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Flow networks are commonly used to model
transportation networks:

* Edges carry traffic (capacity constrained).
* Nodes act as junctions between edges.

Examples:

* Internet routing.

* Road networks.

e Electricity distribution.
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Flow Network

Maximum Flow Problem:
Given a flow network, find the
maximum possible value of flow.

Flow Network:
* Directed-edge graph, G = (V, E).

* Non-negative edge capacity, c,.
* Single source, s, without input edges.
* Single sink, t, without output edges.

An s — t flow is a function f: E — R™ such that:
« 0<f(e) <c, Ve € E.(capacity constraint)
) Z:eeinput(v)f(e) = Zeeoutput(v)f(e) Vv €V \ {S» t}-

(conservation of flow constraint: “Everything that goes into a
node has to come out, except for s and t”)

* Value of flow = val(f) = Zeeoutput(s)f(e) = Zeeinput(t) f(e)
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Maximum Flow Algorithm

Can we use Dynamic Programming?
What is the optimal substructure?
Can we use a Greedy approach?
What would the greedy choice be?

Greedy Choice: Select path
that can handle most flow,
update capacities, repeat.

Flow of 20, but max flow is 30. Need way
to “undo” parts of previous decisions.




Residual Graph

Residual Graph: Tool to re-route
flow we already decided to push.
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Residual Graph

Given a flow network G, and a flow f, define the residual graph Gy as:
* |dentical nodes as G.
* Foreachedgee,if f(e) <c,, letc, =c, — f(e).
 Foreachedgee = (u,v),if f(e) > 0, create new edge
e’ = (v,u) with c,, = f(e) (e’ called back edge).

GfI
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Let P be a simple s — t path in G¢.

bottleneck (P, f) = minimum residual capacity on

augment(f, P)

b = bottleneck(pP,f) = 10 f:
for each edge (u, v) in P
if (u, v) i1s a back edge

f(lv, W) -=b (5)
else
f((u, v)) += Db
return f 0O

any edge in P = 10.
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Let P be a simple s — t path in G¢.

bottleneck(P,f) = minimum residual capacity on any edge in P = 10.

augment(f, P)
b = bottleneck(P,f) = 10
for each edge (u, v) in P
if (u, v) is a back edge

fCCv, w) -=b
else
f((u, v)) += Db
return f
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Ford-Fulkerson Algorithm

Max-Flow(G)
f(e) = 0 for all e 1n G
while simple s-t path 1in residual graph Gf exists

P = simple s-t path 1n G¢
f’= augment(f, P)
f =

.F ’
\ l.e. Push flow along P.

Gf = Gg

return T
Recalculate residual graph

based on new flow .
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