## Finite Automata CSCI 338

 $\{\omega: \omega \text{ starts and } ends \text{ with a } 0\}.$ 



 $\{\omega: \omega \text{ starts and } ends \text{ with a } 0\}.$ 



 $\{\omega: \omega \text{ starts and ends} \$ with the same symbol $\}$ .



 $\{\omega: \omega \text{ starts and } ends \text{ with a } 0\}.$ 



 $\{\omega: \omega \text{ starts and ends} \$ with the same symbol $\}$ .



#### Prove that the following language is regular: $\{\omega: \omega \neq \varepsilon \text{ and every odd symbol is a 1}\}.$



#### Prove that the following language is regular: $\{\omega: \omega \neq \varepsilon \text{ and every odd symbol is a 1}\}.$









Prove that the following language is regular:  $\{\omega: |\omega| \text{ is divisible by } 3\}.$ 



Prove that the following language is regular:  $\{\omega: |\omega| \text{ is divisible by } 3\}.$ 

 $\frown$   $|\omega| = \text{length of } \omega$ . I.e. number of characters in  $\omega$ .



# Prove that the following language is regular: $\{11\}.$



# Prove that the following language is regular: $\{11\}.$



Prove that the following language is regular:  $\{\omega: \omega \text{ could be anything except } 11\}.$ 



Prove that the following language is regular:  $\{\omega: \omega \text{ could be anything except } 11\}.$ 



Claim: If A is a regular language, then the following is also regular:  $\overline{A} = \{\omega : \omega \notin A\}$ 

Proof: ?

Claim: If A is a regular language, then the following is also regular:  $\overline{A} = \{\omega : \omega \notin A\}$ 

Proof: A is a regular language  $\Rightarrow \exists$  DFA for it.

Claim: If A is a regular language, then the following is also regular:  $\overline{A} = \{\omega : \omega \notin A\}$ 

Proof: A is a regular language  $\Rightarrow \exists$  DFA for it. Given DFA<sub>A</sub> for A, build a DFA<sub>A</sub> for  $\overline{A}$ : ?

Claim: If A is a regular language, then the following is also regular:  $\overline{A} = \{\omega : \omega \notin A\}$ 

Proof: A is a regular language  $\Rightarrow \exists$  DFA for it. Given DFA<sub>A</sub> for A, build a DFA<sub>A</sub> for  $\overline{A}$ : Turn accept states into non-accept states and turn nonaccept states into accept states.



Claim: If A is a regular language, then the following is also regular:  $\overline{A} = \{\omega : \omega \notin A\}$ 

Proof: A is a regular language  $\Rightarrow \exists$  DFA for it. Given DFA<sub>A</sub> for A, build a DFA<sub>A</sub> for  $\overline{A}$ : Turn accept states into non-accept states and turn nonaccept states into accept states.

If  $\omega \in A$ , then processing it ended on an accept state, which is a non-accept state for DFA<sub> $\overline{A}$ </sub>, thus  $\omega \notin \overline{A}$ . (similar if  $\omega \notin A$ )



Prove that the following language is regular:  $\{\omega: \omega \text{ contains at least three } 1s\}.$ 



Prove that the following language is regular:  $\{\omega: \omega \text{ contains at least three } 1s\}.$ 



Prove that the following language is regular:  $\{\omega: \omega \text{ contains exactly three } 1s\}.$ 



Prove that the following language is regular:  $\{\omega: \omega \text{ contains exactly three } 1s\}.$ 



Prove that the following language is regular:  $\{\omega: \omega \text{ could be anything except } 11 \text{ or } 00\}.$ 



Prove that the following language is regular:  $\{\omega: \omega \text{ could be anything except } 11 \text{ or } 00\}.$ 



Prove that the following language is regular:  $\{\omega: \omega \text{ could be anything except } 11 \text{ or } 00\}.$ 



Prove that the following language is regular: {ω: ω consists of the same number of 1's and 0's}. E.g. 110100, 000111