
Flow Networks
CSCI 432



Motivation

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

Suppose we have a directed graph that represent an oil pipeline 
network. Edge weight represent pipe capacity. How much oil can we 
transfer from source 𝑠 to sink 𝑡?
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Suppose we have a directed graph that represent an oil pipeline 
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Suppose we have a directed graph that represent an oil pipeline 
network. Edge weight represent pipe capacity. How much oil can we 
transfer from source 𝑠 to sink 𝑡?

Flow networks are commonly used to model 
transportation networks:
• Edges carry traffic (capacity constrained).
• Nodes act as junctions between edges.

Examples:
• Internet routing.
• Road networks.
• Electricity distribution.
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Flow Network:

An 𝑠 − 𝑡 flow is a function 𝑓:  𝐸 → ℝ+ such that:
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(conservation of flow constraint: “Everything that goes into a 
node has to come out, except for 𝑠 and 𝑡”)
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• Value of flow = 𝑣𝑎𝑙(𝑓) = σ𝑒𝜖output(𝑠) 𝑓(𝑒) = σ𝑒𝜖input(𝑡) 𝑓(𝑒)

Maximum Flow Problem: 
Given a flow network, find the 
maximum possible value of flow. 
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Greedy Choice: Select path 
that can handle most flow, 
update capacities, repeat.

Flow of 20, but max flow is 30. Need way 
to “undo” parts of previous decisions.
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Residual Graph: Tool to re-route 
flow we already decided to push.



Residual Graph

Given a flow network 𝐺, and a flow 𝑓, define the residual graph 𝐺𝑓 as:

• Identical nodes as 𝐺.
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Residual Graph

Given a flow network 𝐺, and a flow 𝑓, define the residual graph 𝐺𝑓 as:

• Identical nodes as 𝐺.
• For each edge 𝑒, if 𝑓(𝑒) < 𝑐𝑒, let 𝑐𝑒 = 𝑐𝑒 − 𝑓(𝑒).
• For each edge 𝑒 = (𝑢, 𝑣), if 𝑓(𝑒) > 0, create new edge 

𝑒’ = (𝑣, 𝑢) with 𝑐𝑒’ = 𝑓(𝑒) (𝑒’ called back edge).
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Flows in Residual Graphs

Let 𝑃 be a simple 𝑠 − 𝑡 path in 𝐺𝑓.
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Ford-Fulkerson Algorithm

Max-Flow(G)
 f(e) = 0 for all e in G
 while simple s-t path in residual graph Gf exists
  P = simple s-t path in Gf
  f’= augment(f, P)
  f = f’
  Gf = Gf’
 return f

I.e. Push flow along P.

Recalculate residual graph 
based on new flow f’.
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