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Vertex Cover (VC)

Vertex Cover: Given graph G = (V,E) and integer k < |V|, isthere V' C V/,
with |V'| < k, such that each edge in E contains an end pointin V/'?
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Claim: VC € NP-Complete
Proof:

1. VCe NP

2. CLIQUE <pVC
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Claim: CLIQUE <pVC
Proof: Let G = (V, E), k be input to the clique problem, where |V| = n.
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and making them an edge in E if they are not an edge in E. 0(n?) time
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Project 3

Report:
e Introduction

* Algorithm descriptions
* How do they work?
* How do you know they are valid?
* How do you know they are optimal (if they are)?
* Running times?
e Evaluation description
 What metrics are you testing?
* How many iterations of each scenario did you do?
 How did you generate your graphs?

e Results

* Plots?
 What are your conclusions?



