Regular Expressions
CSCI 338
String Construction

0*: Zero or more 0’s
String Construction

$0^*\colon$ Zero or more 0’s

Accept: $0,0000,\varepsilon$

Reject
String Construction

0*: Zero or more 0’s

Accept: 0, 0000, ε

Reject: 1, 0001, 1000
String Construction

0*: Zero or more 0’s
(01)*: Zero or more 01’s

Accept:
0, 0000, ε

Reject:
1, 0001, 1000
String Construction

$0^* \cdot$ Zero or more 0’s

0^*: Zero or more 0’s

0000, ε

Accept

$01^* \cdot$ Zero or more 01’s

$(01)^*$: Zero or more 01’s

$01, 010101, \varepsilon$

Reject

$1, 0001, 1000$
String Construction

$0^* : \text{Zero or more } 0\text{'s}$

$0^* : \text{Zero or more } 01\text{'s}$

Accept

$0, 0000, \varepsilon$

$01, 010101, \varepsilon$

Reject

$1, 0001, 1000$

$10, 001, 01010$
String Construction

<table>
<thead>
<tr>
<th>Expression</th>
<th>Accept</th>
<th>Reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^*</td>
<td>$0, 0000, \varepsilon$</td>
<td>$1, 0001, 1000$</td>
</tr>
<tr>
<td>$(01)^*$</td>
<td>$01, 010101, \varepsilon$</td>
<td>$10, 001, 01010$</td>
</tr>
<tr>
<td>$(0^1)^$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
String Construction

0*: Zero or more 0’s
(01)*: Zero or more 01’s
(0*1)*: ?

<table>
<thead>
<tr>
<th></th>
<th>Accept</th>
<th>Reject</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0, 0000, ε</td>
<td>1, 0001, 1000</td>
</tr>
<tr>
<td></td>
<td>01, 010101, ε</td>
<td>10, 001, 01010</td>
</tr>
<tr>
<td>ε?</td>
<td></td>
<td>ε?</td>
</tr>
</tbody>
</table>
String Construction

$0^*:$ Zero or more 0’s

$01^*:$ Zero or more 01’s

$(0^*1)^*:$?
String Construction

<table>
<thead>
<tr>
<th></th>
<th>Accept</th>
<th>Reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^* : Zero or more 0’s</td>
<td>$0, 0000, \varepsilon$</td>
<td>$1, 0001, 1000$</td>
</tr>
<tr>
<td>$(01)^*$: Zero or more 01’s</td>
<td>$01, 010101, \varepsilon$</td>
<td>$10, 001, 01010$</td>
</tr>
<tr>
<td>$(0^1)^$: ?</td>
<td>ε</td>
<td>$1?$</td>
</tr>
<tr>
<td>String Construction</td>
<td>Accept</td>
<td>Reject</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>0^*: Zero or more 0’s</td>
<td>$0, 0000, \varepsilon$</td>
<td>$1, 0001, 1000$</td>
</tr>
<tr>
<td>$(01)^*$: Zero or more 01’s</td>
<td>$01, 010101, \varepsilon$</td>
<td>$10, 001, 01010$</td>
</tr>
<tr>
<td>$(0^1)^$: ?</td>
<td>$\varepsilon, 1$</td>
<td></td>
</tr>
</tbody>
</table>

1?
String Construction

0^*: Zero or more 0’s
$0, 0000, \varepsilon$
$1, 0001, 1000$

$(01)^*$: Zero or more 01’s
$01, 010101, \varepsilon$
$10, 001, 01010$

$(0^*1)^*$: ?
$\varepsilon, 1$

$10?$
String Construction

<table>
<thead>
<tr>
<th>Expression</th>
<th>Accept</th>
<th>Reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^*: Zero or more 0’s</td>
<td>0, 0000, ε</td>
<td>1, 0001, 1000</td>
</tr>
<tr>
<td>$(01)^*$: Zero or more 01’s</td>
<td>01, 010101, ε</td>
<td>10, 001, 01010</td>
</tr>
<tr>
<td>$(0^1)^$: ?</td>
<td>ε, 1</td>
<td>10</td>
</tr>
</tbody>
</table>

$10^?$
<table>
<thead>
<tr>
<th></th>
<th>Accept</th>
<th>Reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0^* : \text{Zero or more 0's}$</td>
<td>$0,0000, \varepsilon$</td>
<td>$1,0001,1000$</td>
</tr>
<tr>
<td>$(01)^* : \text{Zero or more 01's}$</td>
<td>$01,010101, \varepsilon$</td>
<td>$10,001,01010$</td>
</tr>
<tr>
<td>$(0^1)^ : \varepsilon, 1$</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

111?
String Construction

0^*: Zero or more 0's

$(01)^*$: Zero or more 01's

$(0^*1)^*$: ?

<table>
<thead>
<tr>
<th>Accept</th>
<th>Reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0, 0000, \varepsilon$</td>
<td>$1, 0001, 1000$</td>
</tr>
<tr>
<td>$01, 010101, \varepsilon$</td>
<td>$10, 001, 01010$</td>
</tr>
<tr>
<td>$\varepsilon, 1, 111$</td>
<td>10</td>
</tr>
</tbody>
</table>
String Construction

0^*: Zero or more 0’s

Accept

$0, 0000, \varepsilon$

Reject

$1, 0001, 1000$

$(01)^*$: Zero or more 01’s

$01, 010101, \varepsilon$

$10, 001, 01010$

$(0^*1)^*$: ?

$\varepsilon, 1, 111$

10

000?
String Construction

0*: Zero or more 0’s
(01)*: Zero or more 01’s
(0*1)*: ?

Accept

0, 0000, ε
01, 010101, ε
ε, 1, 111

Reject

1, 0001, 1000
10, 001, 01010
10, 000

000?
String Construction

0^*: Zero or more 0’s

Accept: 0, 0000, ε

Reject: 1, 0001, 1000

$(01)^*$: Zero or more 01’s

Accept: 01, 010101, ε

Reject: 10, 001, 01010

$(0^*1)^*$: ?

Accept: ε, 1, 111

Reject: 10, 000

01001?

String Construction

0*: Zero or more 0’s
(01)*: Zero or more 01’s
(0*1)*: ?

Accept

0, 0000, ε
01, 010101, ε
ε, 1, 111, 01001

Reject

1, 0001, 1000
10, 001, 01010
10, 000

01001?
String Construction

0^*: Zero or more 0’s
01^*: Zero or more 01’s
$(0^*1)^*$: ?

Accept:
$0, 0000, \varepsilon$
$01, 010101, \varepsilon$
$\varepsilon, 1, 111, 01001$

Reject:
$1, 0001, 1000$
$10, 001, 01010$
$10, 000$

101?
String Construction

0^*: Zero or more 0’s
$(01)^*$: Zero or more 01’s
$(0^*1)^*$: ?

Accept

$0, 0000, \varepsilon$
$01, 010101, \varepsilon$
$\varepsilon, 1, 111, 01001, 101$

Reject

$1, 0001, 1000$
$10, 001, 01010$
$10, 000$

101?
<table>
<thead>
<tr>
<th>Expression</th>
<th>Accept</th>
<th>Reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0^* : \text{Zero or more 0's}$</td>
<td>0, 0000, ε</td>
<td>1, 0001, 1000</td>
</tr>
<tr>
<td>$(01)^* : \text{Zero or more 01's}$</td>
<td>01, 010101, ε</td>
<td>10, 001, 01010</td>
</tr>
<tr>
<td>$(0^1)^ : ?$</td>
<td>$\varepsilon, 1, 111, 01001, 101$</td>
<td>10, 000</td>
</tr>
</tbody>
</table>

0001110110001
String Construction

- 0^*: Zero or more 0’s
- $(01)^*$: Zero or more 01’s
- $(0^*1)^*$: ?

<table>
<thead>
<tr>
<th>Accept</th>
<th>Reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0, 0000, \varepsilon$</td>
<td>$1, 0001, 1000$</td>
</tr>
<tr>
<td>$01, 010101, \varepsilon$</td>
<td>$10, 001, 01010$</td>
</tr>
<tr>
<td>$\varepsilon, 1, 111, 01001, 101$</td>
<td>$10, 000$</td>
</tr>
</tbody>
</table>

Accept if string can be broken into sequences of 0^*1
String Construction

0*: Zero or more 0’s
(01)*: Zero or more 01’s
(0*1)*: ?

Accept
0, 0000, \(\varepsilon\)
01, 010101, \(\varepsilon\)
\(\varepsilon\), 1, 111, 01001, 101

Reject
1, 0001, 1000
10, 001, 01010
10, 000

Accept if string can be broken into sequences of 0*1
String Construction

<table>
<thead>
<tr>
<th>Expression</th>
<th>Accept</th>
<th>Reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^*: Zero or more 0’s</td>
<td>$0, 0000, \varepsilon$</td>
<td>$1, 0001, 1000$</td>
</tr>
<tr>
<td>$(01)^*$: Zero or more 01’s</td>
<td>$01, 010101, \varepsilon$</td>
<td>$10, 001, 01010$</td>
</tr>
<tr>
<td>$(0^* 1)^*$: ?</td>
<td>$\varepsilon, 1, 111, 01001, 101$</td>
<td>$10, 000$</td>
</tr>
</tbody>
</table>

Accept if string can be broken into sequences of $0^* 1$
String Construction

<table>
<thead>
<tr>
<th>Description</th>
<th>Accept</th>
<th>Reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>0*: Zero or more 0’s</td>
<td>0, 0000, (\varepsilon)</td>
<td>1, 0001, 1000</td>
</tr>
<tr>
<td>(01)*: Zero or more 01’s</td>
<td>01, 010101, (\varepsilon)</td>
<td>10, 001, 01010</td>
</tr>
<tr>
<td>(01): Doesn’t end with 0</td>
<td>(\varepsilon), 1, 111, 01001, 101</td>
<td>10, 000</td>
</tr>
</tbody>
</table>

Accept if string can be broken into sequences of 0*1
String Construction

<table>
<thead>
<tr>
<th>Expression</th>
<th>Accept</th>
<th>Reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^*: Zero or more 0’s</td>
<td>0, 0000, ε</td>
<td>1, 0001, 1000</td>
</tr>
<tr>
<td>$(01)^*$: Zero or more 01’s</td>
<td>01, 010101, ε</td>
<td>10, 001, 01010</td>
</tr>
<tr>
<td>$(0^1)^$: Doesn’t end with 0</td>
<td>ε, 1, 111, 01001, 101</td>
<td>10, 000</td>
</tr>
<tr>
<td>0^+: One or more 0’s</td>
<td>0, 0000</td>
<td>ε, 1</td>
</tr>
</tbody>
</table>
String Construction

<table>
<thead>
<tr>
<th>Expression</th>
<th>Accept</th>
<th>Reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^*: Zero or more 0’s</td>
<td>0, 0000, ε</td>
<td>1, 0001, 1000</td>
</tr>
<tr>
<td>$(01)^*$: Zero or more 01’s</td>
<td>01, 010101, ε</td>
<td>10, 001, 01010</td>
</tr>
<tr>
<td>$(0^1)^$: Doesn’t end with 0</td>
<td>ε, 1, 111, 01001, 101</td>
<td>10, 000</td>
</tr>
<tr>
<td>0^+: One or more 0’s</td>
<td>0, 0000</td>
<td>ε, 1</td>
</tr>
<tr>
<td>$(001^+)^*$</td>
<td>001, 0011, 0010011, ε</td>
<td>1, 00</td>
</tr>
</tbody>
</table>
String Construction

<table>
<thead>
<tr>
<th>Expression</th>
<th>Accept</th>
<th>Reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^*: Zero or more 0’s</td>
<td>0, 0000, ε</td>
<td>1, 0001, 1000</td>
</tr>
<tr>
<td>$(01)^*$: Zero or more 01’s</td>
<td>01, 010101, ε</td>
<td>10, 001, 01010</td>
</tr>
<tr>
<td>$(0^1)^$: Doesn’t end with 0</td>
<td>ε, 1, 111, 01001, 101</td>
<td>10, 000</td>
</tr>
<tr>
<td>0^+: One or more 0’s</td>
<td>0, 0000</td>
<td>ε, 1</td>
</tr>
<tr>
<td>$(001^+)^*$</td>
<td>001, 0011, 0010011, ε</td>
<td>1, 00</td>
</tr>
<tr>
<td>$1^(001^+)^$</td>
<td>ε, 1, 1001, 10010011, 001</td>
<td>00, 101</td>
</tr>
</tbody>
</table>
String Construction

<table>
<thead>
<tr>
<th>Expression</th>
<th>Accept</th>
<th>Reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^*: Zero or more 0’s</td>
<td>0, 0000, ε</td>
<td>1, 0001, 1000</td>
</tr>
<tr>
<td>$(01)^*$: Zero or more 01’s</td>
<td>01, 010101, ε</td>
<td>10, 001, 01010</td>
</tr>
<tr>
<td>$(0^1)^$: Doesn’t end with 0</td>
<td>ε, 1, 111, 01001, 101</td>
<td>10, 000</td>
</tr>
<tr>
<td>0^+: One or more 0’s</td>
<td>0, 0000</td>
<td>ε, 1</td>
</tr>
<tr>
<td>$(001^+)^*$</td>
<td>001, 0011, 0010011, ε</td>
<td>1, 00</td>
</tr>
<tr>
<td>$1^(001^+)^$</td>
<td>ε, 1, 1001, 10010011, 001</td>
<td>00, 101</td>
</tr>
<tr>
<td>$(0 \cup 1)$: A single 0 or 1</td>
<td>1, 0</td>
<td>ε, 00, 101</td>
</tr>
</tbody>
</table>
String Construction

<table>
<thead>
<tr>
<th>Expression</th>
<th>Accept</th>
<th>Reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>0*: Zero or more 0’s</td>
<td>0, 0000, ε</td>
<td>1, 0001, 1000</td>
</tr>
<tr>
<td>(01)*: Zero or more 01’s</td>
<td>01, 010101, ε</td>
<td>10, 001, 01010</td>
</tr>
<tr>
<td>(01): Doesn’t end with 0</td>
<td>ε, 1, 111, 01001, 101</td>
<td>10, 000</td>
</tr>
<tr>
<td>0+: One or more 0’s</td>
<td>0, 0000</td>
<td>ε, 1</td>
</tr>
<tr>
<td>(001+)</td>
<td>001, 0011, 0010011, ε</td>
<td>1, 00</td>
</tr>
<tr>
<td>1*(001+)</td>
<td>ε, 1, 1001, 10010011, 001</td>
<td>00, 101</td>
</tr>
<tr>
<td>(0 ∪ 1): A single 0 or 1</td>
<td>1, 0</td>
<td>ε, 00, 101</td>
</tr>
<tr>
<td>(0 ∪ 1)0*: A 0 or 1 followed by zero or more 0s.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
String Construction

<table>
<thead>
<tr>
<th>Expression</th>
<th>Accept</th>
<th>Reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0^*): Zero or more 0’s</td>
<td>0, 0000, (\varepsilon)</td>
<td>1, 0001, 1000</td>
</tr>
<tr>
<td>((01)^*): Zero or more 01’s</td>
<td>01, 010101, (\varepsilon)</td>
<td>10, 001, 01010</td>
</tr>
<tr>
<td>((0^1)^): Doesn’t end with 0</td>
<td>(\varepsilon), 1, 111, 01001, 101</td>
<td>10, 000</td>
</tr>
<tr>
<td>(0^+): One or more 0’s</td>
<td>0, 0000</td>
<td>(\varepsilon), 1</td>
</tr>
<tr>
<td>((001^+)^*)</td>
<td>001, 0011, 0010011, (\varepsilon)</td>
<td>1, 00</td>
</tr>
<tr>
<td>(1^(001^+)^)</td>
<td>(\varepsilon), 1, 1001, 10010011, 001</td>
<td>00, 101</td>
</tr>
<tr>
<td>((0 \cup 1)): A single 0 or 1</td>
<td>1, 0</td>
<td>(\varepsilon), 00, 101</td>
</tr>
<tr>
<td>((0 \cup 1)^0^*): A 0 or 1 followed by zero or more 0s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>((0 \cup 1)^*): A string with any number of 0s and 1s.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
String Construction

<table>
<thead>
<tr>
<th>Regular Expressions:</th>
<th>Accept</th>
<th>Reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>0*: Zero or more 0’s</td>
<td>0, 0000, ε</td>
<td>1, 0001, 1000</td>
</tr>
<tr>
<td>(01)*: Zero or more 01’s</td>
<td>01, 010101, ε</td>
<td>10, 001, 01010</td>
</tr>
<tr>
<td>(01): One or more 01’s</td>
<td>ε, 1</td>
<td>1, 00</td>
</tr>
<tr>
<td>0+: One or more 0’s</td>
<td>0000, 000</td>
<td>1, 00</td>
</tr>
<tr>
<td>(001+)*: A string with at least one 001</td>
<td>ε, 1</td>
<td>1, 110</td>
</tr>
<tr>
<td>1*(001+): A string with at least one 001 followed by any number of 1’s</td>
<td>0, 101</td>
<td>1, 101</td>
</tr>
<tr>
<td>(0 U 1): A 0 or 1</td>
<td>00, 101</td>
<td>100, 101</td>
</tr>
<tr>
<td>(0 U 1)0*: A 0 or 1 followed by zero or more 0’s</td>
<td>00, 101</td>
<td>100, 101</td>
</tr>
<tr>
<td>(0 U 1)*: A string with any number of 0s and 1s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Regular Expressions

Rules for building regular expressions (regex):
1. Each $e \in \Sigma$ is a regex
Regular Expressions

Rules for building regular expressions (regex):
1. Each $e \in \Sigma$ is a regex
2. $\{\varepsilon\}$ is a regex Language with one string: The empty string.
Regular Expressions

Rules for building regular expressions (regex):
1. Each $e \in \Sigma$ is a regex
2. $\{\varepsilon\}$ is a regex \quad \text{Language with one string: The empty string.}
3. \emptyset is a regex \quad \text{Language with no strings.}
Regular Expressions

Rules for building regular expressions (regex):
1. Each $\varepsilon \in \Sigma$ is a regex
2. $\{\varepsilon\}$ is a regex
3. \emptyset is a regex

Language with one string: The empty string.
Language with no strings.
Regular Expressions

Rules for building regular expressions (regex):
1. Each $e \in \Sigma$ is a regex
2. $\{\varepsilon\}$ is a regex \textcolor{green}{Language with one string: The empty string.}
3. \emptyset is a regex \textcolor{blue}{Language with no strings.}
4. $(R_1 \cup R_2)$ is a regex
 \[R_1 \text{ and } R_2 \text{ are regexs} \]
Regular Expressions

Rules for building regular expressions (regex):
1. Each $e \in \Sigma$ is a regex
2. $\{\varepsilon\}$ is a regex \(\rightarrow\) Language with one string: The empty string.
3. \emptyset is a regex \(\rightarrow\) Language with no strings.
4. $(R_1 \cup R_2)$ is a regex
5. $(R_1 \circ R_2)$ is a regex \(\rightarrow\) R_1 and R_2 are regexes
Regular Expressions

Rules for building regular expressions (regex):
1. Each $e \in \Sigma$ is a regex
2. $\{\varepsilon\}$ is a regex \Rightarrow Language with one string: The empty string.
3. \emptyset is a regex \Rightarrow Language with no strings.
4. $(R_1 \cup R_2)$ is a regex
5. $(R_1 \circ R_2)$ is a regex \Rightarrow R_1 and R_2 are regexes
6. R_1^* is a regex
Regular Expressions

Regular Expression notation:

- \(R^* \) (i.e. zero or more strings from \(R \))

 e.g. \(1^* \) includes: 1, 11111111, \(\varepsilon \)

- \(RR = R \circ R \) (i.e. two strings from \(R \) concatenated)

 e.g. \(1^*0 \) includes: 10, 111111110, 0

- \(R^+ = RR^* \) (i.e. at least one string from \(R \))

 e.g. \(1^+ \) includes: 1, 11111111, but not \(\varepsilon \)

Order of operations:

- Parentheses, star (and plus), concatenation, union.
Regular Expression Practice

Suppose that $\Sigma = \{0, 1\}$.

- $1^* 0^* 1 = ?$
Regular Expression Practice

Suppose that \(\Sigma = \{0,1\} \).

- \(1^*0^*1 = \{w : w \text{ contains } \geq 0 \text{ 1s, then } \geq 0 \text{ 0s, then a 1}\} \)
Regular Expression Practice

Suppose that $\Sigma = \{0,1\}$.

- $1^*0^*1 = \{w : w \text{ contains } \geq 0 \text{ 1s, then } \geq 0 \text{ 0s, then a 1}\}$
- $(1 \cup 0)^*1 = ?$
Regular Expression Practice

Suppose that $\Sigma = \{0,1\}$.

- $1^* 0^* 1 = \{w: w \text{ contains } \geq 0 \ 1\text{s, then } \geq 0 \ 0\text{s, then a } 1\}$
- $(1 \cup 0)^* 1 = \{w: w \text{ ends in } 1\}$
Regular Expression Practice

Suppose that $\Sigma = \{0,1\}$.

- $1^* 0^* 1 = \{w: w \text{ contains } \geq 0 \text{ 1s, then } \geq 0 \text{ 0s, then a 1}\}$
- $(1 \cup 0)^* 1 = \{w: w \text{ ends in } 1\}$
- $\{w: w \text{ contains a single 1}\} = ?$
Regular Expression Practice

Suppose that $\Sigma = \{0,1\}$.

- $1^*0^*1 = \{w: w \text{ contains } \geq 0 \text{ 1s, then } \geq 0 \text{ 0s, then a 1}\}$
- $(1 \cup 0)^*1 = \{w: w \text{ ends in 1}\}$
- $\{w: w \text{ contains a single 1}\} = 0^*10^*$
Regular Expression Practice

Suppose that $\Sigma = \{0,1\}$.

- $1^*0^*1 = \{w: w \text{ contains } \geq 0 \ 1\text{s, then } \geq 0 \ 0\text{s, then a } 1\}$
- $(1 \cup 0)^*1 = \{w: w \text{ ends in } 1\}$
- $\{w: w \text{ contains a single } 1\} = 0^*10^*$
- $\{w: w \text{ contains at least one } 1\} = ?$
Suppose that $\Sigma = \{0,1\}$.

- $1^*0^*1 = \{w: w \text{ contains } \geq 0 \text{ 1s, then } \geq 0 \text{ 0s, then a 1}\}$
- $(1 \cup 0)^*1 = \{w: w \text{ ends in 1}\}$
- $\{w: w \text{ contains a single 1}\} = 0^*10^*$
- $\{w: w \text{ contains at least one 1}\} = \Sigma^*1\Sigma^* \text{ or } (0 \cup 1)^*1(0 \cup 1)^*$
Regular Expression Practice

Suppose that $\Sigma = \{0,1\}$.

- $1^* 0^* 1 = \{w: w \text{ contains } \geq 0 \text{ 1s, then } \geq 0 \text{ 0s, then a } 1\}$
- $(1 \cup 0)^* 1 = \{w: w \text{ ends in } 1\}$
- $\{w: w \text{ contains a single 1}\} = 0^* 1 0^*$
- $\{w: w \text{ contains at least one 1}\} = \Sigma^* 1 \Sigma^*$
- $(\Sigma \Sigma)^* = \text{?}$
Regular Expression Practice

Suppose that $\Sigma = \{0, 1\}$.

- $1^*0^*1 = \{w: w \text{ contains } \geq 0 \text{ 1s, then } \geq 0 \text{ 0s, then a 1}\}$
- $(1 \cup 0)^*1 = \{w: w \text{ ends in 1}\}$
- $\{w: w \text{ contains a single 1}\} = 0^*10^*$
- $\{w: w \text{ contains at least one 1}\} = \Sigma^*1\Sigma^*$
- $(\Sigma\Sigma)^* = \{w: w \text{ has even length}\}$
Regular Expression Practice

Suppose that $\Sigma = \{0,1\}$.

- $1^* 0^* 1 = \{w: w \text{ contains } \geq 0 \text{ 1s, then } \geq 0 \text{ 0s, then a 1} \}$
- $(1 \cup 0)^* 1 = \{w: w \text{ ends in 1} \}$
- $\{w: w \text{ contains a single 1} \} = 0^* 10^*$
- $\{w: w \text{ contains at least one 1} \} = \Sigma^* 1 \Sigma^*$
- $(\Sigma \Sigma)^* = \{w: w \text{ has even length} \}$
- $\{w: \text{ every 0 is followed by at least one 1} \} =$?
Regular Expression Practice

Suppose that \(\Sigma = \{0,1\} \).

- \(1^*0^*1 = \{w: w \text{ contains } \geq 0 \text{ 1s, then } \geq 0 \text{ 0s, then a 1} \} \)
- \((1 \cup 0)^*1 = \{w: w \text{ ends in 1} \} \)
- \(\{w: w \text{ contains a single 1} \} = 0^*10^* \)
- \(\{w: w \text{ contains at least one 1} \} = \Sigma^*1\Sigma^* \)
- \((\Sigma\Sigma)^* = \{w: w \text{ has even length} \} \)
- \(\{w: \text{ every 0 is followed by at least one 1} \} = 1^*(01^+)^* \)
Regular Expression Practice

Suppose that $\Sigma = \{0, 1\}$.

- $1^* 0^* 1 = \{w: w \text{ contains } \geq 0 \ 1\text{s, then } \geq 0 \ 0\text{s, then a } 1\}$
- $(1 \cup 0)^* 1 = \{w: w \text{ ends in } 1\}$
- $\{w: w \text{ contains a single } 1\} = 0^* 1 0^*$
- $\{w: w \text{ contains at least one } 1\} = \Sigma^* 1 \Sigma^*$
- $(\Sigma \Sigma)^* = \{w: w \text{ has even length}\}$
- $\{w: \text{every } 0 \text{ is followed by at least one } 1\} = 1^* (0 1^+)^*$
- $1^* \emptyset = \text{?}$

By definition, $A \circ B = \{xy: x \in A, y \in B\}$
Suppose that $\Sigma = \{0,1\}$.

- $1^*0^*1 = \{w: w \text{ contains } \geq 0\ 1\text{s, then } \geq 0\ 0\text{s, then a } 1\}$
- $(1 \cup 0)^*1 = \{w: w \text{ ends in } 1\}$
- $\{w: w \text{ contains a single } 1\} = 0^*10^*$
- $\{w: w \text{ contains at least one } 1\} = \Sigma^*1\Sigma^*$
- $(\Sigma\Sigma)^* = \{w: w \text{ has even length}\}$
- $\{w: \text{ every } 0 \text{ is followed by at least one } 1\} = 1^*(01^+)^*$
- $1^*\emptyset = \emptyset$

By definition, $A \circ B = \{xy: x \in A, y \in B\}$

Since there is no element in \emptyset, there cannot be any xy such that $y \in \emptyset$.
Regular Expression Practice

Suppose that $\Sigma = \{0,1\}$.

- $1^*0^*1 = \{w: w \text{ contains } \geq 0 \ 1\text{s, then } \geq 0 \ 0\text{s, then a } 1\}$
- $(1 \cup 0)^*1 = \{w: w \text{ ends in } 1\}$
- $\{w: w \text{ contains a single } 1\} = 0^*10^*$
- $\{w: w \text{ contains at least one } 1\} = \Sigma^*1\Sigma^*$
- $(\Sigma\Sigma)^* = \{w: w \text{ has even length}\}$
- $\{w: \text{every } 0 \text{ is followed by at least one } 1\} = 1^*(01^+)^*$
- $1^*\emptyset = \emptyset$
 By definition, $A \circ B = \{xy: x \in A, y \in B\}$
- $1^*\varepsilon = ?$
Regular Expression Practice

Suppose that $\Sigma = \{0, 1\}$.

- $1^* 0^* 1 = \{w: w \text{ contains } \geq 0 \text{ 1s, then } \geq 0 \text{ 0s, then a } 1\}$
- $(1 \cup 0)^* 1 = \{w: w \text{ ends in } 1\}$
- $\{w: w \text{ contains a single } 1\} = 0^* 10^*$
- $\{w: w \text{ contains at least one } 1\} = \Sigma^* 1\Sigma^*$
- $(\Sigma\Sigma)^* = \{w: w \text{ has even length}\}$
- $\{w: \text{ every } 0 \text{ is followed by at least one } 1\} = 1^* (01^+)^*$
- $1^* \emptyset = \emptyset$
- $1^* \varepsilon = 1^*$

By definition, $A \circ B = \{xy: x \in A, y \in B\}$
Regular Expression Practice

Suppose that $\Sigma = \{0, 1\}$.

- $1^* 0^* 1 = \{w: w \text{ contains } \geq 0 \ 1\text{s, then } \geq 0 \ 0\text{s, then a } 1\}$
- $(1 \cup 0)^* 1 = \{w: w \text{ ends in } 1\}$
- $\{w: w \text{ contains a single } 1\} = 0^* 10^*$
- $\{w: w \text{ contains at least one } 1\} = \Sigma^* 1 \Sigma^*$
- $(\Sigma \Sigma)^* = \{w: w \text{ has even length}\}$
- $\{w: \text{every } 0 \text{ is followed by at least one } 1\} = 1^* (01^+)^*$
- $1^* \emptyset = \emptyset$
- $1^* \varepsilon = 1^*$

By definition, $A^* = \{x_1 x_2 \ldots x_k: k \geq 0, x_i \in A\}$
Regular Expression Practice

Suppose that $\Sigma = \{0,1\}$.

- $1^*0^*1 = \{w: w \text{ contains } \geq 0 \text{ 1s, then } \geq 0 \text{ 0s, then a 1}\}$
- $(1 \cup 0)^*1 = \{w: w \text{ ends in } 1\}$
- $\{w: w \text{ contains a single 1}\} = 0^*10^*$
- $\{w: w \text{ contains at least one 1}\} = \Sigma^*1\Sigma^*$
- $(\Sigma\Sigma)^* = \{w: w \text{ has even length}\}$
- $\{w: \text{every 0 is followed by at least one 1}\} = 1^*(01^+)^*$
- $1^*\emptyset = \emptyset$
- $1^*\varepsilon = 1^*$

By definition, $A^* = \{x_1x_2 \ldots x_k: k \geq 0, x_i \in A\}$

Thus, it can append 0 elements of \emptyset and get the empty string ε.

Regular Expression Practice

Suppose that $\Sigma = \{0,1\}$.

- $1^*0^*1 = \{w : w \text{ contains } \geq 0 \text{ 1s, then } \geq 0 \text{ 0s, then a 1}\}$
- $(1 \cup 0)^*1 = \{w : w \text{ ends in 1}\}$
- $\{w : w \text{ contains a single 1}\} = 0^*10^*$
- $\{w : w \text{ contains at least one 1}\} = \Sigma^*1\Sigma^*$
- $(\Sigma\Sigma)^* = \{w : w \text{ has even length}\}$
- $\{w : \text{every 0 is followed by at least one 1}\} = 1^*(01^+)^*$
- $1^*\emptyset = \emptyset$
- $1^*\varepsilon = 1^*$
- $\emptyset^* = \varepsilon$ \(\emptyset^+ = ?\)
Regular Expression Practice

Suppose that $\Sigma = \{0,1\}$.

- $1^*0^*1 = \{w: w \text{ contains } \geq 0 \; 1\text{s, then } \geq 0 \; 0\text{s, then a } 1\}$
- $(1 \cup 0)^*1 = \{w: w \text{ ends in } 1\}$
- $\{w: w \text{ contains a single } 1\} = 0^*10^*$
- $\{w: w \text{ contains at least one } 1\} = \Sigma^*1\Sigma^*$
- $(\Sigma\Sigma)^* = \{w: w \text{ has even length}\}$
- $\{w: \text{every } 0 \text{ is followed by at least one } 1\} = 1^*(01^+)^*$
- $1^*\emptyset = \emptyset$
- $1^*\varepsilon = 1^*$
- $\emptyset^* = \varepsilon$ $\emptyset^+ = \emptyset$