Dominating Set CSCI 338

Dominating Set: Given a graph G = (V, E) and integer $k \leq |V|$, is there a subset V' of size $\leq k$, such that every vertex $\in V \setminus V'$ shares an edge with a vertex $\in V'$?

Claim: Dominating Set $\in NP - C$

Proof:

Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

???

Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Dominating Set $\in NP - C$

Proof:

1. Show Dominating Set $\in NP$.

2. Show $A \leq_P$ Dominating Set, for some $A \in NP - C$.

Claim: Dominating Set $\in NP - C$

Proof:

1. Show Dominating Set $\in NP$.

?

Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Dominating Set $\in NP - C$

Proof:

1. Show Dominating Set $\in NP$.

Given G = (V, E), k and a subset V' of V, confirm that $|V| \ge k$ and that for each vertex $v \in V$, $v \in V'$ or there is some edge $(v, u) \in E$ such that $u \in V'$.

 $O(n^3)$ running time \Rightarrow Dominating Set $\in NP$.

Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Dominating Set $\in NP - C$

Proof:

2. Show $A \leq_P$ Dominating Set, for some $A \in NP - C$.

Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Dominating Set $\in NP - C$

Proof:

2. Show $A \leq_P$ Dominating Set, for some $A \in NP - C$.

SAT? 3SAT? Clique? Vertex Cover?

Claim: Vertex Cover \leq_P Dominating Set Proof: Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Vertex Cover \leq_P Dominating Set Proof: Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Vertex Cover \leq_P Dominating Set Proof: Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Vertex Cover \leq_P Dominating Set Proof: Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Vertex Cover \leq_P Dominating Set Proof: Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Vertex Cover \leq_P Dominating Set Proof: Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Vertex Cover \leq_P Dominating Set

Proof: Let G = (V, E), k be input to the vertex cover problem, where |V| = n.

Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Vertex Cover \leq_P Dominating Set

Proof: Let G = (V, E), k be input to the vertex cover problem, where |V| = n. Create G' = (V', E') as follows:

Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Vertex Cover \leq_P Dominating Set

Proof: Let G = (V, E), k be input to the vertex cover problem, where |V| = n. Create G' = (V', E') as follows: For each $e = (u, v) \in E$, add u and v to V' and add e to E'.

Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Vertex Cover \leq_P Dominating Set

Proof: Let G = (V, E), k be input to the vertex cover problem, where |V| = n. Create G' = (V', E') as follows: For each $e = (u, v) \in E$, add u and v to V' and add e to E'. Also, add a new vertex w to V' and add edges (u, w) and (v, w) to E'.

Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Vertex Cover \leq_P Dominating Set

Proof: Let G = (V, E), k be input to the vertex cover problem, where |V| = n. Create G' = (V', E') as follows: For each $e = (u, v) \in E$, add u and v to V' and add e to E'. Also, add a new vertex w to V' and add edges (u, w) and (v, w) to E'. $O(n + n^2 + n^2 + 2n^2) = O(n^2)$ time.

Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Vertex Cover \leq_P Dominating Set

Proof: Turn G = (V, E) into G' = (V', E') as follows: For each $e = (u, v) \in E$, add u and v to V' and add e to E'. Also, add a new vertex w to V' and add edges (u, w) and (v, w) to E'. $O(n + n^2 + n^2 + 2n^2) = O(n^2)$ time.

Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Vertex Cover \leq_P Dominating Set

Proof: Turn G = (V, E) into G' = (V', E') as follows: For each $e = (u, v) \in E$, add u and v to V' and add e to E'. Also, add a new vertex w to V' and add edges (u, w) and (v, w) to E'. $O(n + n^2 + n^2 + 2n^2) = O(n^2)$ time.

G has a k-VC \Leftrightarrow *G*' has a k-DS.