Finite Automata CSCI 338

DFA Formal Definition

DFAs consist of:

- 1. Finite set of states, Q.
- 2. Finite alphabet, Σ .
- 3. Transition function, $\delta: Q \times \Sigma \to Q$.
- 4. Start state, $q_0 \in Q$.

5. Set of accept states, $F \subseteq Q$.

 $\begin{array}{c}
Q = \{q_1, q_2, q_3\} \\
\Sigma = \{0, 1\} \\
\delta: & 0 \quad 1 \\
\hline q_1 & q_1 & q_2 \\
q_2 & q_3 & q_2 \\
q_3 & q_2 & q_2
\end{array}$

Start state =
$$q_1$$

 $F = \{q_2\}$

DFA Practice

Prove that the following languages are regular:

1. Set of all strings over $\{0,1\}$. 0,1

2. Set of all strings with an even number of 0s.

0

0

 \mathbf{q}_2

 \mathbf{q}_1

 \mathbf{q}_2

0,1

Q3

3. Set of all strings that contain the substring: 10.

Proof:

What about 1010?

Empty string vs. Empty set

Empty string vs. Empty set ε is called the empty

ɛ is called the empty string. It is the string that contains no characters.

 $L = \{\varepsilon\}$ Empty string vs. Empty set

ɛ is called the emptystring. It is the string thatcontains no characters.

contains no characters.

no elements.

no elements.

Proof:

The string $\omega = 0$ starts and ends with a 0 and must be accepted!

Proof:

 $\omega = 0110$. Accept or Reject?

Proof:

 $\omega = 0110$. Accept or Reject? It rejects but <u>should</u> accept!

Prove that the following language is regular: $\{\omega: \omega \text{ consists of some number of 0s followed by the same number of 1s}\}$. E.g. 000111