
Flow Networks
CSCI 432

Motivation

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

Suppose we have a directed graph that represent an oil pipeline
network. Edge weight represent pipe capacity. How much oil can we
transfer from source 𝑠 to sink 𝑡?

Motivation

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

Suppose we have a directed graph that represent an oil pipeline
network. Edge weight represent pipe capacity. How much oil can we
transfer from source 𝑠 to sink 𝑡?

s

a

t

c e

d

b

2

4

1
1

1

2

5

2

5

Total flow = 7

Motivation

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

Suppose we have a directed graph that represent an oil pipeline
network. Edge weight represent pipe capacity. How much oil can we
transfer from source 𝑠 to sink 𝑡?

Flow networks are commonly used to model
transportation networks:
• Edges carry traffic (capacity constrained).
• Nodes act as junctions between edges.

Examples:
• Internet routing.
• Road networks.
• Electricity distribution.

Flow Network

Flow Network:

An 𝑠 − 𝑡 flow is a function 𝑓: 𝐸 → ℝ+ such that:

Flow Network

Flow Network:
• Directed-edge graph, 𝐺 = (𝑉, 𝐸).
• Non-negative edge capacity, 𝑐𝑒.
• Single source, 𝑠, without input edges.
• Single sink, 𝑡, without output edges.

An 𝑠 − 𝑡 flow is a function 𝑓: 𝐸 → ℝ+ such that:

Flow Network

Flow Network:
• Directed-edge graph, 𝐺 = (𝑉, 𝐸).
• Non-negative edge capacity, 𝑐𝑒.
• Single source, 𝑠, without input edges.
• Single sink, 𝑡, without output edges.

An 𝑠 − 𝑡 flow is a function 𝑓: 𝐸 → ℝ+ such that:
• 0 ≤ 𝑓 𝑒 ≤ 𝑐𝑒 , ∀𝑒 ∈ 𝐸. (capacity constraint)

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

Flow Network

Flow Network:
• Directed-edge graph, 𝐺 = (𝑉, 𝐸).
• Non-negative edge capacity, 𝑐𝑒.
• Single source, 𝑠, without input edges.
• Single sink, 𝑡, without output edges.

An 𝑠 − 𝑡 flow is a function 𝑓: 𝐸 → ℝ+ such that:
• 0 ≤ 𝑓 𝑒 ≤ 𝑐𝑒 , ∀𝑒 ∈ 𝐸. (capacity constraint)
• σ

𝑒𝜖input(𝑣) 𝑓(𝑒) = σ𝑒∈output(𝑣) 𝑓(𝑒) , ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}.

(conservation of flow constraint: “Everything that goes into a
node has to come out, except for 𝑠 and 𝑡”)

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

Flow Network

Flow Network:
• Directed-edge graph, 𝐺 = (𝑉, 𝐸).
• Non-negative edge capacity, 𝑐𝑒.
• Single source, 𝑠, without input edges.
• Single sink, 𝑡, without output edges.

An 𝑠 − 𝑡 flow is a function 𝑓: 𝐸 → ℝ+ such that:
• 0 ≤ 𝑓 𝑒 ≤ 𝑐𝑒 , ∀𝑒 ∈ 𝐸. (capacity constraint)
• σ

𝑒𝜖input(𝑣) 𝑓(𝑒) = σ𝑒∈output(𝑣) 𝑓(𝑒) , ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}.

(conservation of flow constraint: “Everything that goes into a
node has to come out, except for 𝑠 and 𝑡”)

• Value of flow = 𝑣𝑎𝑙(𝑓) = σ𝑒𝜖output(𝑠) 𝑓(𝑒) = σ𝑒𝜖input(𝑡) 𝑓(𝑒)

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

Flow Network

Flow Network:
• Directed-edge graph, 𝐺 = (𝑉, 𝐸).
• Non-negative edge capacity, 𝑐𝑒.
• Single source, 𝑠, without input edges.
• Single sink, 𝑡, without output edges.

An 𝑠 − 𝑡 flow is a function 𝑓: 𝐸 → ℝ+ such that:
• 0 ≤ 𝑓 𝑒 ≤ 𝑐𝑒 , ∀𝑒 ∈ 𝐸. (capacity constraint)
• σ

𝑒𝜖input(𝑣) 𝑓(𝑒) = σ𝑒∈output(𝑣) 𝑓(𝑒) , ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}.

(conservation of flow constraint: “Everything that goes into a
node has to come out, except for 𝑠 and 𝑡”)

• Value of flow = 𝑣𝑎𝑙(𝑓) = σ𝑒𝜖output(𝑠) 𝑓(𝑒) = σ𝑒𝜖input(𝑡) 𝑓(𝑒)

Maximum Flow Problem:
Given a flow network, find the
maximum possible value of flow.

Maximum Flow Algorithm

Can we use Dynamic Programming?

Can we use a Greedy approach?

s t

a

b

20

10

10

30

20

Maximum Flow Algorithm

Can we use Dynamic Programming?
 What is the optimal substructure?
Can we use a Greedy approach?
 What would the greedy choice be?

s t

a

b

20

10

10

30

20

Maximum Flow Algorithm

Can we use Dynamic Programming?
 What is the optimal substructure?
Can we use a Greedy approach?
 What would the greedy choice be?

s t

a

b

20

10

10

30

20

Greedy Choice: Select path
that can handle most flow,
update capacities, repeat.

Maximum Flow Algorithm

Can we use Dynamic Programming?
 What is the optimal substructure?
Can we use a Greedy approach?
 What would the greedy choice be?

s t

a

b

20

10

10

30

20

Greedy Choice: Select path
that can handle most flow,
update capacities, repeat.

Flow of 20, but max flow is 30. Need way
to “undo” parts of previous decisions.

Residual Graph

s t

a

b

20

10

10

30

20

𝐺:

s t

a

b

20

10

10

10

20

20

𝐺𝑓:

s t

a

b

20

20

20

𝑓:

Residual Graph: Tool to re-route
flow we already decided to push.

Residual Graph

Given a flow network 𝐺, and a flow 𝑓, define the residual graph 𝐺𝑓 as:

• Identical nodes as 𝐺.

s t

a

b

20

10

10

30

20

𝐺:

s t

a

b

20

10

10

10

20

20

𝐺𝑓:

s t

a

b

20

20

20

𝑓:

Residual Graph

Given a flow network 𝐺, and a flow 𝑓, define the residual graph 𝐺𝑓 as:

• Identical nodes as 𝐺.
• For each edge 𝑒, if 𝑓(𝑒) < 𝑐𝑒, let 𝑐𝑒 = 𝑐𝑒 − 𝑓(𝑒).

s t

a

b

20

10

10

30

20

𝐺:

s t

a

b

20

10

10

10

20

20

𝐺𝑓:

s t

a

b

20

20

20

𝑓:

Residual Graph

Given a flow network 𝐺, and a flow 𝑓, define the residual graph 𝐺𝑓 as:

• Identical nodes as 𝐺.
• For each edge 𝑒, if 𝑓(𝑒) < 𝑐𝑒, let 𝑐𝑒 = 𝑐𝑒 − 𝑓(𝑒).
• For each edge 𝑒 = (𝑢, 𝑣), if 𝑓(𝑒) > 0, create new edge

𝑒’ = (𝑣, 𝑢) with 𝑐𝑒’ = 𝑓(𝑒) (𝑒’ called back edge).

s t

a

b

20

10

10

30

20

𝐺:

s t

a

b

20

10

10

10

20

20

𝐺𝑓:

s t

a

b

20

20

20

𝑓:

Flows in Residual Graphs

Let 𝑃 be a simple 𝑠 − 𝑡 path in 𝐺𝑓.

s t

a

b

20

10

10

10

20

20

𝐺𝑓:

𝑃 = ?

Flows in Residual Graphs

Let 𝑃 be a simple 𝑠 − 𝑡 path in 𝐺𝑓.

s t

a

b

20

10

10

10

20

20

𝐺𝑓:

𝑃 = 𝑠 → 𝑏 → 𝑎 → 𝑡

Flows in Residual Graphs

Let 𝑃 be a simple 𝑠 − 𝑡 path in 𝐺𝑓.

bottleneck(P,f) = minimum residual capacity on any edge in 𝑃 = 10.

𝑃 = 𝑠 → 𝑏 → 𝑎 → 𝑡

s t

a

b

20

10

10

10

20

20

𝐺𝑓:

Flows in Residual Graphs

Let 𝑃 be a simple 𝑠 − 𝑡 path in 𝐺𝑓.

bottleneck(P,f) = minimum residual capacity on any edge in 𝑃 = 10.

augment(f, P)
 b = bottleneck(P,f) = 10
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

𝑃 = 𝑠 → 𝑏 → 𝑎 → 𝑡

s t

a

b

20

20

20

𝑓:

s t

a

b

20

10

10

10

20

20

𝐺𝑓:

Flows in Residual Graphs

Let 𝑃 be a simple 𝑠 − 𝑡 path in 𝐺𝑓.

bottleneck(P,f) = minimum residual capacity on any edge in 𝑃 = 10.

augment(f, P)
 b = bottleneck(P,f) = 10
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

𝑃 = 𝑠 → 𝑏 → 𝑎 → 𝑡

s t

a

b

20

20

20

𝑓:

s t

a

b

20

10

10

10

20

20

𝐺𝑓:

Flows in Residual Graphs

Let 𝑃 be a simple 𝑠 − 𝑡 path in 𝐺𝑓.

bottleneck(P,f) = minimum residual capacity on any edge in 𝑃 = 10.

augment(f, P)
 b = bottleneck(P,f) = 10
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

𝑃 = 𝑠 → 𝑏 → 𝑎 → 𝑡

s t

a

b

20

20

20

𝑓:

s t

a

b

20

10

10

10

20

20

𝐺𝑓:

10

Flows in Residual Graphs

Let 𝑃 be a simple 𝑠 − 𝑡 path in 𝐺𝑓.

bottleneck(P,f) = minimum residual capacity on any edge in 𝑃 = 10.

augment(f, P)
 b = bottleneck(P,f) = 10
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

𝑃 = 𝑠 → 𝑏 → 𝑎 → 𝑡

s t

a

b

20

20

𝑓:

s t

a

b

20

10

10

10

20

20

𝐺𝑓:

10

20

Flows in Residual Graphs

Let 𝑃 be a simple 𝑠 − 𝑡 path in 𝐺𝑓.

bottleneck(P,f) = minimum residual capacity on any edge in 𝑃 = 10.

augment(f, P)
 b = bottleneck(P,f) = 10
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

𝑃 = 𝑠 → 𝑏 → 𝑎 → 𝑡

s t

a

b

20

10

20

𝑓:

s t

a

b

20

10

10

10

20

𝐺𝑓:

10

20

Flows in Residual Graphs

Let 𝑃 be a simple 𝑠 − 𝑡 path in 𝐺𝑓.

bottleneck(P,f) = minimum residual capacity on any edge in 𝑃 = 10.

augment(f, P)
 b = bottleneck(P,f) = 10
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

𝑃 = 𝑠 → 𝑏 → 𝑎 → 𝑡

s t

a

b

20

10

20

𝑓:

s t

a

b

20

10

10

10

20

20

𝐺𝑓:

10

Flows in Residual Graphs

Let 𝑃 be a simple 𝑠 − 𝑡 path in 𝐺𝑓.

bottleneck(P,f) = minimum residual capacity on any edge in 𝑃 = 10.

augment(f, P)
 b = bottleneck(P,f) = 10
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

𝑃 = 𝑠 → 𝑏 → 𝑎 → 𝑡

s t

a

b

20

10

20

𝑓:

s t

a

b

20

10

10

10

20

20

𝐺𝑓:

10

10

Ford-Fulkerson Algorithm

Max-Flow(G)
 f(e) = 0 for all e in G
 while simple s-t path in residual graph Gf exists
 P = simple s-t path in Gf
 f’= augment(f, P)
 f = f’
 Gf = Gf’
 return f

I.e. Push flow along P.

Recalculate residual graph
based on new flow f’.

	Slide 1: Flow Networks CSCI 432
	Slide 2: Motivation
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: Flow Network
	Slide 6: Flow Network
	Slide 7: Flow Network
	Slide 8: Flow Network
	Slide 9: Flow Network
	Slide 10: Flow Network
	Slide 11: Maximum Flow Algorithm
	Slide 12: Maximum Flow Algorithm
	Slide 13: Maximum Flow Algorithm
	Slide 14: Maximum Flow Algorithm
	Slide 15: Residual Graph
	Slide 16: Residual Graph
	Slide 17: Residual Graph
	Slide 18: Residual Graph
	Slide 19: Flows in Residual Graphs
	Slide 20: Flows in Residual Graphs
	Slide 21: Flows in Residual Graphs
	Slide 22: Flows in Residual Graphs
	Slide 23: Flows in Residual Graphs
	Slide 24: Flows in Residual Graphs
	Slide 25: Flows in Residual Graphs
	Slide 26: Flows in Residual Graphs
	Slide 27: Flows in Residual Graphs
	Slide 28: Flows in Residual Graphs
	Slide 29: Ford-Fulkerson Algorithm

