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Closest Pair Problem

Given n points, find a pair of points with
the smallest distance between them.
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1. Compute distance for each pair.

2. Select smallest.




Closest Pair Problem

Solution 2:

1. Split in half.

2. Find closest in left and right sides
(recursively).

3. Find closet straddling middle.
4. Select closest of all three.



Closest Pair Problem

Loy)e o0 ‘

.. : . {pb P2, P3, ---;pn}

.. . .° 5 — d(le pZ)
Solution 3:

1. Consider points in random order.
2. Let 0 = closest pair found so far.

3. For each new point, check all
“close” points for one < 0.

4. If found update 6.



Closest Pair Problem

(x,y) .

Solution 3:
1. Consider points in random order.
2. Let 6 = closest pair found so far.

3. For each new point, check all
“close” points for one < 9.

4. If found update 0.
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Solution 3:
| ) : 1. Consider points in random order.
What algorithm is best? far.
It depends.

What does it mean for one algorithm to be “better” than another?
Possible metrics: Running time, accuracy, resource
requirements, simplicity, non-randomized.
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Tools, tools, tools.

Soluti
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2. Select smallest.
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4. Select closest of all three.




Closest Pair Problem

Solution 3:

| (x,v) ®

1. Consider points in random order.

Soluti
1.

2. Select smallest.

What algorithm is best?
It depends.

What does it mean for one algorithm to be “better” than another?
Possible metrics: Running time, accuracy, resource
requirements, simplicity, non-randomized.

432 Goals:

Tools, tools, tools.
Tools to build algorithms. Tools to analyze algorithms. Tools to
compare algorithms. Tools to share algorithms.

far.

ides.

4. Select closest of all three.




What would you rather have?

Suppose that given a problem of size n...
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What would you rather have?

Suppose that given a problem of size n...

~1017 seconds on fastest
supercomputer today.

Age of universe ~1017
seconds.
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Formal Definition:
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Big-O notation

Formal Definition: ( )
B fn:EIc,nO>Osuchthat}
O(Q(n)) - {O < f(n) <cg(n)vn=n,

letc =1andny = 1.
n Then,n < 1n‘vn =1
= n € 0(n?)
/ Note: Big-O notation provides an upper

/ ;’lo > 1 bound, but that upper bound need not
be “tight”.




Big-O notation

Formal Definition:

- (f(m): 3 c,ny > 0 such that
0(0) = {0 2 f() % rgm) ¥ = mo)

Notes:
1. Big-O notation allows us to drop multiplicative constants

and non-dominant factors.

2. Big-0O notation allows us to broadly characterize algorithm
efficiency.

3. Many (most) developers care greatly about multiplicative
constants.
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Formal Definition:

- (f(m): 3 c,ny > 0 such that
0(0) = {0 2 f() % rgm) ¥ = mo)

Prove or disprove: 2%™ € 0(2™).

If so, 3 ¢c,ny > 0suchthat 0 < 22™ < ¢c2™"Vn = n,.
..which means that, 2°™ = 2"2" < 2" = 2" < .

Contradiction, since c is a constant!
Thus, 2™ ¢ 0(2™).



Other Asymptotic Notation

f(n): 3 c,nyg > 0such that }

Big-0 O(Q(Tl)) — {O < f(n) <cg(n)vn=n,

“Asymptotic upper bound”
f(n): 3 cq,cp,ny > 0such that }

Big-Theta @(g(n)) B {O <cgn)<f(n) <c,g(n) vn=ny,

“Asymptotic tight bound”
f(n): 3c,ny > 0such that }

Big-Omega Q(g(n)) = {O <cgn) < f(n)vn=n,

“Asymptotic lower bound”
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