Pumping Lemma
Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \geq p$, can be divided into three pieces, $s = xyz$ satisfying:
1. $xy^iz \in L, \ \forall i \geq 0$.
2. $|y| > 0$.
3. $|xy| \leq p$.

Proof Blueprint
Claim: The language $L = \langle$some language\rangle is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.
Consider $s = <$TODO: Select s that will work with $s \in L$ and $|s| \geq p$$.>
Since $s \in L$ and $|s| \geq p$, the conditions of the pumping lemma must hold for $s = xyz$.

\langleTODO: Find conditions on what y must equal\rangle

Consider the string $s' = xy^iz = <$TODO: Select $i$$.>
\langleTODO: Show what s' equals\rangle
\langleTODO: Show s' is not in $L$$\rangle$

$\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.
Therefore, the language is not regular.