Finite Automata CSCI 338

$\{\omega: \omega$ starts and ends with a 0$\}$.

$\{\omega: \omega$ starts and ends with a 0$\}$.

$\{\omega: \omega$ starts and ends with the same symbol\}.
$\{\omega: \omega$ starts and ends with a 0$\}$.

$\{\omega: \omega$ starts and ends with the same symbol\}.

Prove that the following language is regular: $\{\omega: \omega \neq \varepsilon$ and every odd symbol is a 1$\}$.

Proof:

!

Prove that the following language is regular: $\{\omega: \omega \neq \varepsilon$ and every odd symbol is a 1$\}$.

Proof:

Prove that the following language is regular:

$$
\{\omega:|\omega| \leq 3\} .
$$

$$
|\omega|=\text { length of } \omega \text {. I.e. number of characters in } \omega \text {. }
$$

Proof:

!

Prove that the following language is regular:

$$
\{\omega:|\omega| \leq 3\}
$$

$$
|\omega|=\text { length of } \omega \text {. I.e. number of characters in } \omega \text {. }
$$

Proof:

Prove that the following language is regular:
$\{\omega:|\omega|$ is divisible by 3$\}$.
$|\omega|=$ length of ω. I.e. number of characters in ω.
Proof:

!

Prove that the following language is regular:

$\{\omega:|\omega|$ is divisible by 3$\}$.
$|\omega|=$ length of ω. I.e. number of characters in ω.
Proof:

Prove that the following language is regular: $\{11\}$.

Proof:
$?$

Prove that the following language is regular:

 \{11\}.
Proof:

Prove that the following language is regular:

 $\{\omega: \omega$ could be anything except 11\}.Proof:

Prove that the following language is regular:

 $\{\omega$: ω could be anything except 11$\}$.Proof:

Complements of Regular Languages

Claim: If A is a regular language, then the following is also regular:

$$
\bar{A}=\{\omega: \omega \notin A\}
$$

Proof: ?

Complements of Regular Languages

Claim: If A is a regular language, then the following is also regular:

$$
\bar{A}=\{\omega: \omega \notin A\}
$$

Proof: A is a regular language $\Rightarrow \exists$ DFA for it.

Complements of Regular Languages

Claim: If A is a regular language, then the following is also regular:

$$
\bar{A}=\{\omega: \omega \notin A\}
$$

Proof: A is a regular language $\Rightarrow \exists$ DFA for it.
Given DFA_{A} for A, build a $\mathrm{DFA}_{\bar{A}}$ for \bar{A} :
?

Complements of Regular Languages

Claim: If A is a regular language, then the following is also regular:

$$
\bar{A}=\{\omega: \omega \notin A\}
$$

Proof: A is a regular language $\Rightarrow \exists$ DFA for it.
Given DFA_{A} for A, build a $\mathrm{DFA}_{\bar{A}}$ for \bar{A} :
Turn accept states into non-accept states and turn nonaccept states into accept states.

Complements of Regular Languages

Claim: If A is a regular language, then the following is also regular:

$$
\bar{A}=\{\omega: \omega \notin A\}
$$

Proof: A is a regular language $\Rightarrow \exists$ DFA for it.
Given DFA_{A} for A, build a DFA \bar{A} for \bar{A} :
Turn accept states into non-accept states and turn nonaccept states into accept states.
If $\omega \in A$, then processing it ended on an accept state, which is a non-accept state for DFA $_{\bar{A}}$, thus $\omega \notin \bar{A}$. (similar if $\omega \notin A$)

Prove that the following language is regular: $\{\omega: \omega$ contains at least three 1 s$\}$.

Proof:

$$
\ddagger
$$

Prove that the following language is regular:

 $\{\omega: \omega$ contains at least three 1 s$\}$.
Proof:

Prove that the following language is regular: $\{\omega: \omega$ contains exactly three 1 s$\}$.

Proof:

Prove that the following language is regular: $\{\omega: \omega$ contains exactly three 1 s$\}$.

Proof:

Prove that the following language is regular: $\{\omega: \omega$ could be anything except 11 or 00$\}$.

Proof:

!

Prove that the following language is regular: $\{\omega: \omega$ could be anything except 11 or 00$\}$.

Proof:

Only 11 and 00.

Prove that the following language is regular:

 $\{\omega: \omega$ could be anything except 11 or 00$\}$.
Proof:

Only 11 and 00.

Everything but 11 and 00.

Prove that the following language is regular: $\{\omega$: ω consists of the same number of 1 's and 0 's $\}$. E.g. 110100, 000111

Proof:
!

