Announcement:

• CIA representatives speaking to ESOF 322 for first 10-20 minutes.

• REID 103 @ 12:00.

• You are invited.
How to show problem B is in NP-Complete:

1. Show B is in NP.
2. Pick some known NP-Complete problem A.
3. Show how generic instances of A can be translated into instances of B.
4. Show that the translation process runs in polynomial time.
5. Show that if the answer to A’s instance is ‘yes’, the answer to B’s instance is also ‘yes’.
6. Show that if the answer to B’s instance is ‘yes’, the answer to A’s instance is also ‘yes’.
CLIQUE

Clique: a subgraph where every pair of nodes share an edge (i.e. a complete subgraph).

k-Clique: A clique that contains k vertices.

\[
\text{CLIQUE} = \{ \langle G, k \rangle : G \text{ is an undirected graph with a } k\text{-clique} \}\]
NP-Complete

How to show problem B is in NP-Complete:

1. Show B is in NP.
2. Pick some known NP-Complete problem A.
3. Show how generic instances of A can be translated into instances of B.
4. Show that the translation process runs in polynomial time.
5. Show that if the answer to A’s instance is ‘yes’, the answer to B’s instance is also ‘yes’.
6. Show that if the answer to B’s instance is ‘yes’, the answer to A’s instance is also ‘yes’.
Claim: $3SAT \leq_P CLIQUE$

Proof: Let ϕ be a formula with k clauses. Generate an undirected graph G:

For each clause in ϕ, make a node for each literal. Make an edge between every pair of nodes, except:

1. Nodes in the same clause
2. Nodes that are negations of each other.

Need to show: ϕ is satisfiable $\iff G$ has a k-clique.

\[
\phi = \left(x_1 \lor x_1 \lor x_2 \right) \land \left(\overline{x_1} \lor \overline{x_2} \lor \overline{x_2} \right) \land \left(\overline{x_1} \lor x_2 \lor x_2 \right) \land \left(x_1 \lor \overline{x_2} \lor \overline{x_2} \right)
\]
Claim: $3SAT \leq_p CLIQUE$

Proof: ϕ is satisfiable $\iff G$ has a k-clique.

For each clause in ϕ, make a node for each literal. Make edge between every pair of nodes, except:
1. Nodes in the same clause
2. Nodes that are negations of each other.
Claim: $3SAT \leq_p CLIQUE$

Proof: ϕ is satisfiable $\iff G$ has a k-clique.

\Rightarrow Suppose ϕ is satisfiable. Then...

$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

For each clause in ϕ, make a node for each literal. Make edge between every pair of nodes, except:

1. Nodes in the same clause
2. Nodes that are negations of each other.
Claim: 3SAT \leq_p CLIQUE

Proof: \(\phi \) is satisfiable \iff \(G \) has a \(k \)-clique.

\(\Rightarrow \) Suppose \(\phi \) is satisfiable. Then at least one literal is true in each clause.

\[
\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)
\]

For each clause in \(\phi \), make a node for each literal. Make edge between every pair of nodes, except:

1. Nodes in the same clause
2. Nodes that are negations of each other.
Claim: $3SAT \leq_p CLIQUE$

Proof: ϕ is satisfiable \iff G has a k-clique.

\Rightarrow Suppose ϕ is satisfiable. Then at least one literal is true in each clause. For each clause, select a node in G for one of the true literals.

$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor x_2 \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

For each clause in ϕ, make a node for each literal. Make edge between every pair of nodes, except:

1. Nodes in the same clause
2. Nodes that are negations of each other.
Claim: $3SAT \leq_p CLIQUE$

Proof: ϕ is satisfiable $\iff G$ has a k-clique.

\Rightarrow Suppose ϕ is satisfiable. Then at least one literal is true in each clause. For each clause, select a node in G for one of the true literals. This forms a k-clique, since...

$$
\phi = (x_1 \lor x_1 \lor x_2) \land \\
\neg(x_1 \lor x_2 \lor x_2) \land \\
\neg(x_1 \lor x_2 \lor x_2)
$$

For each clause in ϕ, make a node for each literal. Make edge between every pair of nodes, except:

1. Nodes in the same clause
2. Nodes that are negations of each other.

![Graph example](image)
Claim: 3SAT \leq_P CLIQUE

Proof: ϕ is satisfiable $\iff G$ has a k-clique.

\Rightarrow Suppose ϕ is satisfiable. Then at least one literal is true in each clause. For each clause, select a node in G for one of the true literals. This forms a k-clique, since k nodes are selected and each is joined by an edge.

$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor x_2 \lor x_2) \land (\overline{x_1} \lor x_2 \lor x_2)$$

For each clause in ϕ, make a node for each literal. Make edge between every pair of nodes, except:
1. Nodes in the same clause
2. Nodes that are negations of each other.
Claim: $3SAT \leq_p CLIQUE$

Proof: ϕ is satisfiable $\iff G$ has a k-clique.

\Rightarrow Suppose ϕ is satisfiable. Then at least one literal is true in each clause. For each clause, select a node in G for one of the true literals. This forms a k-clique, since k nodes are selected and each is joined by an edge.

\[
\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_2) \land (\overline{x}_1 \lor x_2 \lor x_2)
\]

For each clause in ϕ, make a node for each literal. Make edge between every pair of nodes, except:

1. Nodes in the same clause
2. Nodes that are negations of each other.
NP-Complete

How to show problem B is in NP-Complete:

1. Show B is in NP.
2. Pick some known NP-Complete problem A.
3. Show how generic instances of A can be translated into instances of B.
4. Show that the translation process runs in polynomial time.
5. Show that if the answer to A’s instance is ‘yes’, the answer to B’s instance is also ‘yes’.
6. Show that if the answer to B’s instance is ‘yes’, the answer to A’s instance is also ‘yes’.
Claim: $3SAT \leq_P CLIQUE$

Proof: ϕ is satisfiable $\iff G$ has a k-clique.

\Rightarrow Suppose ϕ is satisfiable. Then at least one literal is true in each clause. For each clause, select a node in G for one of the true literals. This forms a k-clique, since k nodes are selected and each is joined by an edge.

\Leftarrow Suppose G has a k-clique.

For each clause in ϕ, make a node for each literal. Make edge between every pair of nodes, except:

1. Nodes in the same clause
2. Nodes that are negations of each other.
CLIQUE

Claim: $3SAT \leq_p CLIQUE$

Proof: ϕ is satisfiable \iff G has a k-clique.

\Rightarrow Suppose ϕ is satisfiable. Then at least one literal is true in each clause. For each clause, select a node in G for one of the true literals. This forms a k-clique, since k nodes are selected and each is joined by an edge.

\Leftarrow Suppose G has a k-clique. Then there is a non-contradictory node from the k-clique in each clause.

For each clause in ϕ, make a node for each literal. Make edge between every pair of nodes, except:

1. Nodes in the same clause
2. Nodes that are negations of each other.
Claim: 3SAT \leq_p CLIQUE

Proof: \phi is satisfiable \iff G has a \(k\)-clique.

\[\Rightarrow \text{Suppose } \phi \text{ is satisfiable. Then at least one literal is true in each clause. For each clause, select a node in } G \text{ for one of the true literals. This forms a } k\text{-clique, since } k \text{ nodes are selected and each is joined by an edge.} \]

\[\Leftarrow \text{Suppose } G \text{ has a } k\text{-clique. Then there is a non-contradictory node from the } k\text{-clique in each clause. (nodes in the same clause can’t share an edge!)} \]

For each clause in \(\phi\), make a node for each literal. Make edge between every pair of nodes, except:

1. Nodes in the same clause
2. Nodes that are negations of each other.
CLIQUE

Claim: $3SAT \leq_p CLIQUE$

Proof: ϕ is satisfiable $\iff G$ has a k-clique.

\Rightarrow Suppose ϕ is satisfiable. Then at least one literal in $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$ is true. For each clause, select a node in G for one of the true literals. This forms a k-clique, since k nodes are selected and each is joined by an edge.

\Leftarrow Suppose G has a k-clique. Then there is a non-contradictory node from the k-clique in each clause.

For each clause in ϕ, make a node for each literal. Make edge between every pair of nodes, except:

1. Nodes in the same clause
2. Nodes that are negations of each other.

$$\phi = x_1 \lor \overline{x_1} \lor x_2 \lor \overline{x_2} \land \overline{x_1} \lor x_2 \lor x_2$$
Claim: $3SAT \leq_p CLIQUE$

Proof: ϕ is satisfiable $\iff G$ has a k-clique.

\Rightarrow Suppose ϕ is satisfiable. Then at least one literal is true in each clause. For each clause $\phi = (x_1 \lor \overline{x}_1 \lor x_2) \land (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_2) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_2)$. Since k nodes are selected and each is joined by an edge.

\Leftarrow Suppose G has a k-clique. Then there is a non-contradictory node from the k-clique in each clause. Making each node in the k-clique true results in...

For each clause in ϕ, make a node for each literal. Make edge between every pair of nodes, except:

1. Nodes in the same clause
2. Nodes that are negations of each other.

$\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_2$
CLIQUE

Claim: $3SAT \leq_p CLIQUE$

Proof: ϕ is satisfiable $\iff G$ has a k-clique.

\Rightarrow Suppose ϕ is satisfiable. Then at least one literal is true in each clause of $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$. For each clause, select a node in G for one of the true literals. Since k nodes are selected and each is joined by an edge, this forms a k-clique.

\Leftarrow Suppose G has a k-clique. Then there is a non-contradictory node from the k-clique in each clause. Making each node in the k-clique true results in ϕ being true.

For each clause in ϕ, make a node for each literal. Make edge between every pair of nodes, except:
1. Nodes in the same clause
2. Nodes that are negations of each other.
NP-Complete

How to show problem B is in NP-Complete:

1. Show B is in NP.
2. Pick some known NP-Complete problem A.
3. Show how generic instances of A can be translated into instances of B.
4. Show that the translation process runs in polynomial time.
5. Show that if the answer to A’s instance is ‘yes’, the answer to B’s instance is also ‘yes’.
6. Show that if the answer to B’s instance is ‘yes’, the answer to A’s instance is also ‘yes’.
Claim: $3SAT \leq_p CLIQUE$

Proof: ϕ is satisfiable $\iff G$ has a k-clique.

\Rightarrow Suppose ϕ is satisfiable. Then at least one literal is true in each clause. For each clause, select a node in G for one of the true literals. This forms a k-clique, since k nodes are selected and each is joined by an edge.

\Leftarrow Suppose G has a k-clique. Then there is a node from the k-clique in each clause. Making each node in the k-clique true results in ϕ being true.

For each clause in ϕ, make a node for each literal. Make edge between every pair of nodes, except:

1. Nodes in the same clause
2. Nodes that are negations of each other.
CLAIM

Claim: CLIQUE ∈ NP-Complete
Proof:

1. CLIQUE ∈ NP ✓
 Given a graph $G = (V, E)$, where $|V| = n$, and a subset $S \subseteq V$, where $|S| \geq k$, check if all pairs of vertices in S are in E. Running time: $O(n^2)$.

2. 3SAT \leq_p CLIQUE ✓

\therefore CLIQUE ∈ NP − C
$NP - C$

- All of NP
 - SAT
 - $3SAT$
 - $CLIQUE$

- "Can be solved by"
Vertex Cover (VC)

Vertex Cover: Given graph $G = (V, E)$ and integer $k \leq |V|$, is there $V' \subseteq V$, with $|V'| \leq k$, such that each edge in E contains an end point in V'?
Vertex Cover (VC)

Claim: \(VC \in NP \)-Complete

Proof:

1. \(VC \in NP \)

2. ??? \(\leq_p VC \)
Vertex Cover (VC)

Claim: $VC \in NP$-Complete

Proof:
1. $VC \in NP$
2. $CLIQUE \leq_p VC$
Vertex Cover (VC)

Claim: $CLIQUE \leq_p VC$

Proof:

Clique \Rightarrow Vertex Cover
Claim: $CLIQUE \leq_p VC$

Proof:
Claim: $CLIQUE \leq_p VC$

Proof:
Claim: $CLIQUE \leq_p VC$

Proof:

Clique \[\rightarrow \] Vertex Cover
Claim: $CLIQUE \leq_P VC$

Proof:

$\exists k - Clique \iff \exists (n - k) - Vertex\ Cover$