Flow Networks
CSCl 43?2



Ford-Fulkerson Algorithm

Max-F1low(G)
f(e) =0 for all e in G
while s-t path 1n Gf exists

P = simple s-t path 1n G¢
f’= augment(f, P)
f=f’
Gf — Gf’
return f

Need to show:
1. Validity.
2. Running time.

3. Finds max flow.

Residual graph for flow f, Gg:
* Ve, if f(e) < ce, letc, =c, — f(e).
* Ve = (u,v),if f(e) > 0, create
e’ = (v,u) withcy, = f(e)

augment(f, P)

b = bottleneck(pP, )
for each edge (u, v) in P
if (u, v) is a back edge

f((v, W) -=b
else
fC(u, v)) += b
return f



Validity

Theorem: If the edge capacities are integer, the algorithm will terminate.

Proof:
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Validity

Theorem: If the edge capacities are integer, the algorithm will terminate.

Proof:
e If the current flow is integer, the bottleneck (and the augmented flow) is
also integer. Since the flow starts at O (integer) the flow values are
always integer.
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Validity

Theorem: If the edge capacities are integer, the algorithm will terminate.

Proof:
e If the current flow is integer, the bottleneck (and the augmented flow) is

also integer. Since the flow starts at O (integer) the flow values are

always integer.
* The flow value always increases by at least 1 each iteration (flow value

must increase and bottleneck is an integer > 0).




Validity

Theorem: If the edge capacities are integer, the algorithm will terminate.

Proof:
e If the current flow is integer, the bottleneck (and the augmented flow) is

also integer. Since the flow starts at O (integer) the flow values are

always integer.
* The flow value always increases by at least 1 each iteration (flow value

must increase and bottleneck is an integer > 0).
 The Max Flow is finite. (e.g., Bounded by sum of capacities into t.)




Validity

Theorem: If the edge capacities are integer, the algorithm will terminate.

Proof:
e If the current flow is integer, the bottleneck (and the augmented flow) is

also integer. Since the flow starts at O (integer) the flow values are

always integer.
* The flow value always increases by at least 1 each iteration (flow value

must increase and bottleneck is an integer > 0).
 The Max Flow is finite. (e.g., Bounded by sum of capacities into t.)

Thus, the algorithm will go through at most |Max Flow| iterations.



Validity

Theorem: If the edge capacities are integer, the algorithm will terminate.

Proof:
e If the current flow is integer, the bottleneck (and the augmented flow) is

also integer. Since the flow starts at O (integer) the flow values are

always integer.
* The flow value always increases by at least 1 each iteration (flow value

must increase and bottleneck is an integer > 0).
 The Max Flow is finite. (e.g., Bounded by sum of capacities into t.)

Thus, the algorithm will go through at most |Max Flow| iterations.

Note: This does not hold for general edge capacities (irrational
edge capacities can lead to non-terminating scenarios).




Ford-Fulkerson Algorithm

Max-F1low(G)
f(e) =0 for all e in G
while s-t path 1n Gf exists

P = simple s-t path 1n G¢
f’= augment(f, P)
f=f’
Gf — Gf’
return f

Need to show:
1. Validity.
2. Running time.

3. Finds max flow.

Residual graph for flow f, Gg:
* Ve, if f(e) < ce, letc, =c, — f(e).
* Ve = (u,v),if f(e) > 0, create
e’ = (v,u) withcy, = f(e)

augment(f, P)

b = bottleneck(pP, )
for each edge (u, v) in P
if (u, v) is a back edge

f((v, W) -=b
else
fC(u, v)) += b
return f



Flows in Residual Graphs

Let P be a simple s — t path in Gf.

bottleneck(P,f) = minimum residual capacity on any edge in P.

augment(f, P)

b = bottleneck(P,f) = 10 f:

for each edge (u, v) in P
if (u, v) is a back edge

fClv, w) -=0b
else @
fCQu, v)) +=b
return f

Claim: augment (f, P)
isaflowinG.

@
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augment(f, P):
Tol b = bottleneck(P,f)
Valldlty for each edge (u, v) in P
if (u, v) is a back edge
Theorem: ¥’ = augment(f, P) isaflowinG. e1SZ((V’ W) -=b
f((u, V)) += b
return f

Proof: Need to verify, for each edge/node in P: ?
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Conservation of flow constraint (input(v) = output(v), V internal v € P)
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for each edge (u, v) in P
if (u, v) is a back edge

Theorem: ¥’ = augment(f, P) isaflowinG. e1SZ((V’ W) -=b
Proof: Need to verify, for each edge/node in P: r'etur'nfg(u, V) +=b

Capacity constraint (f'(e) < c¢,)
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f'(e) = f(e) + bottleneck(P, f)

Conservation of flow constraint (input(v) = output(v), V internal v € P)
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augment(f, P):

Validity b = bottleneck(p,)

for each edge (u, v) in P
if (u, v) is a back edge

Theorem: ¥’ = augment(f, P) isaflowinG. e1s:<(\” W) -=b
Proof: Need to verify, for each edge/node in P: retumfécu’ V) +=b
Capacity constraint (f'(e) < c¢,) :os.er:\?:sfv2ﬂ|l|eg,mk

If e is a regular (forward) edge, f

f'(e) = f(e) + bottleneck(P, f) < f(e) +‘ Ce — f(e)‘= Ce

\ residual

capacity

Conservation of flow constraint (input(v) = output(v), V internal v € P)



augment(f, P):

Validity b = bottleneck(p,)

for each edge (u, v) in P
if (u, v) is a back edge

Theorem: ¥’ = augment(f, P) isaflowinG. e1SZ((V’ W) -=b
Proof: Need to verify, for each edge/node in P: r'etur'nfg(u, V) +=b

Capacity constraint (f'(e) < c¢,)
If e is a regular (forward) edge,

f'(e) = f(e) + bottleneck(P, f) < f(e) + c, — f(e) = c,

If e is a back edge, let e’ be the forward edge,

f'(e') = f(e') — bottleneck(P, f)

Conservation of flow constraint (input(v) = output(v), V internal v € P)



augment(f, P):

Validity b = bottleneck(p,)

for each edge (u, v) in P
if (u, v) is a back edge

Theorem: ¥’ = augment(f, P) isaflowinG. e1SZ((V’ W) -=b
Proof: Need to verify, for each edge/node in P: r'etur'nfg(u, V) +=b

Capacity constraint (f'(e) < c¢,)
If e is a regular (forward) edge,

f'(e) = f(e) + bottleneck(P, f) < f(e) + c, — f(e) = c,

If e is a back edge, let e’ be the forward edge,

f'(e") = f(e') — bottleneck(P, f) < f(e")

Conservation of flow constraint (input(v) = output(v), V internal v € P)



augment(f, P):

Validity b = bottleneck(p,)

for each edge (u, v) in P
if (u, v) is a back edge

Theorem: ¥’ = augment(f, P) isaflowinG. e1SZ<(V’ W) -=b
Proof: Need to verify, for each edge/node in P: r'etur'nfg(u, V) +=b

Capacity constraint (f'(e) < c¢,)
If e is a regular (forward) edge,

f'(e) = f(e) + bottleneck(P, f) < f(e) + c, — f(e) = c,

If e is a back edge, let e’ be the forward edge, since f was a valid flow

f'(e") = f(e') — bottleneck(P, f) < f(e) < c,

Conservation of flow constraint (input(v) = output(v), V internal v € P)



Validity

Theorem: ' = augment (f, P) isaflowinG.

v & P not affected.
Proof: Need to verify, for each edge/node in P: l

Conservation of flow constraint (input(v) = output(v), V internal v € P)



Validity

Theorem: ' = augment (f, P) isaflowinG.

Proof: Need to verify, for each edge/node in P:

Conservation of flow constraint (input(v) = output(v), V internal v € P)
Case 1: Input e is regular edge, output e, is regular edge.

e



Validity

Theorem: ' = augment (f, P) isaflowinG.

Proof: Need to verify, for each edge/node in P:

Conservation of flow constraint (input(v) = output(v), V internal v € P)
Case 1: Input e is regular edge, output e, is regular edge.
input’(v) = input(v) + bottleneck(P, f)  only edge changed is e;.

e



Validity

Theorem: ' = augment (f, P) isaflowinG.

Proof: Need to verify, for each edge/node in P:

Conservation of flow constraint (input(v) = output(v), V internal v € P)
Case 1: Input e is regular edge, output e, is regular edge.
input’(v) = input(v) + bottleneck(P, f)
output’(v) = output(v) + bottleneck(P, f) only edge changed is e.

e

€1



Validity

Theorem: ' = augment (f, P) isaflowinG.

Proof: Need to verify, for each edge/node in P:

Conservation of flow constraint (input(v) = output(v), V internal v € P)
Case 1: Input e is regular edge, output e, is regular edge.
input’(v) = input(v) + bottleneck(P, f)

output’(v) = output(v) + bottleneck(P, f) = input'(v) = output(v)

since input(v) = output(v)

e

€1



Validity

Theorem: ' = augment (f, P) isaflowinG.

Proof: Need to verify, for each edge/node in P:

augment(f, P):

b = bottleneck(P,f)

for each edge (u, v) in P
if (u, v) is a back edge

fClv, W) -=0b
else
f(Cu, v)) += b
return f

Conservation of flow constraint (input(v) = output(v), V internal v € P)
Case 1: Input e is regular edge, output e, is regular edge.

input’(v) = input(v) + bottleneck(P, f)

output(v) = output(v) + bottleneck(P,f)} = input’(v) = output’(v)
Case 2: Input e is regular edge, output e, is back edge.

€2 €> ?




augment(f, P):

A b = bottleneck(pP,f)

Va||d|ty for each edge (u, v) in P
if (u, v) is a back edge

Theorem: ' = augment (f, P) isaflowinG. : f(Cv, W) -=b
else
Proof: Need to verify, for each edge/node in P: FCCu, v)) +=b
return f

Conservation of flow constraint (input(v) = output(v), V internal v € P)
Case 1: Input e is regular edge, output e, is regular edge.
input’(v) = input(v) + bottleneck(P, f) _ . ,
output’(v) = output(v) + bottleneck(P, f) = input'(v) = output'(v)
Case 2: Input e is regular edge, output e, is back edge.
input’(v) = input(v) + bottleneck(P, f) - bottleneck(P, f)

e, (e, T T

extra on e4 extra on e, = subtracted from e’



Validity

Theorem: ' = augment (f, P) isaflowinG.

Proof: Need to verify, for each edge/node in P:

Conservation of flow constraint (input(v) = output(v), V internal v € P)
Case 1: Input e is regular edge, output e, is regular edge.
input’(v) = input(v) + bottleneck(P, _ , ,
ouptpufc'()v) = oputé)ul(v) + bottlene(ck(flz, f)} = input'(v) = output'(v)
Case 2: Input e is regular edge, output e, is back edge.
input’ (v) = input(v)
€2\ )€2  output'(v) = output(v)

€1



Validity

Theorem: ' = augment (f, P) isaflowinG.

Proof: Need to verify, for each edge/node in P:

Conservation of flow constraint (input(v) = output(v), V internal v € P)
Case 1: Input e is regular edge, output e, is regular edge.
input’(v) = input(v) + bottleneck(P, f) _ . ,
output’(v) = output(v) + bottleneck(P, f) = input'(v) = output'(v)
Case 2: Input e is regular edge, output e, is back edge.
input’ (v) = input(v)

' , = input’(v) = output’(v
€2 €2 output’(v) = output(v) psince(in)put(v) =F:)utp(ut()‘l7)

€1



Validity

Theorem: ' = augment (f, P) isaflowinG.

Proof: Need to verify, for each edge/node in P:

Conservation of flow constraint (input(v) = output(v), V internal v € P)
Case 1: Input e is regular edge, output e, is regular edge.
input’(v) = input(v) + bottleneck(P, f) _ . ,
output’(v) = output(v) + bottleneck(P, f) = input'(v) = output'(v)
Case 2: Input e is regular edge, output e, is back edge.
input’ (v) = input(v)

' , = input’(v) = output’(v
€2 €2 output’(v) = output(v) psince(in)put(v) =F:)utp(ut()‘l7)

€1

Case 3 & 4: Same arguments...



Validity

Theorem: T’ = augment (f, P) isaflowinG.

Proof: Need to verify, for each edge/node in P:

Conservation of flow constraint (input(v) = output(v), V internal v € P)

Case 1: Input e is regular edge, output e, is regular edge.
input’(v) = input(v) + bottleneck(P, f) _ ooy ,
output’(v) = output(v) + bottleneck(P, f) = input'(v) = output'(v)

Case 2: Input e is regular edge, output e, is back edge.
input’ (v) = input(v) . . ,

e;'( ez output’(v) = output(v) = mpgt (1.7) - OUEpUt v)
since input(v) = output(v)

€1 So, f’ =augment(f, P)
Case 3 & 4: Same arguments... will be a valid flow!



Validity

Max-F1low(G)
f(e) =0 for all e in G
while s-t path 1n Gf exists

P = simple s-t path 1n G¢
f’= augment(f, P)
f=f’
Gf — Gf’
return f

Need to show:

2. Running time.

3. Finds max flow.

augment(f, P)
b = bottleneck(pP, )
for each edge (u, v) in P
if (u, v) is a back edge

f((v, W) -=b
else
fC(u, v)) += b
return f



Running Time

Assuming integer edge capacities:

Max-Flow(G) augment(f, P)

f(e) =0 for all e in G b = bottleneck(pP,f)

while s-t path in Gf exists for each edge (u, v) in P
P = simple s-t path in Gf if (u, v) is a back edge
f’= augment(f, P) f((v, W) -=b>b
f=f else
Gf = Gg fCCu, v)) += Db

return f return f




Running Time

Assuming integer edge capacities:

While loop runs at most 2?7

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = simple s-t path 1n Gt
f’= augment(f, P)

f=1f

Gf S5 Gf’

return f

augment(f, P)
b = bottleneck(P,T)
for each edge (u, v) in P
if (u, v) is a back edge

f((v, W) -=b
else
f(lu, v)) += b
return f




Running Time

Assuming integer edge capacities:

While loop runs at most |fyp7| times.

Flow starts at 0, increases
by at least 1 each iteration.

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = simple s-t path 1n Gt
f’= augment(f, P)

f=1f

G'F S5 Gf!

return f

augment(f, P)
b = bottleneck(P,T)
for each edge (u, v) in P
if (u, v) is a back edge

f((v, W) -=b
else
f(lu, v)) += b
return f




Running Time

Assuming integer edge capacities:

While loop runs at most |fyp7| times.

Find s — t path...?

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = simple s-t path 1n Gf
f’= augment(f, P)

f=1f

Gf S5 Gf’

return f

augment(f, P)
b = bottleneck(P,T)
for each edge (u, v) in P
if (u, v) is a back edge

f((v, W) -=b
else
f(lu, v)) += b
return f




Running Time

Assuming integer edge capacities:

While loop runs at most |fyp7| times.
Find s — t path (BFS/DFS): O(|E| + |V])

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = simple s-t path 1n Gf
f’= augment(f, P)

f=1f

Gf S5 Gf’

return f

augment(f, P)
b = bottleneck(P,T)
for each edge (u, v) in P
if (u, v) is a back edge

f((v, W) -=b
else
f(lu, v)) += b
return f




Running Time

Assuming integer edge capacities:

While loop runs at most |fyp7| times.
Find s — t path (BFS/DFS): O(|E| + |V])

augment(f, P):?2?

Max-Flow(G)
f(e) = 0 for all e in G
while s-t path in Gf exists

P = simple s-t path 1n Gt
f’= augment(f, P)

f =7

Gf S5 Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P
if (u, v) is a back edge

f((v, W) -=b
else
f((u, v)) += b
return f




Running Time

Assuming integer edge capacities:

While loop runs at most |fyp7| times.
Find s — t path (BFS/DFS): O(|E| + |V])
augment (f, P) justtraverses edges: O(|E|)

Max-Flow(G)

f(e) =0 for all e in G

while s-t path in Gf exists
P = simple s-t path 1n Gt
f’= augment(f, P)
f=7f
Gf S5 Gf’

return f

augment(f, P)
b = bottleneck(P,f)
for each edge (u, v) in P
if (u, v) is a back edge

f((v, W) -=b
else
f((u, v)) += b
return f




Residual graph for flow f, G¢:
* Ve,if f(e) <c,,letc, =c, — f(e).
* Ve = (u,v),if f(e) > 0, create

e’ = (v,u) withcy = f(e)

Running Time

Assuming integer edge capacities:

While loop runs at most |fyp7| times.
Find s — t path (BFS/DFS): O(|E| + |V])
augment (f, P) justtraverses edges: O(|E|)
Update G: 227

Max-Flow(G) augment(f, P)

f(e) =0 for all e in G b = bottleneck(pP,f)

while s-t path in Gf exists for each edge (u, v) in P
P = simple s-t path in Gf if (u, v) is a back edge
f’= augment(f, P) f((v, W) -=b>b
f=f else
Ge = Gg f(Cu, v)) += b

return f return f




. . Residual graph for flow f, G¢:
Runnlng Time * Ve,if f(e) < cg, letc, =c. — f(e).

Assuming integer edge capacities: P Ve = (wv),if f(e) >0, create
e’ = (v,u) withcy = f(e)

While loop runs at most |fyp7| times.
Find s — t path (BFS/DFS): O(|E| + |V])
augment (f, P) justtraverses edges: O(|E|)

Update Gy (for each e € G, make e and e’ € Gy): O(|E|)

Max-Flow(G) augment(f, P)

f(e) =0 for all e in G b = bottleneck(pP,f)

while s-t path in Gf exists for each edge (u, v) in P
P = simple s-t path in Gf if (u, v) is a back edge
f’= augment(f, P) f((v, W) -=b>b
f=f else
Ge = Gg f(Cu, v)) += b

return f return f




Running Time

Assuming integer edge capacities:

While loop runs at most |fyp7| times.

Find s — t path (BFS/DFS): O(|E| + |V])

augment (f, P) justtraverses edges: O(|E|)

Update Gy (for each e € G, make e and e’ € Gy): O(|E|)

Total = O(|fopr| BIE|l + V1)) = O(|E| - |forr])

Max-Flow(G) augment(f, P)

f(e) =0 for all e in G b = bottleneck(pP,f)

while s-t path in Gf exists for each edge (u, v) in P
P = simple s-t path in Gf if (u, v) is a back edge
f’= augment(f, P) f((v, W) -=b>b
f=f else
Gf = Gg fCCu, v)) += Db

return f return f




Running Time Good

While loop runs at most |fyp7| times. or
Find s — t path (BFS/DFS): O(|E| + |V]) Bad?
augment (f, P) justtraverses edges: O(|E|)

Update Gy (for each e € G, make e and e’ € Gy): O(|E|)

Total = O(|fopr| BIE|l + V1)) = O(|E| - |forr])

Assuming integer edge capacities:

Max-Flow(G) augment(f, P)

f(e) =0 for all e in G b = bottleneck(pP,f)

while s-t path in Gf exists for each edge (u, v) in P
P = simple s-t path in Gf if (u, v) is a back edge
f’= augment(f, P) f((v, W) -=b>b
f=f else
Gf = Gg fCCu, v)) += Db

return f return f




Running Time

Assuming integer edge capacities:

While loop runs at most |fyp7| times.

Find s — t path (BFS/DFS): O(|E| + |V])
augment (f, P) justtraverses edges: O(|E|)
Update Gy (for each e € G, make e and e’ € Gy): O(|E|)

Total = O(|fopr| BIE|l + V1)) = O(|E| - |forr])

Max-Flow(G) augment(f, P)

f(e) =0 for all e in G b = bottleneck(pP,f)

while s-t path in Gf exists for each edge (u, v) in P
P = simple s-t path in Gf if (u, v) is a back edge
f’= augment(f, P) f((v, W) -=b>b
f=f else
Gf = Gg fCCu, v)) += Db

return f return f




Running Time

Assuming integer edge capacities:

While loop runs at most |fyp7| times.

Find s — t path (BFS/DFS): O(|E| + |V])
augment (f, P) justtraverses edges: O(|E|)
Update Gy (for each e € G, make e and e’ € G¢): O(|E|) Flow: 0

Total = O(lfopr| BIE| + V1)) = O(|E| - |forT])

Max-Flow(G) augment(f, P)

f(e) =0 for all e in G b = bottleneck(pP,f)

while s-t path in Gf exists for each edge (u, v) in P
P = simple s-t path in Gf if (u, v) is a back edge
f’= augment(f, P) f((v, W) -=b>b
f=f else
Gf = Gg fCCu, v)) += Db

return f return f




Ford-Fulkerson Algorithm

Max-Flow(G) augment(f, P)
f(e) = 0 for all e in G b = bottleneck(P, f)
while s—i nathetdulele—a )] for each edge (u, v) in P
' ' if (u, v) is a back edge
f(Cv, W) -=b
else

fC(u, v)) += b
return f return f



Edmonds-Karp Algorithm

Max-Flow(G) augment(f, P)
f(e) = 0 for all e in G b = bottleneck(P, f)
while s—i nathetdulele—a )] for each edge (u, v) in P
' if (u, v) is a back edge
f(Cv, W) -=b
else
G = G¢f»  Shortest, as in smallest fCu, v)) +=b
return f return f

number of edges.
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Edmonds-Karp Algorithm

Max-Flow(G) augment(f, P)

f(e) = 0 for all e in G b = bottleneck(P, f)

while s-t path in Gf exists for each edge (u, v) in P
P = shortest s-t path in Gf if (u, v) is a back edge
f’= augment(f, P) f((v, u) -=0>D
f =" else
Gs = Gg fCu, v)) +=b

return f return f

Running Time: O(|V||E|?)
improved to O(|V||E]) [Orlin, 2013] S O(Max FIOW)
improved to 0(|E|1+0(1)) [Chen et al., 2022]



Optimality

Max-F1low(G)
f(e) =0 for all e in G
while s-t path 1n Gf exists

P = simple s-t path 1n G¢
f’= augment(f, P)
f=f’
Gf — Gf’
return f

Need to show:

3. Finds max flow.

augment(f, P)
b = bottleneck(pP, )
for each edge (u, v) in P
if (u, v) is a back edge

f((v, W) -=b
else
fC(u, v)) += b
return f



Optimality

Theorem: The flow returned by the Ford-Fulkerson algorithm is a
maximum flow.

Proof: ...
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c(A,B) =8
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Definitions: Suppose G is a flow network and nodes in G are divided into two
sets, A and B, suchthats € Aandt € B. Wecall (4,B) ans — t cut. The
capacity of the cut, c(A4, B), is the sum of capacities of all edges out of A.

c(A,B) =8

Game Plan:
1. Show that value of every flow is < capacity
of every cut.

Cs
N

: L | |
0 fi fafs Jaly G (i G




Optimality

Definitions: Suppose G is a flow network and nodes in G are divided into two
sets, A and B, suchthats € Aandt € B. Wecall (4,B) ans — t cut. The
capacity of the cut, c(4, B), is the sum of capacities of all edges out of A.

c(A,B) =8

Game Plan:
1. Show that value of every flow is < capacity
of every cut.

Consequence: If we find some flow
whose value equals the capacity of
some cut, it must be the optimal flow.
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Definitions: Suppose G is a flow network and nodes in G are divided into two
sets, A and B, suchthats € Aandt € B. Wecall (4,B) ans — t cut. The
capacity of the cut, c(A4, B), is the sum of capacities of all edges out of A.
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1. Show that value of every flow is < capacity
of every cut.
2. Given a flow where there are no s-t paths
left in the residual graph, there is a specific
cut whose capacity = flow value.




Optimality

Definitions: Suppose G is a flow network and nodes in G are divided into two
sets, A and B, suchthats € Aandt € B. Wecall (4,B) ans — t cut. The
capacity of the cut, c(A4, B), is the sum of capacities of all edges out of A.

c(A,B) =8

Game Plan:

1. Show that value of every flow is < capacity
of every cut.

2. Given a flow where there are no s-t paths
left in the residual graph, there is a specific
cut whose capacity = flow value.

Consequence: The algorithm is optimal
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