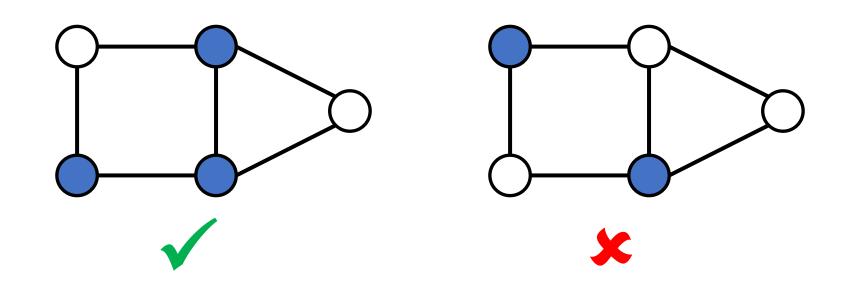
Vertex Cover CSCI 338

Vertex Cover: Given graph G = (V, E) and integer $k \le |V|$, is there $V' \subseteq V$, with $|V'| \le k$, such that each edge in E contains an end point in V'?



Vertex Cover (VC)

Claim: $VC \in NP$ -Complete

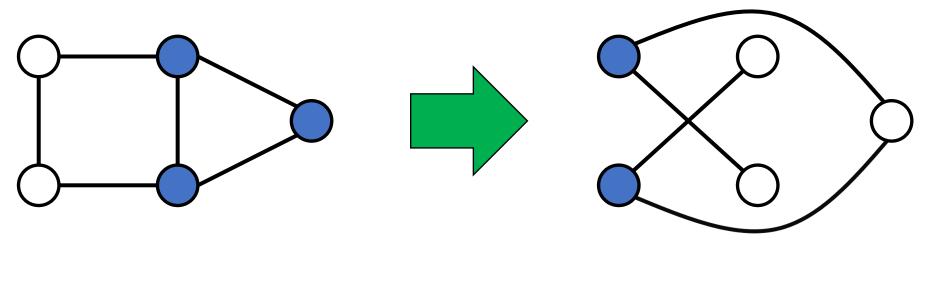
Proof:

1. VC $\in NP$

2. $CLIQUE \leq_P VC$

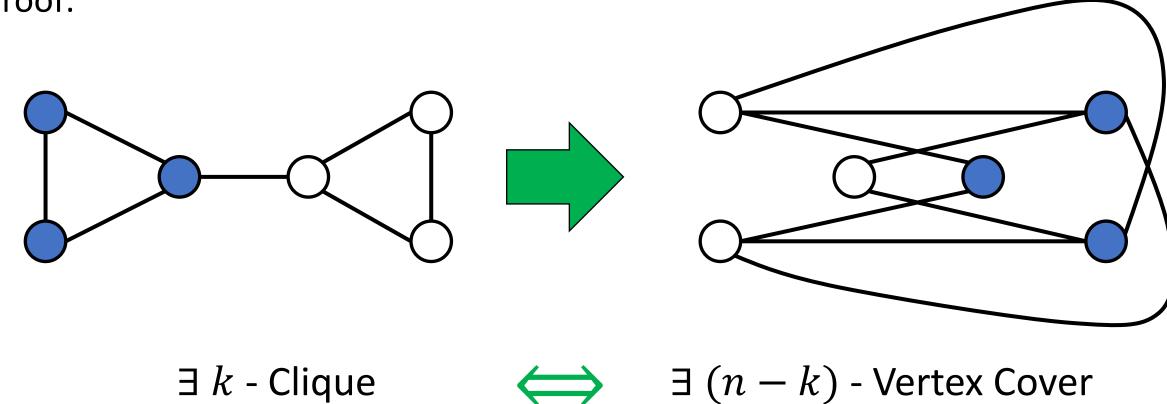
Vertex Cover (VC)

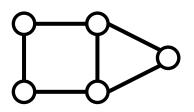
Claim: $CLIQUE \leq_P VC$ Proof:



 $\exists k - Clique \iff \exists (n-k) - Vertex Cover$

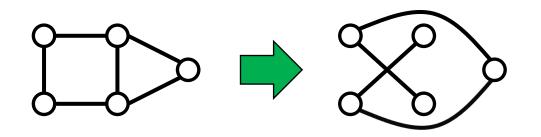
Claim: $CLIQUE \leq_P VC$ Proof:





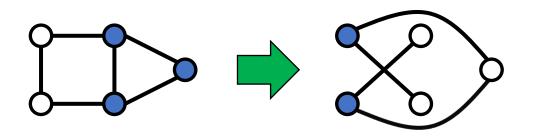
Claim: $CLIQUE \leq_P VC$

Proof: Let G = (V, E), k be input to the clique problem, where |V| = n.



Claim: $CLIQUE \leq_P VC$

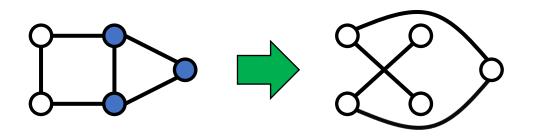
Proof: Let G = (V, E), k be input to the clique problem, where |V| = n. Construct the complement graph $\overline{G} = (V, \overline{E})$ by checking each pair of vertices and making them an edge in \overline{E} if they are not an edge in E. $O(n^2)$ time



Claim: $CLIQUE \leq_P VC$

Proof: Let G = (V, E), k be input to the clique problem, where |V| = n. Construct the complement graph $\overline{G} = (V, \overline{E})$ by checking each pair of vertices and making them an edge in \overline{E} if they are not an edge in E. $O(n^2)$ time

G has a *k*-clique $\Leftrightarrow \overline{G}$ has an (n - k)-VC.

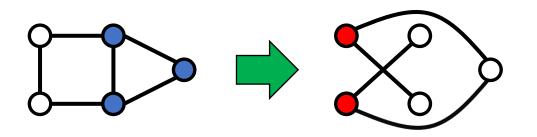


Claim: $CLIQUE \leq_P VC$

Proof: Let G = (V, E), k be input to the clique problem, where |V| = n. Construct the complement graph $\overline{G} = (V, \overline{E})$ by checking each pair of vertices and making them an edge in \overline{E} if they are not an edge in E. $O(n^2)$ time

G has a *k*-clique $\Leftrightarrow \overline{G}$ has an (n - k)-VC.

 \Rightarrow Suppose *G* has a *k*-clique *Q*.

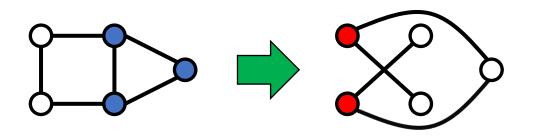


Claim: $CLIQUE \leq_P VC$

Proof: Let G = (V, E), k be input to the clique problem, where |V| = n. Construct the complement graph $\overline{G} = (V, \overline{E})$ by checking each pair of vertices and making them an edge in \overline{E} if they are not an edge in E. $O(n^2)$ time

G has a *k*-clique $\Leftrightarrow \overline{G}$ has an (n - k)-VC.

 \Rightarrow Suppose G has a k-clique Q. Consider $C = V \setminus Q$.

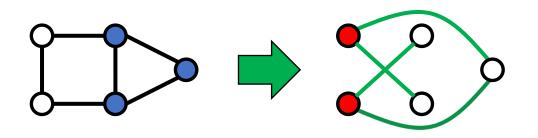


Claim: $CLIQUE \leq_P VC$

Proof: Let G = (V, E), k be input to the clique problem, where |V| = n. Construct the complement graph $\overline{G} = (V, \overline{E})$ by checking each pair of vertices and making them an edge in \overline{E} if they are not an edge in E. $O(n^2)$ time

G has a *k*-clique $\Leftrightarrow \overline{G}$ has an (n - k)-VC.

 \Rightarrow Suppose G has a k-clique Q. Consider $C = V \setminus Q$. Show C is an (n - k)-VC.

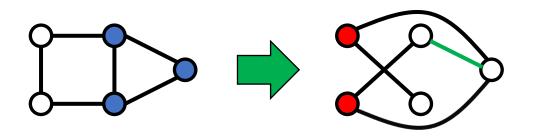


Claim: $CLIQUE \leq_P VC$

Proof: Let G = (V, E), k be input to the clique problem, where |V| = n. Construct the complement graph $\overline{G} = (V, \overline{E})$ by checking each pair of vertices and making them an edge in \overline{E} if they are not an edge in E. $O(n^2)$ time

G has a *k*-clique $\Leftrightarrow \overline{G}$ has an (n - k)-VC.

⇒ Suppose *G* has a *k*-clique *Q*. Consider $C = V \setminus Q$. For *C* to be a VC of \overline{G} , each edge in \overline{E} must contain a vertex from *C*.

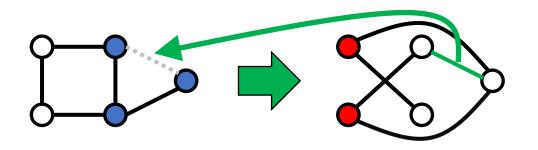


Claim: $CLIQUE \leq_P VC$

Proof: Let G = (V, E), k be input to the clique problem, where |V| = n. Construct the complement graph $\overline{G} = (V, \overline{E})$ by checking each pair of vertices and making them an edge in \overline{E} if they are not an edge in E. $O(n^2)$ time

G has a *k*-clique $\Leftrightarrow \overline{G}$ has an (n - k)-VC.

⇒ Suppose *G* has a *k*-clique *Q*. Consider $C = V \setminus Q$. For *C* to be a VC of \overline{G} , each edge in \overline{E} must contain a vertex from *C*. Consider an edge *e* in \overline{E} where neither vertex is in *C*...

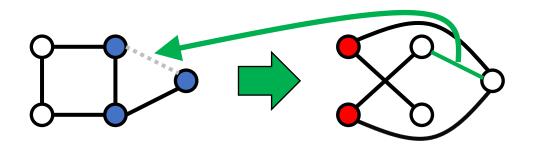


Claim: $CLIQUE \leq_P VC$

Proof: Let G = (V, E), k be input to the clique problem, where |V| = n. Construct the complement graph $\overline{G} = (V, \overline{E})$ by checking each pair of vertices and making them an edge in \overline{E} if they are not an edge in E. $O(n^2)$ time

G has a *k*-clique $\Leftrightarrow \overline{G}$ has an (n - k)-VC.

⇒ Suppose *G* has a *k*-clique *Q*. Consider $C = V \setminus Q$. For *C* to be a VC of \overline{G} , each edge in \overline{E} must contain a vertex from *C*. Consider an edge *e* in \overline{E} where neither vertex is in *C*. Thus, both vertices are in *Q*.

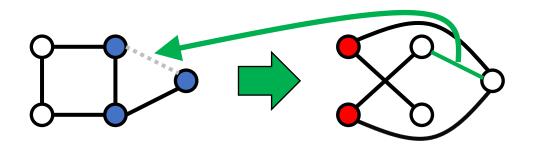


Claim: $CLIQUE \leq_P VC$

Proof: Let G = (V, E), k be input to the clique problem, where |V| = n. Construct the complement graph $\overline{G} = (V, \overline{E})$ by checking each pair of vertices and making them an edge in \overline{E} if they are not an edge in E. $O(n^2)$ time

G has a *k*-clique $\Leftrightarrow \overline{G}$ has an (n - k)-VC.

⇒ Suppose *G* has a *k*-clique *Q*. Consider $C = V \setminus Q$. For *C* to be a VC of \overline{G} , each edge in \overline{E} must contain a vertex from *C*. Consider an edge *e* in \overline{E} where neither vertex is in *C*. Thus, both vertices are in *Q*. But *Q* is a clique in *G*, which means that $e \in E$

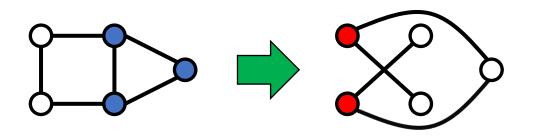


Claim: $CLIQUE \leq_P VC$

Proof: Let G = (V, E), k be input to the clique problem, where |V| = n. Construct the complement graph $\overline{G} = (V, \overline{E})$ by checking each pair of vertices and making them an edge in \overline{E} if they are not an edge in E. $O(n^2)$ time

G has a *k*-clique $\Leftrightarrow \overline{G}$ has an (n - k)-VC.

⇒ Suppose *G* has a *k*-clique *Q*. Consider $C = V \setminus Q$. For *C* to be a VC of \overline{G} , each edge in \overline{E} must contain a vertex from *C*. Consider an edge *e* in \overline{E} where neither vertex is in *C*. Thus, both vertices are in *Q*. But *Q* is a clique in *G*, which means that $e \in E$, which contradicts the construction of \overline{G} . Therefore, *C* is a (n - k)-VC.

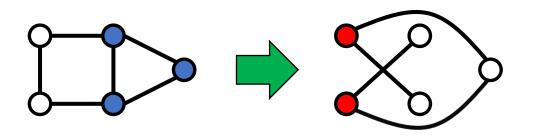


Claim: $CLIQUE \leq_P VC$

Proof: Let G = (V, E), k be input to the clique problem, where |V| = n. Construct the complement graph $\overline{G} = (V, \overline{E})$ by checking each pair of vertices and making them an edge in \overline{E} if they are not an edge in E. $O(n^2)$ time

G has a *k*-clique $\Leftrightarrow \overline{G}$ has an (n - k)-VC.

 \leftarrow Suppose \overline{G} has an (n - k)-VC C. Consider $Q = V \setminus C$. Show Q is a k-clique.

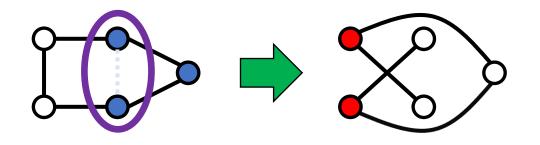


Claim: $CLIQUE \leq_P VC$

Proof: Let G = (V, E), k be input to the clique problem, where |V| = n. Construct the complement graph $\overline{G} = (V, \overline{E})$ by checking each pair of vertices and making them an edge in \overline{E} if they are not an edge in E. $O(n^2)$ time

G has a *k*-clique $\Leftrightarrow \overline{G}$ has an (n - k)-VC.

 \Leftarrow Suppose \overline{G} has an (n - k)-VC C. Consider $Q = V \setminus C$. For Q to be a clique in G, each pair of its vertices must share an edge in E.

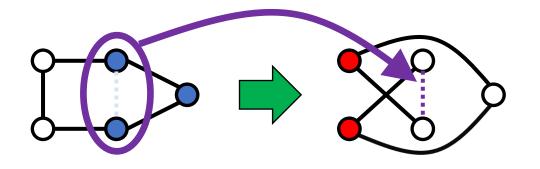


Claim: $CLIQUE \leq_P VC$

Proof: Let G = (V, E), k be input to the clique problem, where |V| = n. Construct the complement graph $\overline{G} = (V, \overline{E})$ by checking each pair of vertices and making them an edge in \overline{E} if they are not an edge in E. $O(n^2)$ time

G has a *k*-clique $\Leftrightarrow \overline{G}$ has an (n - k)-VC.

 \Leftarrow Suppose \overline{G} has an (n - k)-VC C. Consider $Q = V \setminus C$. For Q to be a clique in G, each pair of its vertices must share an edge in E. Consider a pair of vertices in Q that do not share an edge in E.

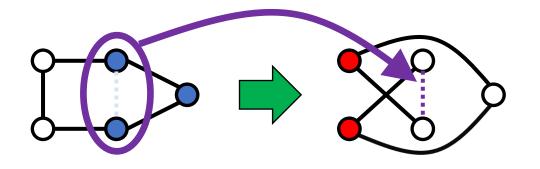


Claim: $CLIQUE \leq_P VC$

Proof: Let G = (V, E), k be input to the clique problem, where |V| = n. Construct the complement graph $\overline{G} = (V, \overline{E})$ by checking each pair of vertices and making them an edge in \overline{E} if they are not an edge in E. $O(n^2)$ time

G has a *k*-clique $\Leftrightarrow \overline{G}$ has an (n - k)-VC.

 \Leftarrow Suppose \overline{G} has an (n - k)-VC C. Consider $Q = V \setminus C$. For Q to be a clique in G, each pair of its vertices must share an edge in E. Consider a **pair of** vertices in Q that do not share an edge in E. This pair must share an edge in \overline{E} .

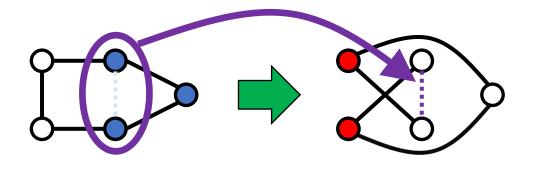


Claim: $CLIQUE \leq_P VC$

Proof: Let G = (V, E), k be input to the clique problem, where |V| = n. Construct the complement graph $\overline{G} = (V, \overline{E})$ by checking each pair of vertices and making them an edge in \overline{E} if they are not an edge in E. $O(n^2)$ time

G has a *k*-clique $\Leftrightarrow \overline{G}$ has an (n - k)-VC.

 \Leftarrow Suppose \overline{G} has an (n - k)-VC C. Consider $Q = V \setminus C$. For Q to be a clique in G, each pair of its vertices must share an edge in E. Consider a **pair of** vertices in Q that do not share an edge in E. This pair must share an edge in \overline{E} . But this edge in \overline{E} does not have either vertex in C (since the pair are both in Q)

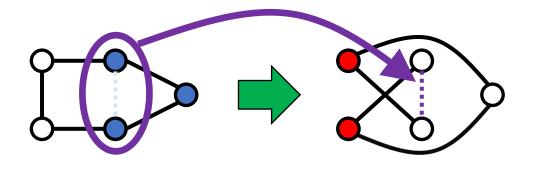


Claim: $CLIQUE \leq_P VC$

Proof: Let G = (V, E), k be input to the clique problem, where |V| = n. Construct the complement graph $\overline{G} = (V, \overline{E})$ by checking each pair of vertices and making them an edge in \overline{E} if they are not an edge in E. $O(n^2)$ time

G has a *k*-clique $\Leftrightarrow \overline{G}$ has an (n - k)-VC.

 \Leftarrow Suppose \overline{G} has an (n - k)-VC C. Consider $Q = V \setminus C$. For Q to be a clique in G, each pair of its vertices must share an edge in E. Consider a **pair of** vertices in Q that do not share an edge in E. This pair must share an edge in \overline{E} . But this edge in \overline{E} does not have either vertex in C (since the pair are both in Q), which contradicts C being a vertex cover.

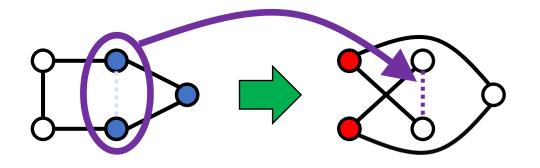


Claim: $CLIQUE \leq_P VC$

Proof: Let G = (V, E), k be input to the clique problem, where |V| = n. Construct the complement graph $\overline{G} = (V, \overline{E})$ by checking each pair of vertices and making them an edge in \overline{E} if they are not an edge in E. $O(n^2)$ time

G has a *k*-clique $\Leftrightarrow \overline{G}$ has an (n - k)-VC.

 \Leftarrow Suppose \overline{G} has an (n - k)-VC C. Consider $Q = V \setminus C$. For Q to be a clique in G, each pair of its vertices must share an edge in E. Consider a **pair of** vertices in Q that do not share an edge in E. This pair must share an edge in \overline{E} . But this edge in \overline{E} does not have either vertex in C (since the pair are both in Q), which contradicts C being a vertex cover. Therefore, Q is a k-clique.



Claim: $CLIQUE \leq_P VC$

Proof: Let G = (V, E), k be input to the clique problem, where |V| = n. Construct the complement graph $\overline{G} = (V, \overline{E})$ by checking each pair of vertices and making them an edge in \overline{E} if they are not an edge in E. $O(n^2)$ time

G has a *k*-clique $\Leftrightarrow \overline{G}$ has an (n - k)-VC.

⇒ Suppose *G* has a *k*-clique *Q*. Consider $C = V \setminus Q$. For *C* to be a VC of \overline{G} , each edge in \overline{E} must contain a vertex from *C*. Consider an edge *e* in \overline{E} where neither vertex is in *C*...

 \Leftarrow Suppose \overline{G} has an (n - k)-VC C. Consider $Q = V \setminus C$. For Q to be a clique in G, each pair of its vertices must share an edge in E. Consider a pair of vertices in Q that do not share an edge in E...

Project 3

Report:

- Introduction
- Algorithm descriptions
 - How do they work?
 - How do you know they are valid?
 - How do you know they are optimal (if they are)?
 - Running times?
- Evaluation description
 - What metrics are you testing?
 - How many iterations of each scenario did you do?
 - How did you generate your graphs?
- Results
 - Plots?
 - What are your conclusions?