Introduction
CSCl 432

Closest Pair Problem

Given n points, find a pair of points with
the smallest distance between them.

Closest Pair Problem

Ly, e

Solution 1:

P, | Py P,
P | [|di, dyn
Py | doy| / dz
I:)n dn,l dn,2 /

1. Compute distance for each pair.

2. Select smallest.

Closest Pair Problem

Solution 2:

1. Split in half.

2. Find closest in left and right sides
(recursively).

3. Find closet straddling middle.
4. Select closest of all three.

Closest Pair Problem

Loy)e o0 ‘

.. : . {pb P2, P3, ---;pn}

.. . .° 5 — d(le pZ)
Solution 3:

1. Consider points in random order.
2. Let 0 = closest pair found so far.

3. For each new point, check all
“close” points for one < 0.

4. If found update 6.

Closest Pair Problem

(x,y) .

Solution 3:
1. Consider points in random order.
2. Let 6 = closest pair found so far.

3. For each new point, check all
“close” points for one < 9.

4. If found update 0.

Solution 1:

1. Compute distance for each pair.

2. Select smallest.

Solution 2:
1. Split in half.
2. Find closest in left and right sides.
3. Find closet straddling middle.
4. Select closest of all three.

Closest Pair Problem

Solution 3:

| () : 1. Consider points in random order.
What algorithm is best? far.

Soluti
1.

2. Select smallest.

ides.

4. Select closest of all three.

Closest Pair Problem

Solution 3:
|) : 1. Consider points in random order.
What algorithm is best? far.
It depends.

Soluti
1.

2. Select smallest.

ides.

4. Select closest of all three.

Closest Pair Problem

Soluti
1.

Solution 3:
| () s 1. Consider points in random order.
What algorithm is best? far.
It depends.
What does it mean for one algorithm to be “better” than another?
ides.

2. Select smallest.

4. Select closest of all three.

Closest Pair Problem

Solution 3:
|) : 1. Consider points in random order.
What algorithm is best? far.
It depends.

What does it mean for one algorithm to be “better” than another?
Possible metrics: Running time, accuracy, resource
requirements, simplicity, non-randomized.

Soluti
1.

2. Select smallest.

ides.

4. Select closest of all three.

Closest Pair Problem

Solution 3:
|) : 1. Consider points in random order.
What algorithm is best? far.
It depends.

What does it mean for one algorithm to be “better” than another?
Possible metrics: Running time, accuracy, resource
requirements, simplicity, non-randomized.

432 Goals:

Soluti
1.

2. Select smallest.

ides.

4. Select closest of all three.

Closest Pair Problem

Solution 3:
|) : 1. Consider points in random order.
What algorithm is best? far.
It depends.

What does it mean for one algorithm to be “better” than another?
Possible metrics: Running time, accuracy, resource
requirements, simplicity, non-randomized.

432 Goals:

Tools, tools, tools.

Soluti
1.

2. Select smallest.

ides.

4. Select closest of all three.

Closest Pair Problem

Solution 3:

| (x,v) ®

1. Consider points in random order.

Soluti
1.

2. Select smallest.

What algorithm is best?
It depends.

What does it mean for one algorithm to be “better” than another?
Possible metrics: Running time, accuracy, resource
requirements, simplicity, non-randomized.

432 Goals:

Tools, tools, tools.
Tools to build algorithms. Tools to analyze algorithms. Tools to
compare algorithms. Tools to share algorithms.

far.

ides.

4. Select closest of all three.

What would you rather have?

Suppose that given a problem of size n...

What would you rather have?

Suppose that given a problem of size n...

What would you rather have?

Suppose that given a problem of size n...

~1017 seconds on fastest
supercomputer today.

Age of universe ~1017
seconds.

What would you rather have?

Suppose that given a problem of size n...

What would you rather have?

Suppose that given a problem of size n...

What would you rather have?

Suppose that given a problem of size n...

Big-O notation

Formal Definition:

- (f(m): 3 c,ny > 0 such that
0(0) = {0 2 f() % rgm) ¥ = mo)

Big-O notation

Formal Definition:

- (f(m): 3 c,ny > 0 such that
0(9) = {0 2 f() % rgm) ¥ = mo)

n
// = n € 0(n?)

/

Big-O notation

Formal Definition:

- (f(m): 3 c,ny > 0 such that
0(9) = {0 2 f() % rgm) ¥ = mo)

Letc = 1andny = 1.
n
/. = n € 0(n?)
/ ng =1

Big-O notation

Formal Definition:

- (f(m): 3 c,ny > 0 such that
0(9) = {0 2 f() % rgm) ¥ = mo)

Letc = 1andny = 1.
n Then,n < 1n*vn > 1
/. = n € 0(n?)
/ ng =1

Big-O notation

Formal Definition: ()
B fn:EIc,nO>Osuchthat}
O(Q(n)) - {O < f(n) <cg(n)vn=n,

letc =1andny = 1.
n Then,n < 1n‘vn =1
= n € 0(n?)
/ Note: Big-O notation provides an upper

/ ;’lo > 1 bound, but that upper bound need not
be “tight”.

Big-O notation

Formal Definition:

- (f(m): 3 c,ny > 0 such that
0(0) = {0 2 f() % rgm) ¥ = mo)

Notes:
1. Big-O notation allows us to drop multiplicative constants

and non-dominant factors.

2. Big-0O notation allows us to broadly characterize algorithm
efficiency.

3. Many (most) developers care greatly about multiplicative
constants.

Big-O notation

Formal Definition:

- (f(m): 3 c,ny > 0 such that
0(0) = {0 2 f() % rgm) ¥ = mo)

Suppose that f(n) € 0(g(n)) and k > 0.1s kf(n) € 0(g(n))?

Big-O notation

Formal Definition:

- (f(m): 3 c,ny > 0 such that
0(0) = {0 2 f() % rgm) ¥ = mo)

Suppose that f(n) € 0(g(n)) and k > 0.1s kf(n) € 0(g(n))?

f(n) e O(g(n)) = 7?7

Big-O notation

Formal Definition:

- (f(m): 3 c,ny > 0 such that
0(0) = {0 2 f() % rgm) ¥ = mo)

Suppose that f(n) € 0(g(n)) and k > 0.1s kf(n) € 0(g(n))?

f(n) € O(g(n)) = 3 c,ny > 0suchthat0 < f(n) < cg(n) vn = n,.

Big-O notation

Formal Definition:

- (f(m): 3 c,ny > 0 such that }
O(Q(n)) - {O < f(n) <cg(n)vn=n,
Suppose that f(n) € 0(g(n)) and k > 0.1s kf(n) € 0(g(n))?
f(n) € O(g(n)) = 3 c,ny > 0suchthat0 < f(n) < cg(n) vn = n,.

k>0=>0<kf(n) <ckg(n) vn = n,.

Big-O notation

Formal Definition:

- (f(m): 3 c,ny > 0 such that }
O(Q(n)) - {O < f(n) <cg(n)vn=n,
Suppose that f(n) € 0(g(n)) and k > 0.1s kf(n) € 0(g(n))?
f(n) € O(g(n)) = 3 c,ny > 0suchthat0 < f(n) < cg(n) vn = n,.

k>0=>0<kf(n) <ckg(n) vn = n,.

So,3m =ck,ny > 0suchthat0 < kf(n) < mg(n) vn = n,

Big-O notation

Formal Definition:

0(g(n)) = {f(n): 3 ¢,ng > 0 such that }

0<f(n)<cg(n)vn=n,
Suppose that f(n) € 0(g(n)) and k > 0.1s kf(n) € 0(g(n))?
f(n) € O(g(n)) = 3 c,ny > 0suchthat0 < f(n) < cg(n) vn = n,.

k>0=>0<kf(n) <ckg(n) vn = n,.

So,3m =ck,ny > 0suchthat0 < kf(n) < mg(n) vn = n,

= kf(n) € 0(g(n)).

Big-O notation

Formal Definition:

- (f(m): 3 c,ny > 0 such that
0(0) = {0 2 f() % rgm) ¥ = mo)

Suppose that f(n) € O(g(n)) and g(n) € O(h(n)).
s f(n) € 0(h(n))?

Big-O notation
Formal Definition: f()
B n): A c,ng > 0 such that
O(Q(n)) - {O <f(n)<cgn)vn= no}
Suppose that f(n) € O(g(n)) and g(n) € O(h(n)).
s f(n) € 0(h(n))?

f(n) e O(g(n)) = 3 c,ny > 0suchthat0 < f(n) < cg(n) vn = n,.
gn) € O(h(n)) = 3 k,my > 0suchthat0 < g(n) < kh(n) Vn = m,.

Big-O notation

Formal Definition:

- (f(m): 3 c,ny > 0 such that
0(0) = {0 2 f() % rgm) ¥ = mo)

Suppose that f(n) € O(g(n)) and g(n) € O(h(n)).
s f(n) € 0(h(n))?
f(n) e O(g(n)) = 3 c,ny > 0suchthat0 < f(n) < cg(n) vn = n,.

gn) € O(h(n)) = 3 k,my > 0suchthat0 < g(n) < kh(n) Vn = m,.
c>0=>0<cg(n) <ckh(n)

Big-O notation

Formal Definition:

- (f(m): 3 c,ny > 0 such that
0(0) = {0 2 f() % rgm) ¥ = mo)

Suppose that f(n) € O(g(n)) and g(n) € O(h(n)).

s f(n) € 0(h(n))?

f(n) e O(g(n)) = 3 c,ny > 0suchthat0 < f(n) < cg(n) vn = n,.

gn) € O(h(n)) = 3 k,my > 0suchthat0 < g(n) < kh(n) Vn = m,.
vz ng— c>0=>0<cg(n) <ckh(n)

So,0< f(n) <cgn)

Big-O notation

Formal Definition:

- (f(m): 3 c,ny > 0 such that
0(0) = {0 2 f() % rgm) ¥ = mo)

Suppose that f(n) € O(g(n)) and g(n) € O(h(n)).

s f(n) € 0(h(n))?

f(n) e O(g(n)) = 3 c,ny > 0suchthat0 < f(n) < cg(n) vn = n,.
gn) € O(h(n)) = 3 k,my > 0suchthat0 < g(n) < kh(n) Vn = m,.

VnEnO\‘V"Z’"O\v c>0=0<cg(n) <ckh(n)
So,0< f(n) <cgn) < ckh(n)

Big-O notation

Formal Definition:

- (f(m): 3 c,ny > 0 such that
0(0) = {0 2 f() % rgm) ¥ = mo)

Suppose that f(n) € O(g(n)) and g(n) € O(h(n)).
s f(n) € 0(h(n))?

f(n) e O(g(n)) = 3 c,ny > 0suchthat0 < f(n) < cg(n) vn = n,.

gn) € O(h(n)) = 3 k,my > 0suchthat0 < g(n) < kh(n) Vn = m,.
Vn>n, V”Z"‘O\v c>0=0<cg(n) <ckh(n)

So,0< f(n) <cgn) < ckh(n)

Thus, 0 < f(n) < ckh(n) V n = max(ny, my) = f(n) € 0(h(n))

Big-O notation

Formal Definition:

- (f(m): 3 c,ny > 0 such that
0(0) = {0 2 f() % rgm) ¥ = mo)

Prove or disprove: 2°™ € 0(2").

Big-O notation

Formal Definition:

- (f(m): 3 c,ny > 0 such that
0(0) = {0 2 f() % rgm) ¥ = mo)

Prove or disprove: 2%™ € 0(2™).
If so, 3 ¢c,ny > 0suchthat 0 < 22™ < ¢c2™"Vn = n,.

Big-O notation
Formal Definition: ()
C(f(n):3c,ng > Osuchthat}
O(Q(n)) - {O < f(n) <cg(n)vn=n,

Prove or disprove: 2%™ € 0(2™).

If so, 3 ¢,ng > 0suchthat 0 < 2%™ < ¢c2"Vn = n,.
..which means that, 2™ = 212" < ¢2"

Big-O notation
Formal Definition: ()
C(f(n):3c,ng > Osuchthat}
O(Q(n)) - {O < f(n) <cg(n)vn=n,

Prove or disprove: 2%™ € 0(2™).

If so, 3 ¢c,ny > 0suchthat 0 < 22™ < ¢c2™"Vn = n,.
..which means that, 2°™ = 2"2" < 2" = 2" < .

Big-O notation
Formal Definition: ()
C(f(n):3c,ng > Osuchthat}
O(Q(n)) - {O < f(n) <cg(n)vn=n,

Prove or disprove: 2%™ € 0(2™).

If so, 3 ¢c,ny > 0suchthat 0 < 22™ < ¢c2™"Vn = n,.
..which means that, 2°™ = 2"2" < 2" = 2" < .
Contradiction, since c is a constant!

Big-O notation

Formal Definition:

- (f(m): 3 c,ny > 0 such that
0(0) = {0 2 f() % rgm) ¥ = mo)

Prove or disprove: 2%™ € 0(2™).

If so, 3 ¢c,ny > 0suchthat 0 < 22™ < ¢c2™"Vn = n,.
..which means that, 2°™ = 2"2" < 2" = 2" < .

Contradiction, since c is a constant!
Thus, 2™ ¢ 0(2™).

Other Asymptotic Notation

f(n): 3 c,nyg > 0such that }

Big-0 O(Q(Tl)) — {O < f(n) <cg(n)vn=n,

“Asymptotic upper bound”
f(n): 3 cq,cp,ny > 0such that }

Big-Theta @(g(n)) B {O <cgn)<f(n) <c,g(n) vn=ny,

“Asymptotic tight bound”
f(n): 3c,ny > 0such that }

Big-Omega Q(g(n)) = {O <cgn) < f(n)vn=n,

“Asymptotic lower bound”

	Slide 1: Introduction CSCI 432
	Slide 2: Closest Pair Problem
	Slide 3: Closest Pair Problem
	Slide 4: Closest Pair Problem
	Slide 5: Closest Pair Problem
	Slide 6: Closest Pair Problem
	Slide 7: Closest Pair Problem
	Slide 8: Closest Pair Problem
	Slide 9: Closest Pair Problem
	Slide 10: Closest Pair Problem
	Slide 11: Closest Pair Problem
	Slide 12: Closest Pair Problem
	Slide 13: Closest Pair Problem
	Slide 14: What would you rather have?
	Slide 15: What would you rather have?
	Slide 16: What would you rather have?
	Slide 17: What would you rather have?
	Slide 18: What would you rather have?
	Slide 19: What would you rather have?
	Slide 20: Big-O notation
	Slide 21: Big-O notation
	Slide 22: Big-O notation
	Slide 23: Big-O notation
	Slide 24: Big-O notation
	Slide 25: Big-O notation
	Slide 26: Big-O notation
	Slide 27: Big-O notation
	Slide 28: Big-O notation
	Slide 29: Big-O notation
	Slide 30: Big-O notation
	Slide 31: Big-O notation
	Slide 32: Big-O notation
	Slide 33: Big-O notation
	Slide 34: Big-O notation
	Slide 35: Big-O notation
	Slide 36: Big-O notation
	Slide 37: Big-O notation
	Slide 38: Big-O notation
	Slide 39: Big-O notation
	Slide 40: Big-O notation
	Slide 41: Big-O notation
	Slide 42: Big-O notation
	Slide 43: Big-O notation
	Slide 44: Other Asymptotic Notation

