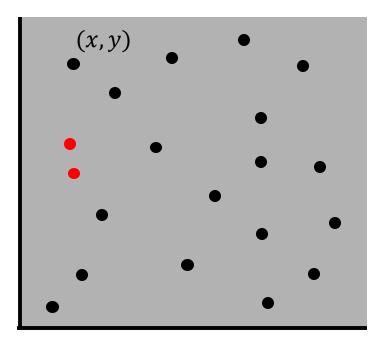
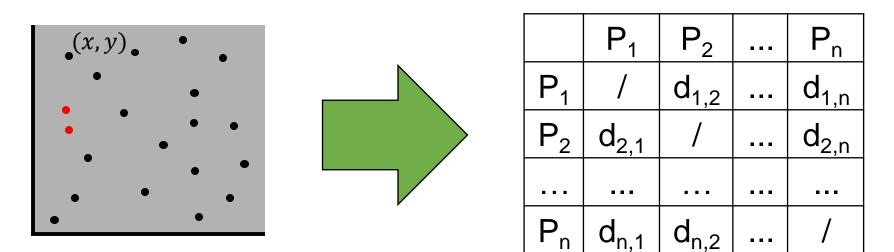
Introduction CSCI 432

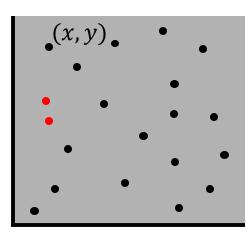


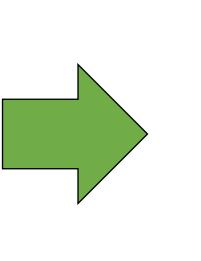
Given *n* points, find a pair of points with the smallest distance between them.

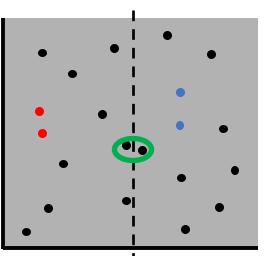


Solution 1:

- 1. Compute distance for each pair.
- 2. Select smallest.

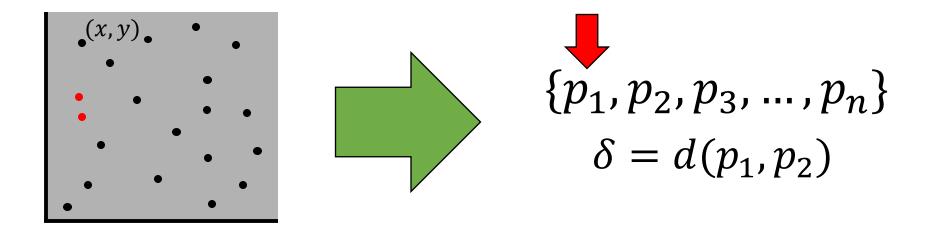






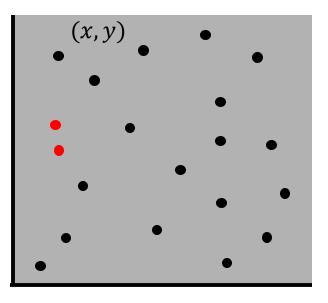
Solution 2:

- 1. Split in half.
- 2. Find closest in left and right sides (recursively).
- 3. Find closet straddling middle.
- 4. Select closest of all three.



Solution 3:

- 1. Consider points in random order.
- 2. Let $\delta = \text{closest pair found so far.}$
- 3. For each new point, check all "close" points for one $< \delta$.
- 4. If found update δ .



Solution 1:

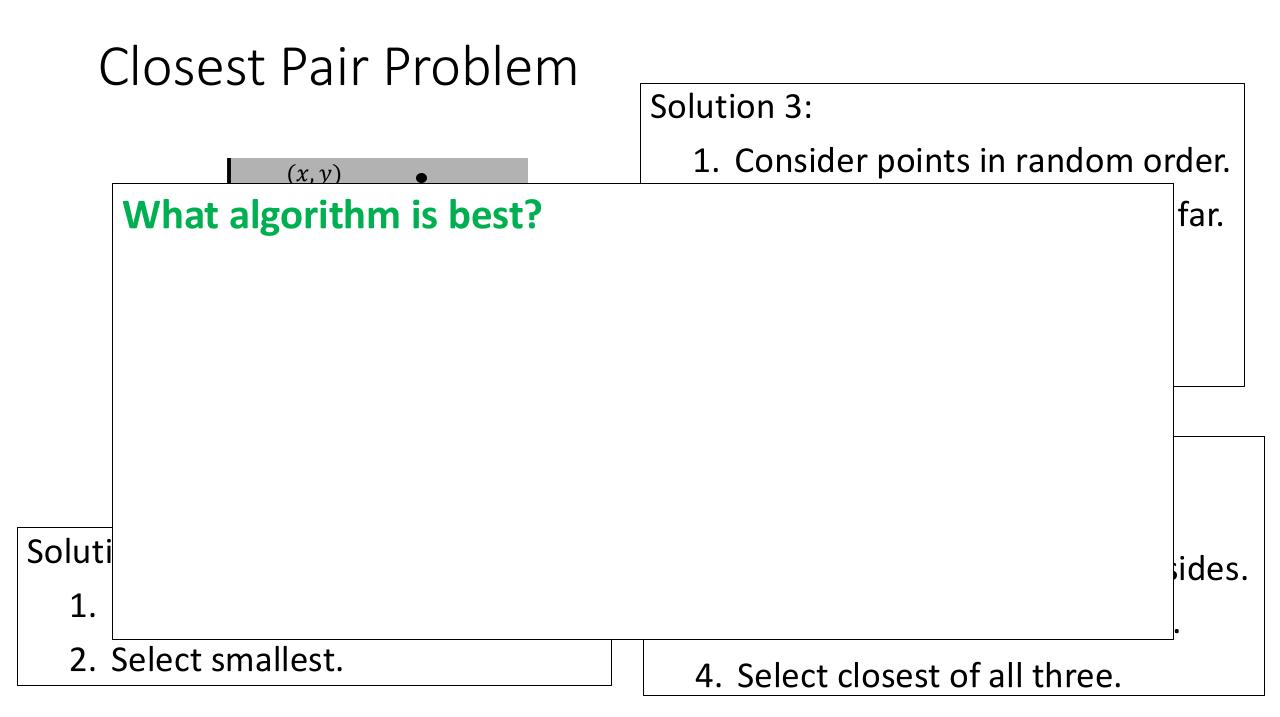
- 1. Compute distance for each pair.
- 2. Select smallest.

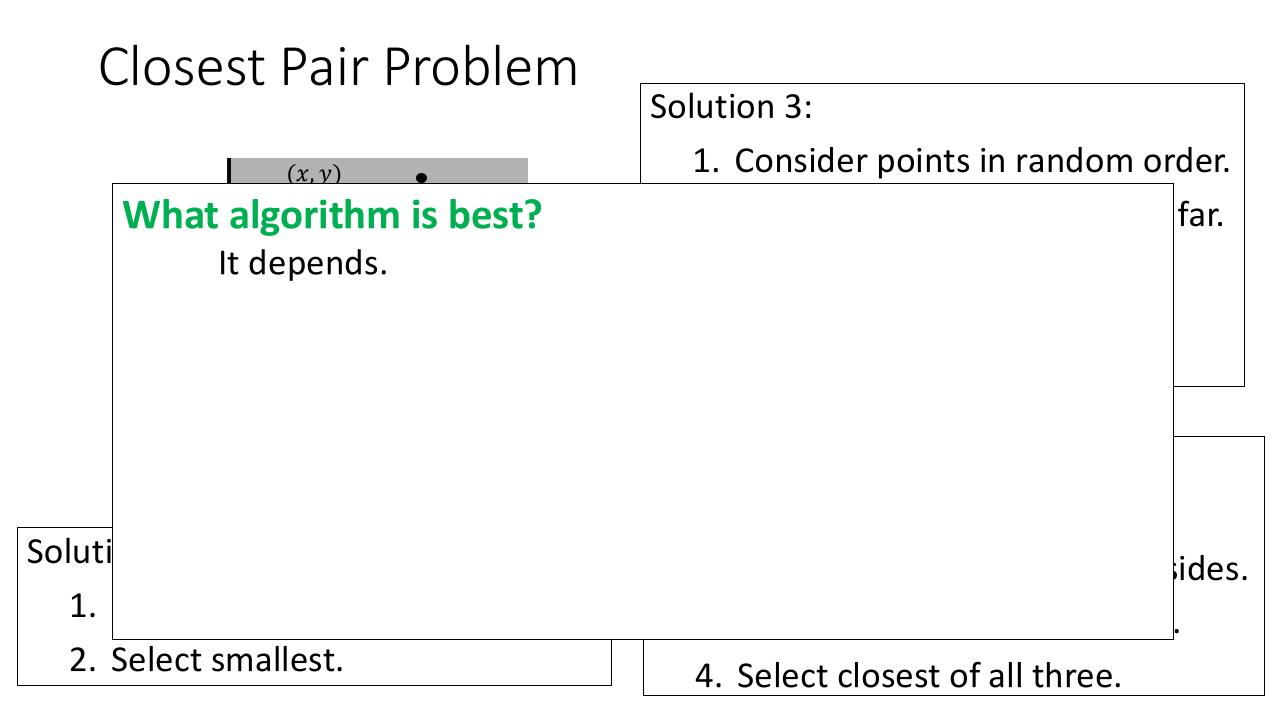
Solution 3:

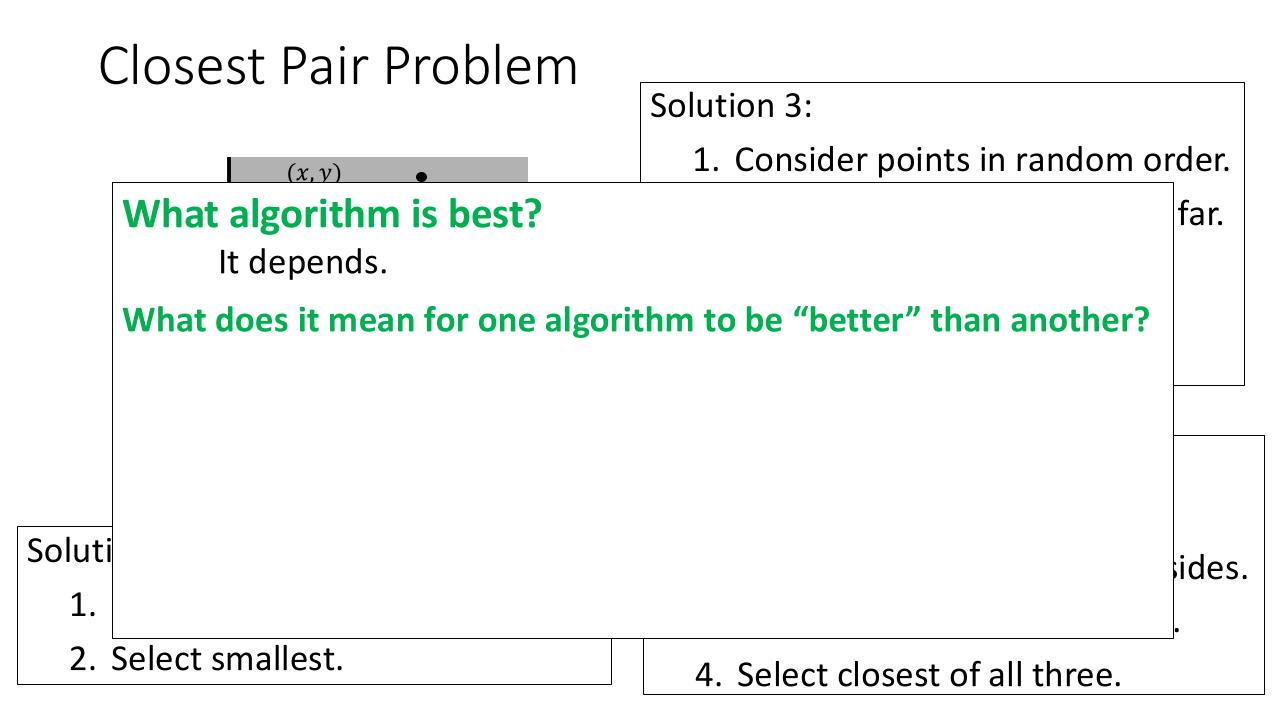
- 1. Consider points in random order.
- 2. Let $\delta = \text{closest pair found so far.}$
- 3. For each new point, check all "close" points for one $< \delta$.
- 4. If found update δ .

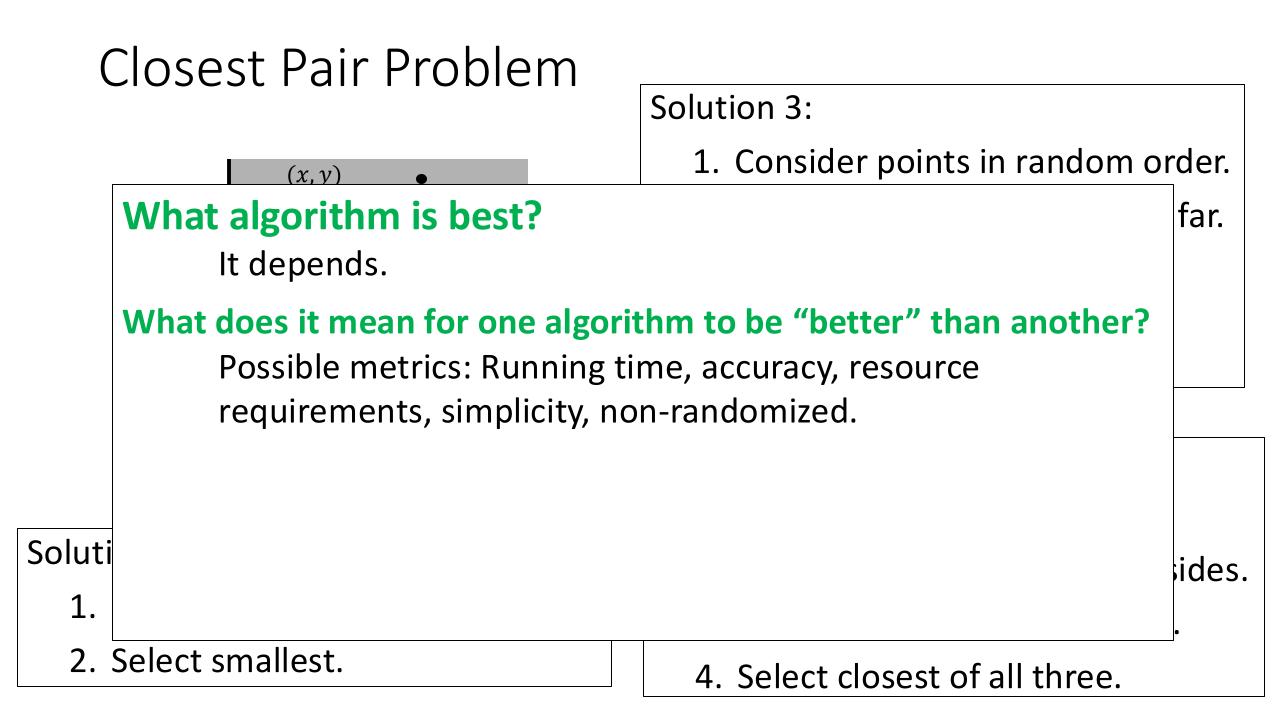
Solution 2:

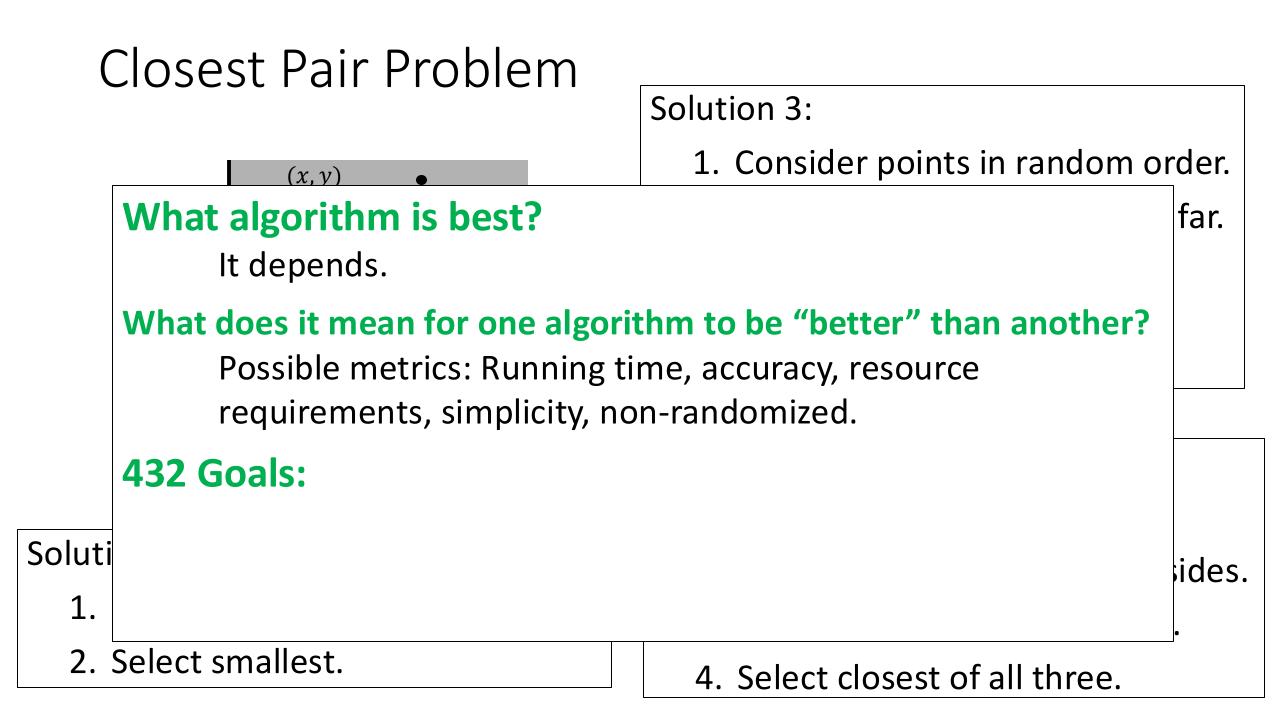
- 1. Split in half.
- 2. Find closest in left and right sides.
- 3. Find closet straddling middle.
- 4. Select closest of all three.

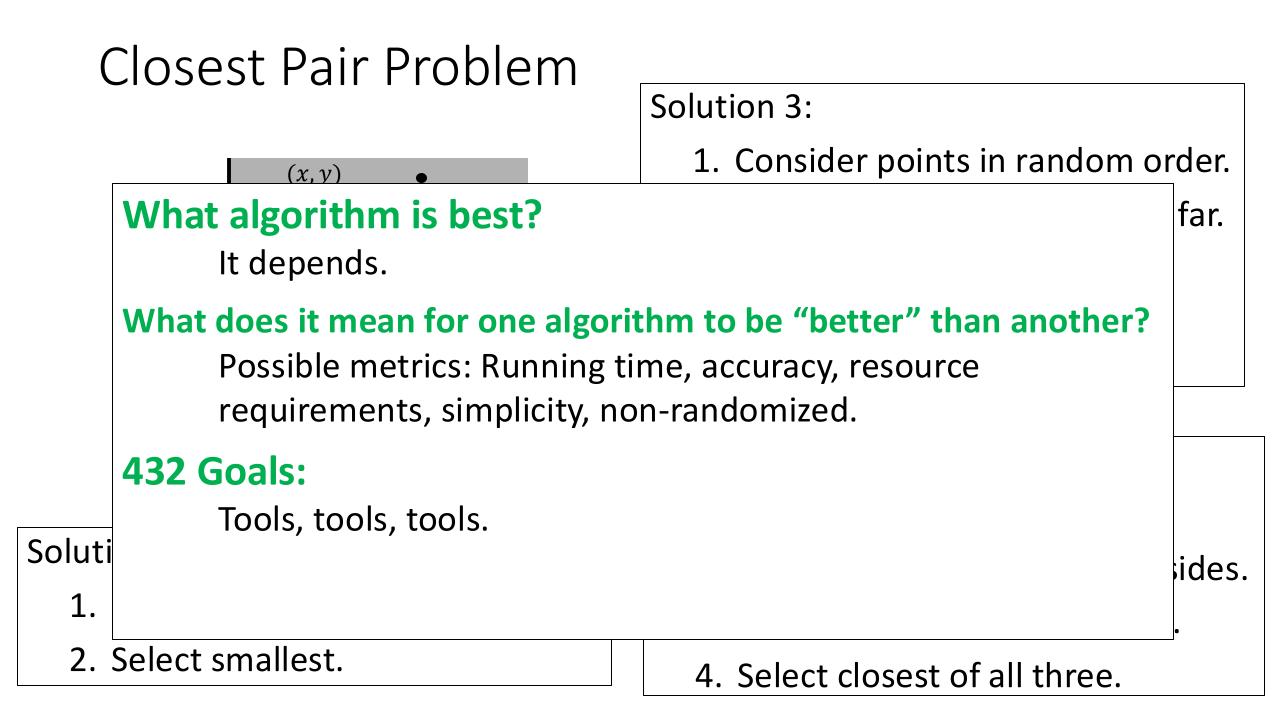












Closest Pair Problem			
		Solution 3:	
ſ	(x, y) \bullet	1. Consider points in random of	rder.
	What algorithm is best? It depends.		far.
	 What does it mean for one algorithm to be "better" than another? Possible metrics: Running time, accuracy, resource requirements, simplicity, non-randomized. 432 Goals: 		
	Tools, tools.		
Soluti	Tools to build algorithms. Tools to analyze algorithms. Tools to		ides.
1.	compare algorithms. Tools to share algorithms.		
2. Select smallest. 4. Select closest of all three.			

Suppose that given a problem of size *n*...

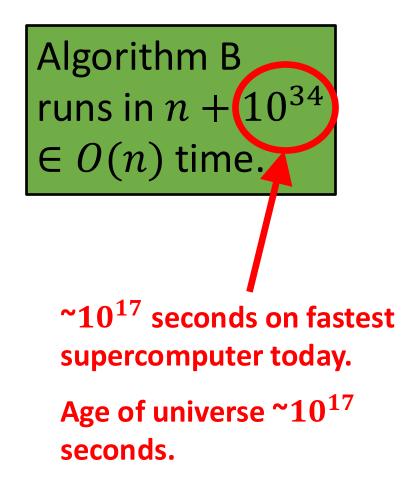
Algorithm A runs in $O(n^2)$ time. Algorithm B runs in O(n)time.

Suppose that given a problem of size *n*...

Algorithm A runs in $n^2 \in O(n^2)$ time. Algorithm B runs in $n + 10^{34}$ $\in O(n)$ time.

Suppose that given a problem of size *n*...

Algorithm A runs in $n^2 \in O(n^2)$ time.



Suppose that given a problem of size *n*...

Algorithm A runs in $O(2n^2)$ time. Algorithm B runs in $O(n^2)$ time.

Suppose that given a problem of size *n*...

Algorithm A runs in $O(2^{2n})$ time. Algorithm B runs in $O(2^n)$ time.

Suppose that given a problem of size *n*...

Algorithm A runs in $O(\log(n))$ time. Algorithm B runs in $O(\frac{\log(n)}{\log(\log(n))})$ time.

Formal Definition:

$$O(g(n)) = \begin{cases} f(n): \exists c, n_0 > 0 \text{ such that} \\ 0 \le f(n) \le cg(n) \forall n \ge n_0 \end{cases}$$

Formal Definition: $O(g(n)) = \begin{cases} f(n): \exists c, n_0 > 0 \text{ such that} \\ 0 \le f(n) \le cg(n) \forall n \ge n_0 \end{cases}$ n^{\prime} n $\Rightarrow n \in O(n^2)$

Formal Definition:

 $n_0 \ge 1$

$$O(g(n)) = \begin{cases} f(n): \exists c, n_0 > 0 \text{ such that} \\ 0 \le f(n) \le cg(n) \forall n \ge n_0 \end{cases}$$

Let $c = 1$ and $n_0 = 1$.
 $\Rightarrow n \in O(n^2)$

Formal Definition: $O(g(n)) = \begin{cases} f(n): \exists c, n_0 > 0 \text{ such that} \\ 0 \le f(n) \le cg(n) \forall n \ge n_0 \end{cases}$ n Let c = 1 and $n_0 = 1$. Then, $n \leq 1n^2 \ \forall n \geq 1$ n $\Rightarrow n \in O(n^2)$ $n_0 \geq 1$

 $n_0 \ge 1$

Formal Definition:

$$O(g(n)) = \begin{cases} f(n): \exists c, n_0 > 0 \text{ such that} \\ 0 \le f(n) \le cg(n) \forall n \ge n_0 \end{cases}$$

$$\begin{array}{c} n^2 \\ \text{Let } c = 1 \text{ and } n_0 = 1. \\ \text{Then, } n \le 1n^2 \forall n \ge 1 \\ \Rightarrow n \in O(n^2) \\ \end{array}$$

Note: Big-O notation provides an upped

Note: Big-*O* notation provides an upper bound, but that upper bound need not be "tight".

Formal Definition:

$$O(g(n)) = \begin{cases} f(n): \exists c, n_0 > 0 \text{ such that} \\ 0 \le f(n) \le cg(n) \forall n \ge n_0 \end{cases}$$

Notes:

- 1. Big-*O* notation allows us to drop multiplicative constants and non-dominant factors.
- 2. Big-*O* notation allows us to broadly characterize algorithm efficiency.
- 3. Many (most) developers care greatly about multiplicative constants.

Formal Definition:

$$O(g(n)) = \begin{cases} f(n): \exists c, n_0 > 0 \text{ such that} \\ 0 \le f(n) \le cg(n) \forall n \ge n_0 \end{cases}$$

Suppose that $f(n) \in O(g(n))$ and k > 0. Is $kf(n) \in O(g(n))$?

Formal Definition:

$$O(g(n)) = \begin{cases} f(n): \exists c, n_0 > 0 \text{ such that} \\ 0 \le f(n) \le cg(n) \forall n \ge n_0 \end{cases}$$

Suppose that $f(n) \in O(g(n))$ and k > 0. Is $kf(n) \in O(g(n))$? $f(n) \in O(g(n)) \Rightarrow$??

Formal Definition:

$$O(g(n)) = \begin{cases} f(n): \exists c, n_0 > 0 \text{ such that} \\ 0 \le f(n) \le cg(n) \forall n \ge n_0 \end{cases}$$

Suppose that $f(n) \in O(g(n))$ and k > 0. Is $kf(n) \in O(g(n))$? $f(n) \in O(g(n)) \Rightarrow \exists c, n_0 > 0$ such that $0 \le f(n) \le cg(n) \forall n \ge n_0$.

Formal Definition:

$$O(g(n)) = \begin{cases} f(n): \exists c, n_0 > 0 \text{ such that} \\ 0 \le f(n) \le cg(n) \forall n \ge n_0 \end{cases}$$

Suppose that $f(n) \in O(g(n))$ and k > 0. Is $kf(n) \in O(g(n))$? $f(n) \in O(g(n)) \Rightarrow \exists c, n_0 > 0$ such that $0 \le f(n) \le cg(n) \forall n \ge n_0$. $k > 0 \Rightarrow 0 \le kf(n) \le ckg(n) \forall n \ge n_0$.

Formal Definition:

$$O(g(n)) = \begin{cases} f(n): \exists c, n_0 > 0 \text{ such that} \\ 0 \le f(n) \le cg(n) \forall n \ge n_0 \end{cases}$$

Suppose that $f(n) \in O(g(n))$ and k > 0. Is $kf(n) \in O(g(n))$? $f(n) \in O(g(n)) \Rightarrow \exists c, n_0 > 0$ such that $0 \le f(n) \le cg(n) \forall n \ge n_0$. $k > 0 \Rightarrow 0 \le kf(n) \le ckg(n) \forall n \ge n_0$. So, $\exists m = ck, n_0 > 0$ such that $0 \le kf(n) \le mg(n) \forall n \ge n_0$

Formal Definition:

$$O(g(n)) = \begin{cases} f(n): \exists c, n_0 > 0 \text{ such that} \\ 0 \le f(n) \le cg(n) \forall n \ge n_0 \end{cases}$$

Suppose that $f(n) \in O(g(n))$ and k > 0. Is $kf(n) \in O(g(n))$? $f(n) \in O(g(n)) \Rightarrow \exists c, n_0 > 0$ such that $0 \le f(n) \le cg(n) \forall n \ge n_0$.

 $k > 0 \Rightarrow 0 \le kf(n) \le ckg(n) \forall n \ge n_0.$

So, $\exists m = ck, n_0 > 0$ such that $0 \le kf(n) \le mg(n) \forall n \ge n_0$ $\Rightarrow kf(n) \in O(g(n)).$

Formal Definition:

$$O(g(n)) = \begin{cases} f(n): \exists c, n_0 > 0 \text{ such that} \\ 0 \le f(n) \le cg(n) \forall n \ge n_0 \end{cases}$$

Suppose that $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$. Is $f(n) \in O(h(n))$?

Formal Definition:

$$O(g(n)) = \begin{cases} f(n): \exists c, n_0 > 0 \text{ such that} \\ 0 \le f(n) \le cg(n) \forall n \ge n_0 \end{cases}$$

Suppose that $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$. Is $f(n) \in O(h(n))$?

 $f(n) \in O(g(n)) \Rightarrow \exists c, n_0 > 0 \text{ such that } 0 \le f(n) \le cg(n) \forall n \ge n_0.$ $g(n) \in O(h(n)) \Rightarrow \exists k, m_0 > 0 \text{ such that } 0 \le g(n) \le kh(n) \forall n \ge m_0.$

Formal Definition:

$$O(g(n)) = \begin{cases} f(n): \exists c, n_0 > 0 \text{ such that} \\ 0 \le f(n) \le cg(n) \forall n \ge n_0 \end{cases}$$

Suppose that $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$. Is $f(n) \in O(h(n))$?

 $f(n) \in O(g(n)) \Rightarrow \exists c, n_0 > 0 \text{ such that } 0 \le f(n) \le cg(n) \forall n \ge n_0.$ $g(n) \in O(h(n)) \Rightarrow \exists k, m_0 > 0 \text{ such that } 0 \le g(n) \le kh(n) \forall n \ge m_0.$ $c > 0 \Rightarrow 0 \le cg(n) \le ckh(n)$

Formal Definition:

$$O(g(n)) = \begin{cases} f(n): \exists c, n_0 > 0 \text{ such that} \\ 0 \le f(n) \le cg(n) \forall n \ge n_0 \end{cases}$$

Suppose that $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$. Is $f(n) \in O(h(n))$?

$$\begin{split} f(n) &\in O\bigl(g(n)\bigr) \Rightarrow \exists \ c, n_0 > 0 \text{ such that } 0 \leq f(n) \leq cg(n) \ \forall \ n \geq n_0. \\ g(n) &\in O\bigl(h(n)\bigr) \Rightarrow \exists \ k, m_0 > 0 \text{ such that } 0 \leq g(n) \leq kh(n) \ \forall \ n \geq m_0. \\ \forall \ n \geq n_0 \qquad \qquad c > 0 \Rightarrow 0 \leq cg(n) \leq ckh(n) \\ \text{So, } 0 \leq f(n) \leq cg(n) \end{split}$$

Formal Definition:

$$O(g(n)) = \begin{cases} f(n): \exists c, n_0 > 0 \text{ such that} \\ 0 \le f(n) \le cg(n) \forall n \ge n_0 \end{cases}$$

Suppose that $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$. Is $f(n) \in O(h(n))$?

$$\begin{split} f(n) &\in O\bigl(g(n)\bigr) \Rightarrow \exists \ c, n_0 > 0 \text{ such that } 0 \leq f(n) \leq cg(n) \ \forall \ n \geq n_0. \\ g(n) &\in O\bigl(h(n)\bigr) \Rightarrow \exists \ k, m_0 > 0 \text{ such that } 0 \leq g(n) \leq kh(n) \ \forall \ n \geq m_0. \\ \forall \ n \geq n_0 \quad \forall \ n \geq m_0 \quad c > 0 \Rightarrow 0 \leq cg(n) \leq ckh(n) \\ \text{So, } 0 \leq f(n) \leq cg(n) \leq ckh(n) \end{split}$$

Formal Definition:

$$O(g(n)) = \begin{cases} f(n): \exists c, n_0 > 0 \text{ such that} \\ 0 \le f(n) \le cg(n) \forall n \ge n_0 \end{cases}$$

Suppose that $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$. Is $f(n) \in O(h(n))$?

$$\begin{split} f(n) &\in O\bigl(g(n)\bigr) \Rightarrow \exists \ c, n_0 > 0 \text{ such that } 0 \leq f(n) \leq cg(n) \ \forall \ n \geq n_0. \\ g(n) &\in O\bigl(h(n)\bigr) \Rightarrow \exists \ k, m_0 > 0 \text{ such that } 0 \leq g(n) \leq kh(n) \ \forall \ n \geq m_0. \\ \forall \ n \geq n_0 \qquad \forall \ n \geq m_0 \qquad c > 0 \Rightarrow 0 \leq cg(n) \leq ckh(n) \\ \text{So, } 0 \leq f(n) \leq cg(n) \leq ckh(n) \\ \text{Thus, } 0 \leq f(n) \leq ckh(n) \ \forall \ n \geq \max(n_0, m_0) \Rightarrow f(n) \in O\bigl(h(n)\bigr) \end{split}$$

Formal Definition:

$$O(g(n)) = \begin{cases} f(n): \exists c, n_0 > 0 \text{ such that} \\ 0 \le f(n) \le cg(n) \forall n \ge n_0 \end{cases}$$

Prove or disprove: $2^{2n} \in O(2^n)$.

Formal Definition:

$$O(g(n)) = \begin{cases} f(n): \exists c, n_0 > 0 \text{ such that} \\ 0 \le f(n) \le cg(n) \forall n \ge n_0 \end{cases}$$

Prove or disprove: $2^{2n} \in O(2^n)$.

If so, $\exists c, n_0 > 0$ such that $0 \le 2^{2n} \le c2^n \forall n \ge n_0$.

Formal Definition:

$$O(g(n)) = \begin{cases} f(n): \exists c, n_0 > 0 \text{ such that} \\ 0 \le f(n) \le cg(n) \forall n \ge n_0 \end{cases}$$

Prove or disprove: $2^{2n} \in O(2^n)$.

If so,
$$\exists c, n_0 > 0$$
 such that $0 \le 2^{2n} \le c2^n \forall n \ge n_0$.
...which means that, $2^{2n} = 2^n 2^n \le c2^n$

Formal Definition:

$$O(g(n)) = \begin{cases} f(n): \exists c, n_0 > 0 \text{ such that} \\ 0 \le f(n) \le cg(n) \forall n \ge n_0 \end{cases}$$

Prove or disprove: $2^{2n} \in O(2^n)$.

If so,
$$\exists c, n_0 > 0$$
 such that $0 \le 2^{2n} \le c2^n \forall n \ge n_0$.
...which means that, $2^{2n} = 2^n 2^n \le c2^n \Rightarrow 2^n \le c$.

Formal Definition:

$$O(g(n)) = \begin{cases} f(n): \exists c, n_0 > 0 \text{ such that} \\ 0 \le f(n) \le cg(n) \forall n \ge n_0 \end{cases}$$

Prove or disprove: $2^{2n} \in O(2^n)$.

If so, $\exists c, n_0 > 0$ such that $0 \le 2^{2n} \le c2^n \forall n \ge n_0$which means that, $2^{2n} = 2^n 2^n \le c2^n \Rightarrow 2^n \le c$. Contradiction, since c is a constant!

Formal Definition:

$$O(g(n)) = \begin{cases} f(n): \exists c, n_0 > 0 \text{ such that} \\ 0 \le f(n) \le cg(n) \forall n \ge n_0 \end{cases}$$

Prove or disprove: $2^{2n} \in O(2^n)$.

If so, $\exists c, n_0 > 0$ such that $0 \le 2^{2n} \le c2^n \forall n \ge n_0$which means that, $2^{2n} = 2^n 2^n \le c2^n \Rightarrow 2^n \le c$. Contradiction, since c is a constant! Thus, $2^{2n} \notin O(2^n)$.

Other Asymptotic Notation

Big-O
"Asymptotic upper bound"
$$O(g(n)) = \begin{cases} f(n): \exists c, n_0 > 0 \text{ such that} \\ 0 \le f(n) \le cg(n) \forall n \ge n_0 \end{cases}$$

Big-Theta
$$\Theta(g(n)) = \begin{cases} f(n): \exists c_1, c_2, n_0 > 0 \text{ such that} \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \forall n \ge n_0 \end{cases}$$

Big-Omega $\Omega(g(n)) = \begin{cases} f(n): \exists c, n_0 > 0 \text{ such that} \\ 0 \le cg(n) \le f(n) \forall n \ge n_0 \end{cases}$ "Asymptotic lower bound"