
Introduction
CSCI 432

Closest Pair Problem

Given 𝑛 points, find a pair of points with
the smallest distance between them.

(𝑥, 𝑦)

???

Closest Pair Problem

Solution 1:

1. Compute distance for each pair.

2. Select smallest.

(𝑥, 𝑦) P1 P2 ... Pn

P1 / d1,2 ... d1,n

P2 d2,1 / ... d2,n

… ... …

Pn dn,1 dn,2 ... /

Closest Pair Problem

Solution 2:

1. Split in half.

2. Find closest in left and right sides
(recursively).

3. Find closet straddling middle.

4. Select closest of all three.

(𝑥, 𝑦)

Closest Pair Problem

Solution 3:

1. Consider points in random order.

2. Let 𝛿 = closest pair found so far.

3. For each new point, check all
“close” points for one < 𝛿.

4. If found update 𝛿.

(𝑥, 𝑦)

{𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛}

𝛿 = 𝑑(𝑝1, 𝑝2)

Closest Pair Problem
Solution 3:

1. Consider points in random order.

2. Let 𝛿 = closest pair found so far.

3. For each new point, check all
“close” points for one < 𝛿.

4. If found update 𝛿.

(𝑥, 𝑦)

Solution 2:

1. Split in half.

2. Find closest in left and right sides.

3. Find closet straddling middle.

4. Select closest of all three.

Solution 1:

1. Compute distance for each pair.

2. Select smallest.

Closest Pair Problem
Solution 3:

1. Consider points in random order.

2. Let 𝛿 = closest pair found so far.

3. For each new point, check all
“close” points for one < 𝛿.

4. If found update 𝛿.

(𝑥, 𝑦)

Solution 2:

1. Split in half.

2. Find closest in left and right sides.

3. Find closet straddling middle.

4. Select closest of all three.

Solution 1:

1. Compute distance for each pair.

2. Select smallest.

What algorithm is best?

Closest Pair Problem
Solution 3:

1. Consider points in random order.

2. Let 𝛿 = closest pair found so far.

3. For each new point, check all
“close” points for one < 𝛿.

4. If found update 𝛿.

(𝑥, 𝑦)

Solution 2:

1. Split in half.

2. Find closest in left and right sides.

3. Find closet straddling middle.

4. Select closest of all three.

Solution 1:

1. Compute distance for each pair.

2. Select smallest.

What algorithm is best?
 It depends.

Closest Pair Problem
Solution 3:

1. Consider points in random order.

2. Let 𝛿 = closest pair found so far.

3. For each new point, check all
“close” points for one < 𝛿.

4. If found update 𝛿.

(𝑥, 𝑦)

Solution 2:

1. Split in half.

2. Find closest in left and right sides.

3. Find closet straddling middle.

4. Select closest of all three.

Solution 1:

1. Compute distance for each pair.

2. Select smallest.

What algorithm is best?
 It depends.

What does it mean for one algorithm to be “better” than another?

Closest Pair Problem
Solution 3:

1. Consider points in random order.

2. Let 𝛿 = closest pair found so far.

3. For each new point, check all
“close” points for one < 𝛿.

4. If found update 𝛿.

(𝑥, 𝑦)

Solution 2:

1. Split in half.

2. Find closest in left and right sides.

3. Find closet straddling middle.

4. Select closest of all three.

Solution 1:

1. Compute distance for each pair.

2. Select smallest.

What algorithm is best?
 It depends.

What does it mean for one algorithm to be “better” than another?
 Possible metrics: Running time, accuracy, resource

requirements, simplicity, non-randomized.

Closest Pair Problem
Solution 3:

1. Consider points in random order.

2. Let 𝛿 = closest pair found so far.

3. For each new point, check all
“close” points for one < 𝛿.

4. If found update 𝛿.

(𝑥, 𝑦)

Solution 2:

1. Split in half.

2. Find closest in left and right sides.

3. Find closet straddling middle.

4. Select closest of all three.

Solution 1:

1. Compute distance for each pair.

2. Select smallest.

What algorithm is best?
 It depends.

What does it mean for one algorithm to be “better” than another?
 Possible metrics: Running time, accuracy, resource

requirements, simplicity, non-randomized.

432 Goals:

Closest Pair Problem
Solution 3:

1. Consider points in random order.

2. Let 𝛿 = closest pair found so far.

3. For each new point, check all
“close” points for one < 𝛿.

4. If found update 𝛿.

(𝑥, 𝑦)

Solution 2:

1. Split in half.

2. Find closest in left and right sides.

3. Find closet straddling middle.

4. Select closest of all three.

Solution 1:

1. Compute distance for each pair.

2. Select smallest.

What algorithm is best?
 It depends.

What does it mean for one algorithm to be “better” than another?
 Possible metrics: Running time, accuracy, resource

requirements, simplicity, non-randomized.

432 Goals:
 Tools, tools, tools.

Closest Pair Problem
Solution 3:

1. Consider points in random order.

2. Let 𝛿 = closest pair found so far.

3. For each new point, check all
“close” points for one < 𝛿.

4. If found update 𝛿.

(𝑥, 𝑦)

Solution 2:

1. Split in half.

2. Find closest in left and right sides.

3. Find closet straddling middle.

4. Select closest of all three.

Solution 1:

1. Compute distance for each pair.

2. Select smallest.

What algorithm is best?
 It depends.

What does it mean for one algorithm to be “better” than another?
 Possible metrics: Running time, accuracy, resource

requirements, simplicity, non-randomized.

432 Goals:
 Tools, tools, tools.
 Tools to build algorithms. Tools to analyze algorithms. Tools to

compare algorithms. Tools to share algorithms.

What would you rather have?

Suppose that given a problem of size 𝑛…

Algorithm A
runs in 𝑂(𝑛2)
time.

Algorithm B
runs in 𝑂(𝑛)
time.

What would you rather have?

Suppose that given a problem of size 𝑛…

Algorithm A
runs in 𝑛2 ∈
𝑂(𝑛2) time.

Algorithm B
runs in 𝑛 + 1034

∈ 𝑂(𝑛) time.

What would you rather have?

Suppose that given a problem of size 𝑛…

Algorithm A
runs in 𝑛2 ∈
𝑂(𝑛2) time.

Algorithm B
runs in 𝑛 + 1034

∈ 𝑂(𝑛) time.

~𝟏𝟎𝟏𝟕 seconds on fastest
supercomputer today.

Age of universe ~𝟏𝟎𝟏𝟕
seconds.

What would you rather have?

Suppose that given a problem of size 𝑛…

Algorithm A
runs in 𝑂(2𝑛2)
time.

Algorithm B
runs in 𝑂(𝑛2)
time.

What would you rather have?

Suppose that given a problem of size 𝑛…

Algorithm A
runs in 𝑂(22𝑛)
time.

Algorithm B
runs in 𝑂(2𝑛)
time.

What would you rather have?

Suppose that given a problem of size 𝑛…

Algorithm A
runs in
𝑂(log(𝑛))
time.

Algorithm B
runs in

𝑂(
log(𝑛)

log(log 𝑛)
)

time.

Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

⟹ 𝑛 ∈ 𝑂(𝑛2)

𝒏𝟐

𝒏

Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

𝑛0 ≥ 1

Let 𝑐 = 1 and 𝑛0 = 1.

⟹ 𝑛 ∈ 𝑂(𝑛2)

𝒏𝟐

𝒏

Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

𝑛0 ≥ 1

Let 𝑐 = 1 and 𝑛0 = 1.
Then, 𝑛 ≤ 1𝑛2 ∀𝑛 ≥ 1
⟹ 𝑛 ∈ 𝑂(𝑛2)

𝒏𝟐

𝒏

Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

𝑛0 ≥ 1

Let 𝑐 = 1 and 𝑛0 = 1.
Then, 𝑛 ≤ 1𝑛2 ∀𝑛 ≥ 1
⟹ 𝑛 ∈ 𝑂(𝑛2)

Note: Big-𝑂 notation provides an upper
bound, but that upper bound need not
be “tight”.

𝒏𝟐

𝒏

Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Notes:
1. Big-𝑂 notation allows us to drop multiplicative constants

and non-dominant factors.
2. Big-𝑂 notation allows us to broadly characterize algorithm

efficiency.
3. Many (most) developers care greatly about multiplicative

constants.

Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Suppose that 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑘 > 0. Is 𝑘𝑓(𝑛) ∈ 𝑂 𝑔 𝑛 ?

Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Suppose that 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑘 > 0. Is 𝑘𝑓(𝑛) ∈ 𝑂 𝑔 𝑛 ?

𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 ⇒ ???

Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Suppose that 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑘 > 0. Is 𝑘𝑓(𝑛) ∈ 𝑂 𝑔 𝑛 ?

𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 ⇒ ∃ 𝑐, 𝑛0 > 0 such that 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0.

Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Suppose that 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑘 > 0. Is 𝑘𝑓(𝑛) ∈ 𝑂 𝑔 𝑛 ?

𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 ⇒ ∃ 𝑐, 𝑛0 > 0 such that 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0.

𝑘 > 0 ⇒ 0 ≤ 𝑘𝑓 𝑛 ≤ 𝑐𝑘𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0.

Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Suppose that 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑘 > 0. Is 𝑘𝑓(𝑛) ∈ 𝑂 𝑔 𝑛 ?

𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 ⇒ ∃ 𝑐, 𝑛0 > 0 such that 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0.

𝑘 > 0 ⇒ 0 ≤ 𝑘𝑓 𝑛 ≤ 𝑐𝑘𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0.

So, ∃ 𝑚 = 𝑐𝑘, 𝑛0 > 0 such that 0 ≤ 𝑘𝑓 𝑛 ≤ 𝑚𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Suppose that 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑘 > 0. Is 𝑘𝑓(𝑛) ∈ 𝑂 𝑔 𝑛 ?

𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 ⇒ ∃ 𝑐, 𝑛0 > 0 such that 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0.

𝑘 > 0 ⇒ 0 ≤ 𝑘𝑓 𝑛 ≤ 𝑐𝑘𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0.

So, ∃ 𝑚 = 𝑐𝑘, 𝑛0 > 0 such that 0 ≤ 𝑘𝑓 𝑛 ≤ 𝑚𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

⇒ 𝑘𝑓(𝑛) ∈ 𝑂 𝑔 𝑛 .

Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Suppose that 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑔 𝑛 ∈ 𝑂 ℎ 𝑛 .

Is 𝑓(𝑛) ∈ 𝑂 ℎ 𝑛 ?

Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Suppose that 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑔 𝑛 ∈ 𝑂 ℎ 𝑛 .

Is 𝑓(𝑛) ∈ 𝑂 ℎ 𝑛 ?

𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 ⇒ ∃ 𝑐, 𝑛0 > 0 such that 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0.

𝑔 𝑛 ∈ 𝑂 ℎ 𝑛 ⇒ ∃ 𝑘, 𝑚0 > 0 such that 0 ≤ 𝑔 𝑛 ≤ 𝑘ℎ 𝑛 ∀ 𝑛 ≥ 𝑚0.

Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Suppose that 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑔 𝑛 ∈ 𝑂 ℎ 𝑛 .

Is 𝑓(𝑛) ∈ 𝑂 ℎ 𝑛 ?

𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 ⇒ ∃ 𝑐, 𝑛0 > 0 such that 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0.

𝑔 𝑛 ∈ 𝑂 ℎ 𝑛 ⇒ ∃ 𝑘, 𝑚0 > 0 such that 0 ≤ 𝑔 𝑛 ≤ 𝑘ℎ 𝑛 ∀ 𝑛 ≥ 𝑚0.

 𝑐 > 0 ⇒ 0 ≤ 𝑐𝑔(𝑛) ≤ 𝑐𝑘ℎ(𝑛)

Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Suppose that 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑔 𝑛 ∈ 𝑂 ℎ 𝑛 .

Is 𝑓(𝑛) ∈ 𝑂 ℎ 𝑛 ?

𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 ⇒ ∃ 𝑐, 𝑛0 > 0 such that 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0.

𝑔 𝑛 ∈ 𝑂 ℎ 𝑛 ⇒ ∃ 𝑘, 𝑚0 > 0 such that 0 ≤ 𝑔 𝑛 ≤ 𝑘ℎ 𝑛 ∀ 𝑛 ≥ 𝑚0.

 𝑐 > 0 ⇒ 0 ≤ 𝑐𝑔(𝑛) ≤ 𝑐𝑘ℎ(𝑛)
So, 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛

∀ 𝒏 ≥ 𝒏𝟎

Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Suppose that 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑔 𝑛 ∈ 𝑂 ℎ 𝑛 .

Is 𝑓(𝑛) ∈ 𝑂 ℎ 𝑛 ?

𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 ⇒ ∃ 𝑐, 𝑛0 > 0 such that 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0.

𝑔 𝑛 ∈ 𝑂 ℎ 𝑛 ⇒ ∃ 𝑘, 𝑚0 > 0 such that 0 ≤ 𝑔 𝑛 ≤ 𝑘ℎ 𝑛 ∀ 𝑛 ≥ 𝑚0.

 𝑐 > 0 ⇒ 0 ≤ 𝑐𝑔(𝑛) ≤ 𝑐𝑘ℎ(𝑛)
So, 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ≤ 𝑐𝑘ℎ 𝑛

∀ 𝒏 ≥ 𝒏𝟎
∀ 𝒏 ≥ 𝒎𝟎

Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Suppose that 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑔 𝑛 ∈ 𝑂 ℎ 𝑛 .

Is 𝑓(𝑛) ∈ 𝑂 ℎ 𝑛 ?

𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 ⇒ ∃ 𝑐, 𝑛0 > 0 such that 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0.

𝑔 𝑛 ∈ 𝑂 ℎ 𝑛 ⇒ ∃ 𝑘, 𝑚0 > 0 such that 0 ≤ 𝑔 𝑛 ≤ 𝑘ℎ 𝑛 ∀ 𝑛 ≥ 𝑚0.

 𝑐 > 0 ⇒ 0 ≤ 𝑐𝑔(𝑛) ≤ 𝑐𝑘ℎ(𝑛)
So, 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ≤ 𝑐𝑘ℎ 𝑛
Thus, 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑘ℎ 𝑛 ∀ 𝑛 ≥ max 𝑛0, 𝑚0 ⇒ 𝑓(𝑛) ∈ 𝑂 ℎ 𝑛

∀ 𝒏 ≥ 𝒏𝟎
∀ 𝒏 ≥ 𝒎𝟎

Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Prove or disprove: 22𝑛 ∈ 𝑂 2𝑛 .

Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Prove or disprove: 22𝑛 ∈ 𝑂 2𝑛 .

If so, ∃ 𝑐, 𝑛0 > 0 such that 0 ≤ 22𝑛 ≤ 𝑐2𝑛 ∀ 𝑛 ≥ 𝑛0.

Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Prove or disprove: 22𝑛 ∈ 𝑂 2𝑛 .

If so, ∃ 𝑐, 𝑛0 > 0 such that 0 ≤ 22𝑛 ≤ 𝑐2𝑛 ∀ 𝑛 ≥ 𝑛0.
 …which means that, 22𝑛 = 2𝑛2𝑛 ≤ 𝑐2𝑛

Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Prove or disprove: 22𝑛 ∈ 𝑂 2𝑛 .

If so, ∃ 𝑐, 𝑛0 > 0 such that 0 ≤ 22𝑛 ≤ 𝑐2𝑛 ∀ 𝑛 ≥ 𝑛0.
 …which means that, 22𝑛 = 2𝑛2𝑛 ≤ 𝑐2𝑛 ⇒ 2𝑛 ≤ 𝑐.

Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Prove or disprove: 22𝑛 ∈ 𝑂 2𝑛 .

If so, ∃ 𝑐, 𝑛0 > 0 such that 0 ≤ 22𝑛 ≤ 𝑐2𝑛 ∀ 𝑛 ≥ 𝑛0.
 …which means that, 22𝑛 = 2𝑛2𝑛 ≤ 𝑐2𝑛 ⇒ 2𝑛 ≤ 𝑐.
 Contradiction, since 𝑐 is a constant!

Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Prove or disprove: 22𝑛 ∈ 𝑂 2𝑛 .

If so, ∃ 𝑐, 𝑛0 > 0 such that 0 ≤ 22𝑛 ≤ 𝑐2𝑛 ∀ 𝑛 ≥ 𝑛0.
 …which means that, 22𝑛 = 2𝑛2𝑛 ≤ 𝑐2𝑛 ⇒ 2𝑛 ≤ 𝑐.
 Contradiction, since 𝑐 is a constant!
Thus, 22𝑛 ∉ 𝑂(2𝑛).

Other Asymptotic Notation

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Θ 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐1, 𝑐2, 𝑛0 > 0 such that

0 ≤ 𝑐1𝑔(𝑛) ≤ 𝑓 𝑛 ≤ 𝑐2𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Ω 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑐𝑔 𝑛 ≤ 𝑓(𝑛) ∀ 𝑛 ≥ 𝑛0

Big-Omega

Big-Theta

Big-𝑶
“Asymptotic upper bound”

“Asymptotic tight bound”

“Asymptotic lower bound”

	Slide 1: Introduction CSCI 432
	Slide 2: Closest Pair Problem
	Slide 3: Closest Pair Problem
	Slide 4: Closest Pair Problem
	Slide 5: Closest Pair Problem
	Slide 6: Closest Pair Problem
	Slide 7: Closest Pair Problem
	Slide 8: Closest Pair Problem
	Slide 9: Closest Pair Problem
	Slide 10: Closest Pair Problem
	Slide 11: Closest Pair Problem
	Slide 12: Closest Pair Problem
	Slide 13: Closest Pair Problem
	Slide 14: What would you rather have?
	Slide 15: What would you rather have?
	Slide 16: What would you rather have?
	Slide 17: What would you rather have?
	Slide 18: What would you rather have?
	Slide 19: What would you rather have?
	Slide 20: Big-O notation
	Slide 21: Big-O notation
	Slide 22: Big-O notation
	Slide 23: Big-O notation
	Slide 24: Big-O notation
	Slide 25: Big-O notation
	Slide 26: Big-O notation
	Slide 27: Big-O notation
	Slide 28: Big-O notation
	Slide 29: Big-O notation
	Slide 30: Big-O notation
	Slide 31: Big-O notation
	Slide 32: Big-O notation
	Slide 33: Big-O notation
	Slide 34: Big-O notation
	Slide 35: Big-O notation
	Slide 36: Big-O notation
	Slide 37: Big-O notation
	Slide 38: Big-O notation
	Slide 39: Big-O notation
	Slide 40: Big-O notation
	Slide 41: Big-O notation
	Slide 42: Big-O notation
	Slide 43: Big-O notation
	Slide 44: Other Asymptotic Notation

