Nondeterminism CSCI 338

DFA vs NFA
Deterministic Finite Automaton (DFA):

Nondeterministic Finite Automaton (NFA):

DFA vs NFA

Deterministic Finite Automaton (DFA):

- Every state has exactly one transition for every character $(e \in \Sigma)$.

Nondeterministic Finite Automaton (NFA):

DFA vs NFA

Deterministic Finite Automaton (DFA):

- Every state has exactly one transition for every character ($e \in \Sigma$).

Nondeterministic Finite Automaton (NFA):

- Allowed to have multiple (or 0) transitions for each $e \in \Sigma$.

DFA vs NFA

Deterministic Finite Automaton (DFA):

- Every state has exactly one transition for every character ($e \in \Sigma$).

Nondeterministic Finite Automaton (NFA):

- Allowed to have multiple (or 0) transitions for each $e \in \Sigma$.
- Allowed to have transitions that happen without input (ε transition).

DFA vs NFA

Deterministic Finite Automaton (DFA):

- Every state has exactly one transition for every character ($e \in \Sigma$).
- For the same input, everyone takes the same path to the same final state.

Nondeterministic Finite Automaton (NFA):

- Allowed to have multiple (or 0) transitions for each $e \in \Sigma$.
- Allowed to have transitions that happen without input (ε transition).

DFA vs NFA

Deterministic Finite Automaton (DFA):

- Every state has exactly one transition for every character ($e \in \Sigma$).
- For the same input, everyone takes the same path to the same final state.

Nondeterministic Finite Automaton (NFA):

- Allowed to have multiple (or 0) transitions for each $e \in \Sigma$.
- Allowed to have transitions that happen without input (ε transition).
- Processing strings is different.

DFA Processing

$\{\omega: \omega$ contains the substring 110$\}$

DFA Processing

$\{\omega: \omega$ contains the substring 110$\}$
$\omega=1110$

DFA Processing

$\{\omega: \omega$ contains the substring 110$\}$

DFA Processing

$$
\begin{aligned}
& a_{1} b_{1} \\
& d_{2}
\end{aligned}
$$

$\{\omega: \omega$ contains the substring 110$\}$
$\omega=1110$

DFA Processing

$$
\begin{array}{cc}
q_{1} & \\
\downarrow \\
q_{2} & 1 \\
\vdots & 1 \\
\vdots & 1
\end{array}
$$

$\{\omega: \omega$ contains the substring 110$\}$
$\omega=1110$

DFA Processing

DFA Processing

NFA Processing

$\{\omega: \omega$ contains the substring 110$\}$

NFA Processing

Multiple transition options.

$\{\omega: \omega$ contains the substring 110$\}$

NFA Processing

1. If a "decision" is encountered, split and take all options.
2. If input symbol does not match any outgoing transitions, that branch dies.
3. If any branch ends in an accept state, accept. If not, reject.

$\{\omega: \omega$ contains the substring 110$\}$

NFA Processing

1. If a "decision" is encountered, split and take all options.
2. If input symbol does not match any outgoing transitions, that branch dies.
3. If any branch ends in an accept state, accept. If not, reject.

$\{\omega: \omega$ contains the substring 110$\}$
$\omega=1110$

NFA Processing

1. If a "decision" is encountered, split

 and take all options.2. If input symbol does not match any outgoing transitions, that branch dies.

3. If any branch ends in an accept state, accept. If not, reject.

$\{\omega: \omega$ contains the substring 110$\}$
$\omega=1110$

NFA Processing

1. If a "decision" is encountered, split and take all options.
2. If input symbol does not match any outgoing transitions, that branch dies.
3. If any branch ends in an accept state, accept. If not, reject.

$\{\omega: \omega$ contains the substring 110$\}$
$\omega=1110$

NFA Processing

1. If a "decision" is encountered, split and take all options.
2. If input symbol does not match any outgoing transitions, that branch dies.
3. If any branch ends in an accept state, accept. If not, reject.

$\{\omega: \omega$ contains the substring 110$\}$
$\omega=1110$

NFA Processing

1. If a "decision" is encountered, split and take all options.
2. If input symbol does not match any outgoing transitions, that branch dies.
3. If any branch ends in an accept state, accept. If not, reject.

$\{\omega: \omega$ contains the substring 110$\}$
$\omega=1110$

NFA Processing

1. If a "decision" is encountered, split and take all options.
2. If input symbol does not match any outgoing transitions, that branch dies.
3. If any branch ends in an accept state, accept. If not, reject.

$\{\omega: \omega$ contains the substring 110$\}$

$\omega=1110$

NFA Processing

1. If a "dericinn" ic oncountered cnlit ar Alternate approach: If it
2. If ${ }_{0}$ is possible to end on an
3. If accept state, accept.

$\{\omega: \omega$ contains the substring 110$\}$
$\omega=1110$

NFA Processing

1. If a "decision" is encountered, split and take all options.
2. If input symbol does not match any outgoing transitions, that branch dies.
3. If any branch ends in an accept state, accept. If not, reject.

$\{\omega: \omega$ contains the substring 110$\}$
$\omega=101$

NFA Processing

1. If a "decision" is encountered, split and take all options.
2. If input symbol does not match any outgoing transitions, that branch dies.
3. If any branch ends in an accept state, accept. If not, reject.

$\{\omega: \omega$ contains the substring 110$\}$
$\omega=101$

ε-Transitions

ε-Transitions

1. If a "decision" is encountered, split and take all options.
2. If input symbol does not match any outgoing transitions, that branch dies.
3. If any branch ends in an accept state, accept. If not, reject.
4. If $\boldsymbol{\varepsilon}$ is encountered, split and take all options without consuming a character from string.

ε-Transitions

1. If a "decision" is encountered, split and take all options.
2. If input symbol does not match any outgoing transitions, that branch dies.
3. If any branch ends in an accept state, accept. If not, reject.
4. If ε is encountered, split and take all options without consuming a character from string.

ε-Transitions

1. If a "decision" is encountered, split and take all options.
2. If input symbol does not match any outgoing transitions, that branch dies.
3. If any branch ends in an accept state, accept. If not, reject.
4. If ε is encountered, split and take all options without consuming a character from string.

$\omega=101$

ε-Transitions

1. If a "decision" is encountered, split and take all options.
2. If input symbol does not match any outgoing transitions, that branch dies.
3. If any branch ends in an accept state, accept. If not, reject.
4. If ε is encountered, split and take all options without consuming a character from string.

ε-Transitions

1. If a "decision" is encountered, split and take all options.
2. If input symbol does not match any outgoing transitions, that branch dies.

3. If any branch ends in an accept state, accept. If not, reject.
4. If ε is encountered, split and take all options without consuming a character from string.

$\omega=101$

ε-Transitions

1. If a "decision" is encountered, split and take all options.
2. If input symbol does not match any outgoing transitions, that branch dies.
3. If any branch ends in an accept state, accept. If not, reject.

4. If ε is encountered, split and take all options without consuming a character from string.

$\omega=101$

ε-Transitions

1. If a "decision" is encountered, split and take all options.
2. If input symbol does not match any outgoing transitions, that branch dies.
3. If any branch ends in an accept state, accept. If not, reject.
4. If ε is encountered, split and take all options without consuming a
 character from string.

$\omega=101$

ε-Transitions

1. If a "decision" is encountered, split and take all options.
2. If input symbol does not match any outgoing transitions, that branch dies.
3. If any branch ends in an accept state, accept. If not, reject.
4. If ε is encountered, split and take all options without consuming a
 character from string.

$\omega=101$

ε-Transitions

1. If a "decision" is encountered, split and take all options.
2. If input symbol does not match any outgoing transitions, that branch dies.
3. If any branch ends in an accept state, accept. If not, reject.
4. If ε is encountered, split and take all options without consuming a character from string.

ε-Transitions

1. If a "decision" is encountered, split and take all options.
2. If input symbol does not match any outgoing transitions, that branch dies.
3. If any branch ends in an accept state, accept. If not, reject.
4. If ε is encountered, split and take all options without consuming a character from string.

NFA Formal Definition

NFAs consist of:

1. Finite set of states, Q.
2. Finite alphabet, Σ.
3. Transition function, $\delta: Q \times(\Sigma \cup\{\varepsilon\}) \rightarrow \mathcal{P}(Q)$.
4. Start state, $q_{0} \in Q$.
5. Set of accept states, $F \subseteq Q$.

NFA Formal Definition

NFAs consist of:

1. Finite set of states, Q.
2. Finite alphabet, Σ.
3. Transition function, $\delta: Q \times(\Sigma \cup\{\varepsilon\}) \rightarrow \mathcal{P}(Q)$.
4. Start state, $q_{0} \in Q$.
5. Set of accept states, $F \subseteq Q$.

NFA Formal Definition

NFAs consist of:

1. Finite set of states, Q.
2. Finite alphabet, Σ.
3. Transition function, $\delta: Q \times(\Sigma \cup\{\varepsilon\}) \rightarrow \mathcal{P}(Q)$.
4. Start state, $q_{0} \in Q$.
5. Set of accept states, $F \subseteq Q$.

NFA Practice

What is the NFA that accepts $\{\omega: \omega$ starts with 1 and ends with 0$\}$?

NFA Practice

What is the NFA that accepts $\{\omega: \omega$ starts with 1 and ends with 0$\}$?

NFA Practice

What is the NFA that accepts $\{\omega: \omega$ starts with 1 and ends with 0$\}$?

Only ω 's that start with 1 get to q_{2}. Any string that gets to q_{2}, can get to q_{3} and terminate, if it ends with 0.

