Dominating Set CSCI 338

Dominating Set: Given a graph G = (V, E) and integer $k \leq |V|$, is there a subset V' of size $\leq k$, such that every vertex $\in V \setminus V'$ shares an edge with a vertex $\in V'$?

Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Dominating Set $\in NP - C$

Proof:

1. Show Dominating Set $\in NP$.

Given G = (V, E), k and a subset V' of V, confirm that $|V| \ge k$ and that for each vertex $v \in V$, $v \in V'$ or there is some edge $(v, u) \in E$ such that $u \in V'$.

 $O(n^3)$ running time \Rightarrow Dominating Set $\in NP$.

Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Vertex Cover \leq_P Dominating Set

Proof: Turn G = (V, E) into G' = (V', E') as follows: For each $e = (u, v) \in E$, add u and v to V' and add e to E'. Also, add a new vertex w to V' and add edges (u, w) and (v, w) to E'. $O(n + n^2 + n^2 + 2n^2) = O(n^2)$ time.

Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Vertex Cover \leq_P Dominating Set

Proof: Turn G = (V, E) into G' = (V', E') as follows: For each $e = (u, v) \in E$, add u and v to V' and add e to E'. Also, add a new vertex w to V' and add edges (u, w) and (v, w) to E'. $O(n + n^2 + n^2 + 2n^2) = O(n^2)$ time.

G has a k-VC \Leftrightarrow *G*' has a k-DS.

Vertex Cover: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each edge contains an endpoint from V'?

Claim: Vertex Cover \leq_P Dominating Set

Proof: Turn G = (V, E) into G' = (V', E') as follows: For each $e = (u, v) \in E$, add u and v to V' and add e to E'. Also, add a new vertex w to V' and add edges (u, w) and (v, w) to E'. $O(n + n^2 + n^2 + 2n^2) = O(n^2)$ time.

G has a k-VC \Leftrightarrow *G*' has a k-DS.

 \Rightarrow Suppose G has a k-VC C.

Vertex Cover: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each edge contains an endpoint from V'?

Claim: Vertex Cover \leq_P Dominating Set

Proof: Turn G = (V, E) into G' = (V', E') as follows: For each $e = (u, v) \in E$, add u and v to V' and add e to E'. Also, add a new vertex w to V' and add edges (u, w) and (v, w) to E'. $O(n + n^2 + n^2 + 2n^2) = O(n^2)$ time.

G has a k-VC \Leftrightarrow *G*' has a k-DS.

 \Rightarrow Suppose G has a k-VC C. Then every edge in E has an endpoint in the C.

Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Vertex Cover \leq_P Dominating Set

Proof: Turn G = (V, E) into G' = (V', E') as follows: For each $e = (u, v) \in E$, add u and v to V' and add e to E'. Also, add a new vertex w to V' and add edges (u, w) and (v, w) to E'. $O(n + n^2 + n^2 + 2n^2) = O(n^2)$ time.

G has a k-VC \Leftrightarrow *G*' has a k-DS.

⇒ Suppose *G* has a *k*-VC *C*. Then every edge in *E* has an endpoint in the *C*. Thus, every $v \in V' \cap V$ is adjacent to $u \in C$.

Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Vertex Cover \leq_P Dominating Set

Proof: Turn G = (V, E) into G' = (V', E') as follows: For each $e = (u, v) \in E$, add u and v to V' and add e to E'. Also, add a new vertex w to V' and add edges (u, w) and (v, w) to E'. $O(n + n^2 + n^2 + 2n^2) = O(n^2)$ time.

G has a k-VC \Leftrightarrow *G*' has a k-DS.

⇒ Suppose *G* has a *k*-VC *C*. Then every edge in *E* has an endpoint in the *C*. Thus, every $v \in V' \cap V$ is adjacent to $u \in C$. Also, every new vertex in *V'* (i.e. in *V'**V*) is adjacent to $u \in C$ by our construction.

$$G \qquad G'$$

Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Vertex Cover \leq_P Dominating Set

Proof: Turn G = (V, E) into G' = (V', E') as follows: For each $e = (u, v) \in E$, add u and v to V' and add e to E'. Also, add a new vertex w to V' and add edges (u, w) and (v, w) to E'. $O(n + n^2 + n^2 + 2n^2) = O(n^2)$ time.

G has a k-VC \Leftrightarrow *G*' has a k-DS.

⇒ Suppose *G* has a *k*-VC *C*. Then every edge in *E* has an endpoint in the *C*. Thus, every $v \in V' \cap V$ is adjacent to $u \in C$. Also, every new vertex in *V'* (i.e. in *V'**V*) is adjacent to $u \in C$ by our construction. Thus $C \subseteq V$ is a DS in *G'*.

$$G \qquad G'$$

Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Vertex Cover \leq_P Dominating Set

Proof: Turn G = (V, E) into G' = (V', E') as follows: For each $e = (u, v) \in E$, add u and v to V' and add e to E'. Also, add a new vertex w to V' and add edges (u, w) and (v, w) to E'. $O(n + n^2 + n^2 + 2n^2) = O(n^2)$ time.

G has a k-VC \Leftrightarrow G' has a k-DS.

⇒ Suppose *G* has a *k*-VC *C*. Then every edg Thus, every $v \in V' \cap V$ is adjacent to $u \in C$ in $V' \setminus V$) is adjacent to $u \in C$ by our constru

G'

 \Leftarrow Suppose G' has an k-DS C.

Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Vertex Cover \leq_P Dominating Set

Proof: Turn G = (V, E) into G' = (V', E') as follows: For each $e = (u, v) \in E$, add u and v to V' and add e to E'. Also, add a new vertex w to V' and add edges (u, w) and (v, w) to E'. $O(n + n^2 + n^2 + 2n^2) = O(n^2)$ time.

G has a k-VC \Leftrightarrow G' has a k-DS.

⇒ Suppose *G* has a *k*-VC *C*. Then every edg Thus, every $v \in V' \cap V$ is adjacent to $u \in C$ in $V' \setminus V$) is adjacent to $u \in C$ by our constru

 \Leftarrow Suppose G' has an k-DS C. Then, every vertex is in C or adjacent to a vertex in C.

Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Vertex Cover \leq_P Dominating Set

Proof: Turn G = (V, E) into G' = (V', E') as follows: For each $e = (u, v) \in E$, add u and v to V' and add e to E'. Also, add a new vertex w to V' and add edges (u, w) and (v, w) to E'. $O(n + n^2 + n^2 + 2n^2) = O(n^2)$ time.

G has a k-VC \Leftrightarrow G' has a k-DS.

⇒ Suppose *G* has a *k*-VC *C*. Then every edg Thus, every $v \in V' \cap V$ is adjacent to $u \in C$ in $V' \setminus V$) is adjacent to $u \in C$ by our constru

 \Leftarrow Suppose G' has an k-DS C. Then, every vertex is in C or adjacent to a vertex in C. This means that for every "triangle", at least one of the vertices is in C.

Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Vertex Cover \leq_P Dominating Set

Proof: Turn G = (V, E) into G' = (V', E') as follows: For each $e = (u, v) \in E$, add u and v to V' and add e to E'. Also, add a new vertex w to V' and add edges (u, w) and (v, w) to E'. $O(n + n^2 + n^2 + 2n^2) = O(n^2)$ time.

G has a k-VC \Leftrightarrow *G*' has a k-DS.

⇒ Suppose *G* has a *k*-VC *C*. Then every edg Thus, every $v \in V' \cap V$ is adjacent to $u \in C$ in $V' \setminus V$) is adjacent to $u \in C$ by our constru

 \Leftarrow Suppose G' has an k-DS C. Then, every vertex is in C or adjacent to a vertex in C. This means that for every "triangle", at least one of the vertices is in C. If a vertex in V was selected, the edge in E is covered.

Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Vertex Cover \leq_P Dominating Set

Proof: Turn G = (V, E) into G' = (V', E') as follows: For each $e = (u, v) \in E$, add u and v to V' and add e to E'. Also, add a new vertex w to V' and add edges (u, w) and (v, w) to E'. $O(n + n^2 + n^2 + 2n^2) = O(n^2)$ time.

G has a k-VC \Leftrightarrow *G*' has a k-DS.

⇒ Suppose *G* has a *k*-VC *C*. Then every edg Thus, every $v \in V' \cap V$ is adjacent to $u \in C$ in $V' \setminus V$) is adjacent to $u \in C$ by our constru

 \Leftarrow Suppose G' has an k-DS C. Then, every vertex is in C or adjacent to a vertex in C. This means that for every "triangle", at least one of the vertices is in C. If a vertex in V was selected, the edge in E is covered. If not, ???

Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Vertex Cover \leq_P Dominating Set

Proof: Turn G = (V, E) into G' = (V', E') as follows: For each $e = (u, v) \in E$, add u and v to V' and add e to E'. Also, add a new vertex w to V' and add edges (u, w) and (v, w) to E'. $O(n + n^2 + n^2 + 2n^2) = O(n^2)$ time.

G has a k-VC \Leftrightarrow *G*' has a k-DS.

⇒ Suppose *G* has a *k*-VC *C*. Then every edg Thus, every $v \in V' \cap V$ is adjacent to $u \in C$ in $V' \setminus V$) is adjacent to $u \in C$ by our constru

 \Leftarrow Suppose G' has an k-DS C. Then, every vertex is in C or adjacent to a vertex in C. This means that for every "triangle", at least one of the vertices is in C. If a vertex in V was selected, the edge in E is covered. If not, change the selected vertex to either neighbor in V.

Dominating Set: For G = (V, E) and $k \le |V|, \exists V' \subseteq V, |V'| \le k$, s.t. each $v \in V \setminus V'$ shares an edge with a $u \in V'$?

Claim: Dominating Set $\in NP - C$

Proof:

- 1. Show Dominating Set $\in NP$.
- 2. Show $A \leq_P$ Dominating Set, for some $A \in NP C$.

$$\therefore \text{ Dominating Set} \in NP - C$$

Coping with NP-Completeness

Techniques to handle NP-Complete problems:

- 1. Brute Force.
- 2. Heuristics.
- 3. Approximation Algorithms.
- 4. Fixed-parameter Tractable Algorithms.

Vertex Cover

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Optimization Problem.

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Algorithm:

while uncovered edge exists
select both vertices from uncovered edge

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Algorithm:

while uncovered edge exists
select both vertices from uncovered edge

Iteration: 0

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Algorithm:

while uncovered edge exists
select both vertices from uncovered edge

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Algorithm:

while uncovered edge exists
select both vertices from uncovered edge

while uncovered edge exists
select both vertices from uncovered edge

Consider a set of edges, $E' \subset E$, that do not share vertices.

while uncovered edge exists
select both vertices from uncovered edge

Consider a set of edges, $E' \subset E$, that do not share vertices. Is there a relationship between the minimum vertex cover and |E'|?

while uncovered edge exists
select both vertices from uncovered edge

Consider a set of edges, $E' \subset E$, that do not share vertices. Is there a relationship between the minimum vertex cover and |E'|?

 $|E'| \leq OPT$ Size of actual smallest vertex cover.

while uncovered edge exists
select both vertices from uncovered edge

Consider a set of edges, $E' \subset E$, that do not share vertices. Is there a relationship between the minimum vertex cover and |E'|?

 $|E'| \leq OPT$ Size of actual smallest vertex cover.

If we selected fewer than one vertex per edge, we would not have a vertex cover, because that edge would not be covered!

