!)

For each clause in ϕ , make a node for each literal. Make edge between every pair of nodes, except:

 Nodes in the same clause
Nodes that are negations of each other.

Claim: $3SAT \leq_P CLIQUE$ Proof: ϕ is satisfiable $\Leftrightarrow G$ has a k-clique.

 $\Rightarrow \text{Suppose } \phi \text{ is satisfiable. Then at least} \\ \text{one } \phi = (x_1 \lor x_1 \lor x_2) \land \text{For each} \\ \text{claus } (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land \text{e of the true} \\ \text{litera} (\overline{x_1} \lor x_2 \lor x_2) \land \text{e of the true} \\ \text{are selected and each is joined by an edge.}$

 \Leftarrow Suppose *G* has a *k*-clique. Then there is a non-contradictory **node** from the *k*-clique in each clause.

- 1. Nodes in the same clause
- 2. Nodes that are negations of each other.

Claim: $3SAT \leq_P CLIQUE$ Proof: ϕ is satisfiable $\Leftrightarrow G$ has a k-clique.

 $\Rightarrow \text{Suppose } \phi \text{ is satisfiable. Then at least} \\ \text{one } \phi = (x_1 \lor x_1 \lor x_2) \land \text{For each} \\ \text{claus } (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land \text{e of the true} \\ \text{litera} (\overline{x_1} \lor x_2 \lor \overline{x_2}) \land \text{e of the true} \\ \text{are selected and each is joined by an edge.}$

 \Leftarrow Suppose *G* has a *k*-clique. Then there is a non-contradictory node from the *k*-clique in each clause. Making each node in the *k*-clique true results in...

- 1. Nodes in the same clause
- 2. Nodes that are negations of each other.

Claim: $3SAT \leq_P CLIQUE$ Proof: ϕ is satisfiable $\Leftrightarrow G$ has a k-clique.

 $\Rightarrow \text{Suppose } \phi \text{ is satisfiable. Then at least} \\ \text{one } \phi = (x_1 \lor x_1 \lor x_2) \land \text{For each} \\ \text{claus } (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land \text{e of the true} \\ \text{litera} (\overline{x_1} \lor x_2 \lor \overline{x_2}) \land \text{e of the true} \\ \text{are selected and each is joined by an edge.}$

 \Leftarrow Suppose *G* has a *k*-clique. Then there is a non-contradictory node from the *k*-clique in each clause. Making each node in the *k*-clique true results in ϕ being true.

- 1. Nodes in the same clause
- 2. Nodes that are negations of each other.

NP-Complete

How to show problem *B* is in *NP*-Complete:

1. Show *B* is in *NP*.

2. Pick some known *NP*-Complete problem *A*.

- 3. Show how generic instances of A can be translated into instances of B.
- 4. Show that the translation process runs in polynomial time.

5. Show that if the answer to A's instance is 'yes', the answer to

B's instance is also 'yes'.

6. Show that if the answer to B's instance is 'yes', the answer to A's instance is also 'yes'.

Claim: $3SAT \leq_P CLIQUE$ Proof: ϕ is satisfiable \Leftrightarrow G has a k-clique.

 \Rightarrow Suppose ϕ is satisfiable. Then at least one literal is true in each clause. For each clause, select a node in G for one of the true literals. This forms a k-clique, since k nodes are selected and each is joined by an edge.

 \Leftarrow Suppose *G* has a *k*-clique. Then there is a node from the *k*-clique in each clause. Making each node in the *k*-clique true results in ϕ being true.

- 1. Nodes in the same clause
- 2. Nodes that are negations of each other.

Claim: $CLIQUE \in NP$ -Complete

Proof:

1. CLIQUE $\in NP$ \checkmark

Given a graph G = (V, E), where |V| = n, and a subset $S \subseteq V$, where $|S| \ge k$, check if all pairs of vertices in S are in E. Running time: $O(n^2)$.

2. $3SAT \leq_P CLIQUE$

 $\therefore CLIQUE \in NP - C$

Vertex Cover (VC)

Vertex Cover: Given graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \le k$, such that each edge in E contains an end point in V'?

Vertex Cover (VC)

Claim: $VC \in NP$ -Complete

Proof:

1. VC $\in NP$

2. ??? \leq_P VC

Vertex Cover (VC)

Claim: $VC \in NP$ -Complete

Proof:

1. VC $\in NP$

2. $CLIQUE \leq_P VC$

Vertex Cover (VC)

Vertex Cover (VC)

Vertex Cover (VC)

Vertex Cover (VC)

Vertex Cover (VC)

 $\exists k - Clique \iff \exists (n-k) - Vertex Cover$