Approximation Algorithms CSCl 338

Vertex Cover

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Optimization Problem.

Vertex Cover - Algorithm

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Algorithm:
while uncovered edge exists select both vertices from uncovered edge

Iteration:
0

1

2

Vertex Cover - Performance

while uncovered edge exists select both vertices from uncovered edge

Consider a set of edges, $E^{\prime} \subset E$, that do not share vertices. Is there a relationship between the minimum vertex cover and $\left|E^{\prime}\right|$?

Vertex Cover - Performance

while uncovered edge exists select both vertices from uncovered edge

Consider a set of edges, $E^{\prime} \subset E$, that do not share vertices. Is there a relationship between the minimum vertex cover and $\left|E^{\prime}\right|$?

$$
\left|E^{\prime}\right| \leq \text { OPT }_{\text {Size of actual smallest vertex cover. }}
$$

Vertex Cover - Performance

while uncovered edge exists select both vertices from uncovered edge

Consider a set of edges, $E^{\prime} \subset E$, that do not share vertices. Is there a relationship between the minimum vertex cover and $\left|E^{\prime}\right|$?

$$
\left|E^{\prime}\right| \leq \mathrm{OPT}
$$

Size of actual smallest vertex cover.
If we selected fewer than one vertex per edge, we would not have a vertex cover, because that edge would not be covered!

Vertex Cover - Performance

while uncovered edge exists select both vertices from uncovered edge

Consider a set of edges, $E^{\prime} \subset E$, that do not share vertices. Is there a relationship between the minimum vertex cover and $\left|E^{\prime}\right|$?

$$
\left|E^{\prime}\right| \leq \text { OPT }
$$

Does the size of the algorithm's output relate to a set of edges that do not share vertices?

Vertex Cover - Performance

while uncovered edge exists select both vertices from uncovered edge

Consider a set of edges, $E^{\prime} \subset E$, that do not share vertices. Is there a relationship between the minimum vertex cover and $\left|E^{\prime}\right|$?

$$
\left|E^{\prime}\right| \leq \text { OPT }
$$

Does the size of the algorithm's output relate to a set of edges that do not share vertices?

$$
\mathrm{ALG}=2\left|E^{\prime}\right|
$$

Vertex Cover - Performance

while uncovered edge exists select both vertices from uncovered edge

Consider a set of edges, $E^{\prime} \subset E$, that do not share vertices. Is there a relationship between the minimum vertex cover and $\left|E^{\prime}\right|$?

$$
\left|E^{\prime}\right| \leq \text { OPT }
$$

Does the size of the algorithm's output relate to a set of edges that do not share vertices?

$$
\mathrm{ALG}=2\left|E^{\prime}\right|
$$

$$
\Rightarrow \mathrm{ALG}=2\left|E^{\prime}\right|
$$

Vertex Cover - Performance

while uncovered edge exists select both vertices from uncovered edge

Consider a set of edges, $E^{\prime} \subset E$, that do not share vertices. Is there a relationship between the minimum vertex cover and $\left|E^{\prime}\right|$?

$$
\left|E^{\prime}\right| \leq \text { OPT }
$$

Does the size of the algorithm's output relate to a set of edges that do not share vertices?

$$
\text { ALG }=2\left|E^{\prime}\right|
$$

$$
\Rightarrow \mathrm{ALG}=2\left|E^{\prime}\right| \leq 2 \text { OPT }
$$

Vertex Cover - Performance

while uncovered edge exists select both vertices from uncovered edge

Consider a set of edges, $E^{\prime} \subset E$, that do not share vertices. Is there a relationship between the minimum vertex cover and $\left|E^{\prime}\right|$?

$$
\left|E^{\prime}\right| \leq \text { OPT }
$$

Does the size of the algorithm's output relate to a set of edges that do not share vertices?

$$
\begin{gathered}
\mathrm{ALG}=2\left|E^{\prime}\right| \\
\Rightarrow \mathrm{ALG}=2\left|E^{\prime}\right| \leq 2 \mathrm{OPT} \Rightarrow \mathrm{ALG} \leq 2 \text { OPT }
\end{gathered}
$$

Vertex Cover - Performance

while uncovered edge exists select both vertices from uncovered edge

Consid poly time unless $P=N P$, but this Does t| algorithm is at worst 2-times optimal. do not share vertices?

$$
\begin{gathered}
\mathrm{ALG}=2\left|E^{\prime}\right| \\
\Rightarrow \mathrm{ALG}=2\left|E^{\prime}\right| \leq 2 \mathrm{OPT} \Rightarrow \mathrm{ALG} \leq 2 \text { OPT }
\end{gathered}
$$

Vertex Cover - Performance

while uncovered edge exists select both vertices from uncovered edge

Consid \quad a relatil Vertex Cover is approximable within the Does t| bound $2-\frac{\log \log |V|}{2 \log |V|}$ and inapproximable do not within the bound 1.3606 .

ALG $=2\left|E^{\prime}\right|$
$\Rightarrow \mathrm{ALG}=2\left|E^{\prime}\right| \leq 2$ OPT $\Rightarrow \mathrm{ALG} \leq 2$ OPT

Independent Set

Does the approximation algorithm for Vertex Cover give an approximation algorithm for Independent Set?

Vertex Cover

Independent Set

Minimum Vertex Cover = Maximum Independent Set

Independent Set

Does the approximation algorithm for Vertex Cover give an approximation algorithm for Independent Set?

Vertex Cover

Independent Set

Minimum Vertex Cover = Maximum Independent Set

$$
A L G_{V C} \leq 2 O P T_{V C} \Rightarrow n-A L G_{V C} \geq \frac{1}{?} O P T_{I S}
$$

Independent Set

Does the approximation algorithm for Vertex Cover give an approximation algorithm for Independent Set?

Independent Set

Does the approximation algorithm for Vertex Cover give an approximation algorithm for Independent Set?
Complete Bipartite Graph

ALG

OPT

$$
A L G_{V C} \leq 2 O P T_{V C} \Rightarrow n-A L G_{V C} \geq \frac{1}{?} O P T_{I S}
$$

$$
n \leq 2 \frac{n}{2} \quad 0 \geq \frac{1}{?} \frac{n}{2}
$$

Independent Set

Does the approximation algorithm for Vertex Cover give an approximation algorithm for Independent Set?

Complete Bipartite Graph

ヘ1~

DDT

Independent Set is inapproximable within the bound $|V|^{1-\varepsilon}$, for any $\varepsilon>0$.

$$
n \leq 2 \frac{n}{2} \quad 0 \geq \frac{1}{?} \frac{n}{2}
$$

Computability Hierarchy

Complexity Hierarchy

Computability Hierarchy

Complexity Hierarchy

Computability Hierarchy

TSP Approximation Algorithm

TSP: Given a weighted graph, find a least cost cycle that visits each vertex exactly once.
Algorithm?

TSP Approximation Algorithm

TSP: Given a weighted graph, find a least cost cycle that visits each vertex exactly once.

Suppose H is an α-approximation algorithm for TSP.
I.e. $H(G)=$ Hamiltonian Cycle C_{H}, where $\operatorname{cost}\left(C_{H}\right) \leq \alpha \operatorname{cost}\left(C_{O P T}\right)$

TSP Approximation Algorithm

TSP: Given a weighted graph, find a least cost cycle that visits each vertex exactly once.

Suppose H is an α-approximation algorithm for TSP.
I.e. $H(G)=$ Hamiltonian Cycle C_{H}, where $\operatorname{cost}\left(C_{H}\right) \leq \alpha \operatorname{cost}\left(C_{O P T}\right)$

```
<insert name>(G)
    Let CH}=H(G
    if C CH}== nul
        return false
    else
        return true
```


TSP Approximation Algorithm

TSP: Given a weighted graph, find a least cost cycle that visits each vertex exactly once.

Suppose H is an α-approximation algorithm for TSP.
I.e. $H(G)=$ Hamiltonian Cycle C_{H}, where $\operatorname{cost}\left(C_{H}\right) \leq \alpha \operatorname{cost}\left(C_{O P T}\right)$

```
<insert name>(G)
    Let }\mp@subsup{C}{H}{}=H(G
    if C CH}== nul
        return false
    else
        return true
```


TSP Approximation Algorithm

TSP: Given a weighted graph, find a least cost cycle that visits each vertex exactly once.

Suppose H is an α-approximation algorithm for TSP.
I.e. $H(G)=$ Hamiltonian Cycle C_{H}, where $\operatorname{cost}\left(C_{H}\right) \leq \alpha \operatorname{cost}\left(C_{O P T}\right)$

```
HamiltonianCycleFinder(G)
    Let CH}=H(G
    if C CH}== nul
        return false
    else
        return true
```


TSP Approximation Algorithm

TSP: Given a weighted graph, find a least cost cycle that visits each vertex exactly once.

Suppose H is an α-approximation algorithm for TSP.
I.e. $H(G)=$ Hamiltonian Cycle C_{H}, where $\operatorname{cost}\left(C_{H}\right) \leq \alpha \operatorname{cost}\left(C_{O P T}\right)$

```
HamiltonianCycleFinder(G)
    Let }\mp@subsup{C}{H}{}=H(G
    if C CH}== nul
        return false
    else
        return true
```

 Is this a problem?

TSP Approximation Algorithm

TSP: Given a weighted graph, find a least cost cycle that visits each vertex exactly once.

Suppose H is an α-approximation algorithm for TSP.
I.e. $H(G)=$ Hamiltonian Cycle C_{H}, where $\operatorname{cost}\left(C_{H}\right) \leq \alpha \operatorname{cost}\left(C_{O P T}\right)$

```
HamiltonianCycleFinder(G)
    Let }\mp@subsup{C}{H}{}=H(G
    if C CH}== nul
        return false
    else
        return true
```

Is this a problem?
Yes! Any approximation algorithm for TSP will solve the NP-Complete Hamiltonian Cycle problem!

TSP Approximation Algorithm

TSP: Given a weighted graph, find a least cost cycle that visits each vertex exactly once.

Suppose H is an α-approximation algorithm for TSP.
I.e. $H(G)=$ Hamiltonian Cycle C_{H}, where $\operatorname{cost}\left(C_{H}\right) \leq \alpha \operatorname{cost}\left(C_{O P T}\right)$

```
HamiltonianCycleFinder(G)
    Let }\mp@subsup{C}{H}{}=H(G
    if CH
        return false
    else
        return true
```

Is this a problem?
Yes! Any approximation algorithm for TSP will solve the NP-Complete Hamiltonian Cycle problem!
$\therefore \nexists$ poly time approx alg for TSP, unless $P=N P$

TSP Approximation Algorithm

TSP: Given a weighted graph, find a least cost cycle that visits each vertex exactly once.

Suppose H is an α-approximation algorithm for TSP.
I.e. $H(G)=$ Hamiltonian Cycle C_{H}, where $\operatorname{cost}\left(C_{H}\right) \leq \alpha \operatorname{cost}\left(C_{O P T}\right)$

Is this a problem?
Yes! Any approximation algorithm for TSP will solve the NP-Complete Hamiltonian Cycle problem!
$\therefore \nexists$ poly time approx alg for TSP, unless $P=N P$

Special Case - Metric TSP

Metric TSP: Given a complete weighted graph that satisfies the triangle inequality, find a least cost cycle that visits each vertex exactly once.

Triangle Inequality: $\operatorname{cost}(u, v) \leq \operatorname{cost}(u, w)+\operatorname{cost}(w, v)$

Special Case - Metric TSP

Find some structure that is:

1. Easy to compute.
2. Related to TSP.
3. Lower bound on OPT.

Special Case - Metric TSP

Find some structure that is:

1. Easy to compute.
2. Related to TSP.
3. Lower bound on OPT.

Special Case - Metric TSP

Find some structure that is:

1. Easy to compute.
2. Related to TSP.
3. Lower bound on OPT.

What is this?

Special Case - Metric TSP

Find some structure that is:

1. Easy to compute.
2. Related to TSP.
3. Lower bound on OPT.

What is this?
Spanning Tree

Special Case - Metric TSP

Relationship between OPT and cost of MST?

Special Case - Metric TSP

Relationship between OPT and cost of MST? $\operatorname{cost}(\mathrm{MST}) \leq \mathrm{OPT}$

How to turn MST into a cycle?

Special Case - Metric TSP

Relationship between OPT and cost of MST? $\operatorname{cost}(\mathrm{MST}) \leq \mathrm{OPT}$

How to turn MST into a cycle? What is the cost of this cycle?

Special Case - Metric TSP

Relationship between OPT and cost of MST? $\operatorname{cost}(\mathrm{MST}) \leq$ OPT

How to turn MST into a cycle?
What is the cost of this cycle?

$$
\mathrm{ALG}=2 \operatorname{cost}(\mathrm{MST})
$$

Relationship between ALG and OPT?

Special Case - Metric TSP

Relationship between OPT and cost of MST?

$$
\operatorname{cost}(\mathrm{MST}) \leq \mathrm{OPT}
$$

How to turn MST into a cycle?
What is the cost of this cycle?

$$
A L G=2 \operatorname{cost}(M S T)
$$

Relationship between ALG and OPT?

$$
\mathrm{ALG}=2 \operatorname{cost}(\mathrm{MST}) \leq 2 \mathrm{OPT}
$$

Any problems?

Special Case - Metric TSP

Relationship between OPT and cost of MST?

$$
\operatorname{cost}(\mathrm{MST}) \leq \mathrm{OPT}
$$

How to turn MST into a cycle?
What is the cost of this cycle?

$$
A L G=2 \operatorname{cost}(\mathrm{MST})
$$

Relationship between ALG and OPT?

$$
\mathrm{ALG}=2 \operatorname{cost}(\mathrm{MST}) \leq 2 \mathrm{OPT}
$$

How can we eliminate double visits (without messing up the cost)?

Special Case - Metric TSP

Relationship between OPT and cost of MST?

$$
\operatorname{cost}(\mathrm{MST}) \leq \mathrm{OPT}
$$

How to turn MST into a cycle?
What is the cost of this cycle?

$$
\mathrm{ALG}=2 \operatorname{cost}(\mathrm{MST})
$$

Relationship between ALG and OPT?

$$
\mathrm{ALG}=2 \operatorname{cost}(\mathrm{MST}) \leq 2 \mathrm{OPT}
$$

How can we eliminate double visits (without messing up the cost)?

Skip to next unvisited vertex. Can only decrease cost (triangle inequality).

$$
\operatorname{dist}(u, v) \leq \operatorname{dist}(u, w)+\operatorname{dist}(w, v)
$$

Special Case - Metric TSP

Metric TSP: Given a complete weighted graph that satisfies the triangle inequality, find a least cost cycle that visits each vertex exactly once.

$$
\mathrm{ALG}=2 \operatorname{cost}(\mathrm{MST}) \leq 2 \mathrm{OPT}
$$

