Finite Automata CSCI 338

DFA Formal Definition

DFAs consist of:

1. Finite set of states, Q.
2. Finite alphabet, Σ.
3. Transition function, $\delta: Q \times \Sigma \rightarrow Q$.
4. Start state, $q_{0} \in Q$.
5. Set of accept states, $F \subseteq Q$.

$$
\left\{\begin{array}{l}
Q=\left\{q_{1}, q_{2}, q_{3}\right\} \\
\Sigma=\{0,1\} \\
\delta: \\
\\
\\
\hline
\end{array} \left\lvert\, \begin{array}{l|l}
\\
\hline \mathrm{q}_{1} & \mathrm{q}_{1} \\
\mathrm{q}_{2} & \mathrm{q}_{2} \\
& \mathrm{q}_{2} \\
\mathrm{q}_{3} & \mathrm{q}_{2} \\
& \mathrm{q}_{3} \\
\mathrm{q}_{2} & \mathrm{q}_{2}
\end{array}\right.\right.
$$

Start state $=q_{1}$
$F=\left\{q_{2}\right\}$

DFA Practice
Prove that the following languages are regular:

1. Set of all strings over $\{0,1\}$.

2. Set of all strings with an even number of 0 s .

3. Set of all strings that contain the substring: 10.

Prove that the following language is regular: $\{\omega: \omega$ begins with sequence 10$\}$.

Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ begins with sequence 10$\}$.Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ begins with sequence 10$\}$.Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ begins with sequence 10$\}$.Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ begins with sequence 10$\}$.Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ begins with sequence 10$\}$.Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ begins with sequence 10$\}$.Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ begins with sequence 10$\}$.Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ begins with sequence 10$\}$.Proof:

Prove that the following language is regular: $\{\omega: \omega$ ends with sequence 10$\}$.

Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ ends with sequence 10$\}$.Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ ends with sequence 10$\}$.Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ ends with sequence 10$\}$.Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ ends with sequence 10$\}$.Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ ends with sequence 10$\}$.Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ ends with sequence 10$\}$.Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ ends with sequence 10$\}$.Proof:

Prove that the following language is regular: $\{\omega: \omega$ ends with sequence 10$\}$.

Proof:

What about 1010?

Prove that the following language is regular:

 $\{\omega: \omega$ ends with sequence 10$\}$.Proof:

Prove that the following language is regular: $\{\omega: \omega$ ends with sequence 10$\}$.

Proof:

what would you name it?

Prove that the following language is regular: $\{\omega: \omega$ ends with sequence 10$\}$.

Proof:

what would you name it?
"We just processed a 1 state"

Prove that the following language is regular:

 $\{\omega: \omega$ ends with sequence 10$\}$.Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ ends with sequence 10$\}$.Proof:

vs.
Empty set

Empty string
 vs.
 Empty set

ε is called the empty
string. It is the string that contains no characters.

Regular?

$$
L=\{\varepsilon\}
$$

Empty string vs. Empty set
ε is called the empty
string. It is the string that contains no characters.

$$
L=\{\varepsilon\}
$$

Empty string
vs.
Empty set
ε is called the empty
string. It is the string that contains no characters.

$$
L=\{\varepsilon\}
$$

Empty string
vs. Empty set
ε is called the empty string. It is the string that contains no characters.
\varnothing is called the empty set. It is the set that contains no elements.

$$
L=\{\varepsilon\}
$$

Empty string
vs.

$$
L=\varnothing
$$

Regular?

Empty set
ε is called the empty
string. It is the string that contains no characters.
\varnothing is called the empty set. It is the set that contains no elements.

$$
L=\{\varepsilon\}
$$

Empty string
vs. Empty set
ε is called the empty string. It is the string that contains no characters.

$$
L=\emptyset
$$

It is the set that contains no elements.

Prove that the following language is regular:

 $\{\omega: \omega$ starts and ends with a 0$\}$.Proof:

!

Prove that the following language is regular:

 $\{\omega: \omega$ starts and ends with a 0$\}$.Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ starts and ends with a 0$\}$.Proof:

The string $\omega=0$ starts and ends with a 0 and must be accepted!

Prove that the following language is regular:

 $\{\omega: \omega$ starts and ends with a 0$\}$.Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ starts and ends with a 0$\}$.Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ starts and ends with a 0$\}$.Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ starts and ends with a 0$\}$.Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ starts and ends with a 0$\}$.Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ starts and ends with a 0$\}$.
Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ starts and ends with a 0$\}$.
Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ starts and ends with a 0$\}$.
Proof:

$$
\omega=0110 . \text { Accept or Reject? }
$$

Prove that the following language is regular:

 $\{\omega: \omega$ starts and ends with a 0$\}$.
Proof:

$$
\begin{aligned}
& \omega= \\
& 0110 . \text { Accept or Reject? } \\
& \text { It rejects but should accept! }
\end{aligned}
$$

Prove that the following language is regular:

 $\{\omega: \omega$ starts and ends with a 0$\}$.
Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ starts and ends with a 0$\}$.
Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ starts and ends with a 0$\}$.
Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ starts and ends with a 0$\}$.
Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ starts and ends with a 0$\}$.
Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ starts and ends with a 0$\}$.
Proof:

Prove that the following language is regular:
$\{\omega$: ω consists of some number of 0 s followed by the same number of 1s\}. E.g. 000111

Proof:
!

