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Closest Pair Problem

Given 𝑛 points, find a pair of points with 
the smallest distance between them. 

(𝑥, 𝑦)

???



Closest Pair Problem

Solution 1:

1. Compute distance for each pair.

2. Select smallest.

(𝑥, 𝑦) P1 P2 ... Pn

P1 / d1,2 ... d1,n

P2 d2,1 / ... d2,n

… ... … ... ...

Pn dn,1 dn,2 ... /



Closest Pair Problem

Solution 2:

1. Split in half.

2. Find closest in left and right sides 
(recursively).

3. Find closet straddling middle.

4. Select closest of all three.

(𝑥, 𝑦)



Closest Pair Problem

Solution 3:

1. Consider points in random order.

2. Let 𝛿 = closest pair found so far.

3. For each new point, check all 
“close” points for one < 𝛿.

4. If found update 𝛿.

(𝑥, 𝑦)

{𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛}

𝛿 = 𝑑(𝑝1, 𝑝2)
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3. For each new point, check all 
“close” points for one < 𝛿.
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Solution 2:

1. Split in half.

2. Find closest in left and right sides.

3. Find closet straddling middle.

4. Select closest of all three.

Solution 1:

1. Compute distance for each pair.

2. Select smallest.

What algorithm is best?
 It depends.

What does it mean for one algorithm to be “better” than another?
 Possible metrics: Running time, accuracy, resource 

requirements, simplicity, non-randomized.

432 Goals:
 Tools, tools, tools.
 Tools to build algorithms. Tools to analyze algorithms. Tools to 

compare algorithms. Tools to share algorithms.



What would you rather have?

Suppose that given a problem of size 𝑛…

Algorithm A 
runs in 𝑂(𝑛2) 
time.

Algorithm B 
runs in 𝑂(𝑛) 
time.
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What would you rather have?

Suppose that given a problem of size 𝑛…

Algorithm A 
runs in 𝑛2 ∈
𝑂(𝑛2) time.

Algorithm B 
runs in 𝑛 + 1034

∈ 𝑂(𝑛) time.

~𝟏𝟎𝟏𝟕 seconds on fastest 
supercomputer today.

Age of universe ~𝟏𝟎𝟏𝟕 
seconds.



What would you rather have?

Suppose that given a problem of size 𝑛…

Algorithm A 
runs in 𝑂(2𝑛2) 
time.

Algorithm B 
runs in 𝑂(𝑛2) 
time.



What would you rather have?

Suppose that given a problem of size 𝑛…

Algorithm A 
runs in 𝑂(22𝑛) 
time.

Algorithm B 
runs in 𝑂(2𝑛) 
time.



What would you rather have?

Suppose that given a problem of size 𝑛…

Algorithm A 
runs in 
𝑂(log(𝑛)) 
time.

Algorithm B 
runs in 

𝑂(
log(𝑛)

log(log 𝑛 )
) 

time.



Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0
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Let 𝑐 = 1 and 𝑛0 = 1.
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𝒏𝟐

𝒏
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Note: Big-𝑂 notation provides an upper 
bound, but that upper bound need not 
be “tight”.

𝒏𝟐

𝒏



Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Notes:
1. Big-𝑂 notation allows us to drop multiplicative constants 

and non-dominant factors.
2. Big-𝑂 notation allows us to broadly characterize algorithm 

efficiency. 
3. Many (most) developers care greatly about multiplicative 

constants.
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Big-𝑂 notation

Formal Definition:

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Prove or disprove: 22𝑛 ∈ 𝑂 2𝑛 .

If so, ∃ 𝑐, 𝑛0 > 0 such that 0 ≤ 22𝑛 ≤ 𝑐2𝑛 ∀ 𝑛 ≥ 𝑛0.
 …which means that, 22𝑛 = 2𝑛2𝑛 ≤ 𝑐2𝑛 ⇒ 2𝑛 ≤ 𝑐.
  Contradiction, since 𝑐 is a constant!
Thus, 22𝑛 ∉ 𝑂(2𝑛).



Other Asymptotic Notation

𝑂 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Θ 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐1, 𝑐2, 𝑛0 > 0 such that

0 ≤ 𝑐1𝑔(𝑛) ≤ 𝑓 𝑛 ≤ 𝑐2𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Ω 𝑔 𝑛 =
𝑓 𝑛 : ∃ 𝑐, 𝑛0 > 0 such that

0 ≤ 𝑐𝑔 𝑛 ≤ 𝑓(𝑛) ∀ 𝑛 ≥ 𝑛0

Big-Omega

Big-Theta

Big-𝑶
“Asymptotic upper bound”

“Asymptotic tight bound”

“Asymptotic lower bound”
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