
Flow Networks
CSCI 432

Ford-Fulkerson Algorithm

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
 P = simple s-t path in Gf
 f’= augment(f, P)
 f = f’
 Gf = Gf’
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

Need to show:
1. Validity.
2. Running time.
3. Finds max flow.

Residual graph for flow 𝑓, 𝐺𝑓:

• ∀𝑒, if 𝑓(𝑒) < 𝑐𝑒, let 𝑐𝑒 = 𝑐𝑒 − 𝑓(𝑒).
• ∀𝑒 = (𝑢, 𝑣), if 𝑓(𝑒) > 0, create
 𝑒’ = (𝑣, 𝑢) with 𝑐𝑒’ = 𝑓(𝑒)

Theorem: If the edge capacities are integer, the algorithm will terminate.

Proof:

Validity

Theorem: If the edge capacities are integer, the algorithm will terminate.

Proof:
• If the current flow is integer, the bottleneck (and the augmented flow) is

also integer.

Validity

s t

a

b
20

10
10

10

𝐺𝑓:

c
20

20 10

20

10
s t

a

b
20

20

𝑓:

c
20

s t

a

b
20

10
30

10

𝐺:

c
20

30 10 10 10

capacitye – flowe, e is not a back edge
flowe’, e is a back edge

bottleneck = mine∈path

Theorem: If the edge capacities are integer, the algorithm will terminate.

Proof:
• If the current flow is integer, the bottleneck (and the augmented flow) is

also integer. Since the flow starts at 0 (integer) the flow values are
always integer.

Validity

s t

a

b
20

10
10

10

𝐺𝑓:

c
20

20 10

20

10
s t

a

b
20

20

𝑓:

c
20

s t

a

b
20

10
30

10

𝐺:

c
20

30 10 10 10

capacitye – flowe, e is not a back edge
flowe’, e is a back edge

bottleneck = mine∈path

Theorem: If the edge capacities are integer, the algorithm will terminate.

Proof:
• If the current flow is integer, the bottleneck (and the augmented flow) is

also integer. Since the flow starts at 0 (integer) the flow values are
always integer.

• The flow value always increases by at least 1 each iteration (flow value
must increase and bottleneck is an integer > 0).

Validity

Theorem: If the edge capacities are integer, the algorithm will terminate.

Proof:
• If the current flow is integer, the bottleneck (and the augmented flow) is

also integer. Since the flow starts at 0 (integer) the flow values are
always integer.

• The flow value always increases by at least 1 each iteration (flow value
must increase and bottleneck is an integer > 0).

• The Max Flow is finite. (e.g., Bounded by sum of capacities into t.)

Validity

Theorem: If the edge capacities are integer, the algorithm will terminate.

Proof:
• If the current flow is integer, the bottleneck (and the augmented flow) is

also integer. Since the flow starts at 0 (integer) the flow values are
always integer.

• The flow value always increases by at least 1 each iteration (flow value
must increase and bottleneck is an integer > 0).

• The Max Flow is finite. (e.g., Bounded by sum of capacities into t.)

Thus, the algorithm will go through at most |Max Flow| iterations.

Validity

Theorem: If the edge capacities are integer, the algorithm will terminate.

Proof:
• If the current flow is integer, the bottleneck (and the augmented flow) is

also integer. Since the flow starts at 0 (integer) the flow values are
always integer.

• The flow value always increases by at least 1 each iteration (flow value
must increase and bottleneck is an integer > 0).

• The Max Flow is finite. (e.g., Bounded by sum of capacities into t.)

Thus, the algorithm will go through at most |Max Flow| iterations.

Validity

Note: This does not hold for general edge capacities (irrational
edge capacities can lead to non-terminating scenarios).

Ford-Fulkerson Algorithm

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
 P = simple s-t path in Gf
 f’= augment(f, P)
 f = f’
 Gf = Gf’
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

Need to show:
1. Validity.
2. Running time.
3. Finds max flow.

Residual graph for flow 𝑓, 𝐺𝑓:

• ∀𝑒, if 𝑓(𝑒) < 𝑐𝑒, let 𝑐𝑒 = 𝑐𝑒 − 𝑓(𝑒).
• ∀𝑒 = (𝑢, 𝑣), if 𝑓(𝑒) > 0, create
 𝑒’ = (𝑣, 𝑢) with 𝑐𝑒’ = 𝑓(𝑒)

Flows in Residual Graphs

Let 𝑃 be a simple 𝑠 − 𝑡 path in 𝐺𝑓.

bottleneck(P,f) = minimum residual capacity on any edge in 𝑃.

augment(f, P)
 b = bottleneck(P,f) = 10
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

𝑃 = 𝑠 → 𝑏 → 𝑎 → 𝑡

s t

a

b

20

10

20

𝑓:

s t

a

b

20

10

10

10

20
10

10

𝐺𝑓:
10

10

10

Claim: augment(f, P)
is a flow in 𝐺.

Validity

Theorem: f’ = augment(f, P) is a flow in G.

Proof: Need to verify, for each edge/node in 𝑃: ?

augment(f, P):
b = bottleneck(P,f)
for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
return f

Theorem: f’ = augment(f, P) is a flow in G.

Proof: Need to verify, for each edge/node in 𝑃:

Capacity constraint (𝑓′ 𝑒 ≤ 𝑐𝑒)

Conservation of flow constraint (input(𝑣) = output(𝑣), ∀ internal 𝑣 ∈ 𝑃)

augment(f, P):
b = bottleneck(P,f)
for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
return f

Validity

Theorem: f’ = augment(f, P) is a flow in G.

Proof: Need to verify, for each edge/node in 𝑃:

Capacity constraint (𝑓′ 𝑒 ≤ 𝑐𝑒)
 If 𝑒 is a regular (forward) edge,
 𝑓′ 𝑒 = 𝑓 𝑒 + bottleneck 𝑃, 𝑓

Conservation of flow constraint (input(𝑣) = output(𝑣), ∀ internal 𝑣 ∈ 𝑃)

augment(f, P):
b = bottleneck(P,f)
for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
return f

Validity

Theorem: f’ = augment(f, P) is a flow in G.

Proof: Need to verify, for each edge/node in 𝑃:

Capacity constraint (𝑓′ 𝑒 ≤ 𝑐𝑒)
 If 𝑒 is a regular (forward) edge,
 𝑓′ 𝑒 = 𝑓 𝑒 + bottleneck 𝑃, 𝑓 ≤ 𝑓 𝑒 + 𝑐𝑒 − 𝑓 𝑒

Conservation of flow constraint (input(𝑣) = output(𝑣), ∀ internal 𝑣 ∈ 𝑃)

residual
capacity

augment(f, P):
b = bottleneck(P,f)
for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
return f

Validity

Theorem: f’ = augment(f, P) is a flow in G.

Proof: Need to verify, for each edge/node in 𝑃:

Capacity constraint (𝑓′ 𝑒 ≤ 𝑐𝑒)
 If 𝑒 is a regular (forward) edge,
 𝑓′ 𝑒 = 𝑓 𝑒 + bottleneck 𝑃, 𝑓 ≤ 𝑓 𝑒 + 𝑐𝑒 − 𝑓 𝑒

Conservation of flow constraint (input(𝑣) = output(𝑣), ∀ internal 𝑣 ∈ 𝑃)

because bottleneck
is min over all 𝒆.

residual
capacity

augment(f, P):
b = bottleneck(P,f)
for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
return f

Validity

Theorem: f’ = augment(f, P) is a flow in G.

Proof: Need to verify, for each edge/node in 𝑃:

Capacity constraint (𝑓′ 𝑒 ≤ 𝑐𝑒)
 If 𝑒 is a regular (forward) edge,
 𝑓′ 𝑒 = 𝑓 𝑒 + bottleneck 𝑃, 𝑓 ≤ 𝑓 𝑒 + 𝑐𝑒 − 𝑓 𝑒 = 𝑐𝑒

Conservation of flow constraint (input(𝑣) = output(𝑣), ∀ internal 𝑣 ∈ 𝑃)

because bottleneck
is min over all 𝒆.

residual
capacity

augment(f, P):
b = bottleneck(P,f)
for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
return f

Validity

Theorem: f’ = augment(f, P) is a flow in G.

Proof: Need to verify, for each edge/node in 𝑃:

Capacity constraint (𝑓′ 𝑒 ≤ 𝑐𝑒)
 If 𝑒 is a regular (forward) edge,
 𝑓′ 𝑒 = 𝑓 𝑒 + bottleneck 𝑃, 𝑓 ≤ 𝑓 𝑒 + 𝑐𝑒 − 𝑓 𝑒 = 𝑐𝑒

 If 𝑒 is a back edge, let 𝑒′ be the forward edge,
 𝑓′ 𝑒′ = 𝑓 𝑒′ − bottleneck 𝑃, 𝑓

Conservation of flow constraint (input(𝑣) = output(𝑣), ∀ internal 𝑣 ∈ 𝑃)

augment(f, P):
b = bottleneck(P,f)
for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
return f

Validity

Theorem: f’ = augment(f, P) is a flow in G.

Proof: Need to verify, for each edge/node in 𝑃:

Capacity constraint (𝑓′ 𝑒 ≤ 𝑐𝑒)
 If 𝑒 is a regular (forward) edge,
 𝑓′ 𝑒 = 𝑓 𝑒 + bottleneck 𝑃, 𝑓 ≤ 𝑓 𝑒 + 𝑐𝑒 − 𝑓 𝑒 = 𝑐𝑒

 If 𝑒 is a back edge, let 𝑒′ be the forward edge,
 𝑓′ 𝑒′ = 𝑓 𝑒′ − bottleneck 𝑃, 𝑓 ≤ 𝑓 𝑒′

Conservation of flow constraint (input(𝑣) = output(𝑣), ∀ internal 𝑣 ∈ 𝑃)

augment(f, P):
b = bottleneck(P,f)
for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
return f

Validity

Theorem: f’ = augment(f, P) is a flow in G.

Proof: Need to verify, for each edge/node in 𝑃:

Capacity constraint (𝑓′ 𝑒 ≤ 𝑐𝑒)
 If 𝑒 is a regular (forward) edge,
 𝑓′ 𝑒 = 𝑓 𝑒 + bottleneck 𝑃, 𝑓 ≤ 𝑓 𝑒 + 𝑐𝑒 − 𝑓 𝑒 = 𝑐𝑒

 If 𝑒 is a back edge, let 𝑒′ be the forward edge,
 𝑓′ 𝑒′ = 𝑓 𝑒′ − bottleneck 𝑃, 𝑓 ≤ 𝑓 𝑒′ ≤ 𝑐𝑒′

Conservation of flow constraint (input(𝑣) = output(𝑣), ∀ internal 𝑣 ∈ 𝑃)

since 𝒇 was a valid flow

augment(f, P):
b = bottleneck(P,f)
for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
return f

Validity

Theorem: f’ = augment(f, P) is a flow in G.

Proof: Need to verify, for each edge/node in 𝑃:

Conservation of flow constraint (input(𝑣) = output(𝑣), ∀ internal 𝑣 ∈ 𝑃)

𝒗 ∉ 𝑷 not affected.

Validity

Theorem: f’ = augment(f, P) is a flow in G.

Proof: Need to verify, for each edge/node in 𝑃:

Conservation of flow constraint (input(𝑣) = output(𝑣), ∀ internal 𝑣 ∈ 𝑃)
 Case 1: Input 𝑒1 is regular edge, output 𝑒2 is regular edge.

Validity

𝑣

𝑒2

𝑒1

?

Theorem: f’ = augment(f, P) is a flow in G.

Proof: Need to verify, for each edge/node in 𝑃:

Conservation of flow constraint (input(𝑣) = output(𝑣), ∀ internal 𝑣 ∈ 𝑃)
 Case 1: Input 𝑒1 is regular edge, output 𝑒2 is regular edge.

 input′(𝑣) = input(𝑣) + bottleneck 𝑃, 𝑓

only edge changed is 𝒆𝟏.

Validity

𝑣

𝑒2

𝑒1

Theorem: f’ = augment(f, P) is a flow in G.

Proof: Need to verify, for each edge/node in 𝑃:

Conservation of flow constraint (input(𝑣) = output(𝑣), ∀ internal 𝑣 ∈ 𝑃)
 Case 1: Input 𝑒1 is regular edge, output 𝑒2 is regular edge.

 input′(𝑣) = input(𝑣) + bottleneck 𝑃, 𝑓
 output′(𝑣) = output(𝑣) + bottleneck 𝑃, 𝑓 only edge changed is 𝒆𝟐.

Validity

𝑣

𝑒2

𝑒1

Theorem: f’ = augment(f, P) is a flow in G.

Proof: Need to verify, for each edge/node in 𝑃:

Conservation of flow constraint (input(𝑣) = output(𝑣), ∀ internal 𝑣 ∈ 𝑃)
 Case 1: Input 𝑒1 is regular edge, output 𝑒2 is regular edge.

 input′(𝑣) = input(𝑣) + bottleneck 𝑃, 𝑓
 output′(𝑣) = output(𝑣) + bottleneck 𝑃, 𝑓

⇒ input′(𝑣) = output′(𝑣)
since input(𝒗) = output(𝒗)

Validity

𝑣

𝑒2

𝑒1

Theorem: f’ = augment(f, P) is a flow in G.

Proof: Need to verify, for each edge/node in 𝑃:

Conservation of flow constraint (input(𝑣) = output(𝑣), ∀ internal 𝑣 ∈ 𝑃)
 Case 1: Input 𝑒1 is regular edge, output 𝑒2 is regular edge.

 input′(𝑣) = input(𝑣) + bottleneck 𝑃, 𝑓
 output′(𝑣) = output(𝑣) + bottleneck 𝑃, 𝑓

 Case 2: Input 𝑒1 is regular edge, output 𝑒2 is back edge.

⇒ input′(𝑣) = output′(𝑣)

augment(f, P):
b = bottleneck(P,f)
for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
return f

Validity

𝑣

𝑒2′ 𝑒2

𝑒1

?

Theorem: f’ = augment(f, P) is a flow in G.

Proof: Need to verify, for each edge/node in 𝑃:

Conservation of flow constraint (input(𝑣) = output(𝑣), ∀ internal 𝑣 ∈ 𝑃)
 Case 1: Input 𝑒1 is regular edge, output 𝑒2 is regular edge.

 input′(𝑣) = input(𝑣) + bottleneck 𝑃, 𝑓
 output′(𝑣) = output(𝑣) + bottleneck 𝑃, 𝑓

 Case 2: Input 𝑒1 is regular edge, output 𝑒2 is back edge.
 input′(𝑣) = input(𝑣) + bottleneck 𝑃, 𝑓 - bottleneck 𝑃, 𝑓

𝑣

𝑒2′ 𝑒2

𝑒1

⇒ input′(𝑣) = output′(𝑣)

extra on 𝒆𝟏 extra on 𝒆𝟐 = subtracted from 𝒆𝟐′

augment(f, P):
b = bottleneck(P,f)
for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
return f

Validity

Theorem: f’ = augment(f, P) is a flow in G.

Proof: Need to verify, for each edge/node in 𝑃:

Conservation of flow constraint (input(𝑣) = output(𝑣), ∀ internal 𝑣 ∈ 𝑃)
 Case 1: Input 𝑒1 is regular edge, output 𝑒2 is regular edge.

 input′(𝑣) = input(𝑣) + bottleneck 𝑃, 𝑓
 output′(𝑣) = output(𝑣) + bottleneck 𝑃, 𝑓

 Case 2: Input 𝑒1 is regular edge, output 𝑒2 is back edge.
 input′(𝑣) = input(𝑣)
 output′(𝑣) = output(𝑣)

𝑣

𝑒2′ 𝑒2

𝑒1

⇒ input′(𝑣) = output′(𝑣)

Validity

Theorem: f’ = augment(f, P) is a flow in G.

Proof: Need to verify, for each edge/node in 𝑃:

Conservation of flow constraint (input(𝑣) = output(𝑣), ∀ internal 𝑣 ∈ 𝑃)
 Case 1: Input 𝑒1 is regular edge, output 𝑒2 is regular edge.

 input′(𝑣) = input(𝑣) + bottleneck 𝑃, 𝑓
 output′(𝑣) = output(𝑣) + bottleneck 𝑃, 𝑓

 Case 2: Input 𝑒1 is regular edge, output 𝑒2 is back edge.
 input′(𝑣) = input(𝑣)
 output′(𝑣) = output(𝑣)

𝑣

𝑒2′ 𝑒2

𝑒1

⇒ input′(𝑣) = output′(𝑣)

⇒ input′(𝑣) = output′(𝑣)
since input(𝒗) = output(𝒗)

Validity

Theorem: f’ = augment(f, P) is a flow in G.

Proof: Need to verify, for each edge/node in 𝑃:

Conservation of flow constraint (input(𝑣) = output(𝑣), ∀ internal 𝑣 ∈ 𝑃)
 Case 1: Input 𝑒1 is regular edge, output 𝑒2 is regular edge.

 input′(𝑣) = input(𝑣) + bottleneck 𝑃, 𝑓
 output′(𝑣) = output(𝑣) + bottleneck 𝑃, 𝑓

 Case 2: Input 𝑒1 is regular edge, output 𝑒2 is back edge.
 input′(𝑣) = input(𝑣)
 output′(𝑣) = output(𝑣)

 Case 3 & 4: Same arguments…

𝑣

𝑒2′ 𝑒2

𝑒1

⇒ input′(𝑣) = output′(𝑣)

⇒ input′(𝑣) = output′(𝑣)
since input(𝒗) = output(𝒗)

Validity

Theorem: f’ = augment(f, P) is a flow in G.

Proof: Need to verify, for each edge/node in 𝑃:

Conservation of flow constraint (input(𝑣) = output(𝑣), ∀ internal 𝑣 ∈ 𝑃)
 Case 1: Input 𝑒1 is regular edge, output 𝑒2 is regular edge.

 input′(𝑣) = input(𝑣) + bottleneck 𝑃, 𝑓
 output′(𝑣) = output(𝑣) + bottleneck 𝑃, 𝑓

 Case 2: Input 𝑒1 is regular edge, output 𝑒2 is back edge.
 input′(𝑣) = input(𝑣)
 output′(𝑣) = output(𝑣)

 Case 3 & 4: Same arguments…

𝑣

𝑒2′ 𝑒2

𝑒1

⇒ input′(𝑣) = output′(𝑣)

⇒ input′(𝑣) = output′(𝑣)
since input(𝒗) = output(𝒗)

Validity

So, f’ = augment(f, P)
will be a valid flow!

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
 P = simple s-t path in Gf
 f’= augment(f, P)
 f = f’
 Gf = Gf’
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

Need to show:
1. Validity.
2. Running time.
3. Finds max flow.

Validity

Running Time
Assuming integer edge capacities:

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
 P = simple s-t path in Gf
 f’= augment(f, P)
 f = f’
 Gf = Gf’
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

Running Time
Assuming integer edge capacities:

While loop runs at most ???

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
 P = simple s-t path in Gf
 f’= augment(f, P)
 f = f’
 Gf = Gf’
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

Running Time
Assuming integer edge capacities:

While loop runs at most |𝑓𝑂𝑃𝑇| times.

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
 P = simple s-t path in Gf
 f’= augment(f, P)
 f = f’
 Gf = Gf’
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

Flow starts at 0, increases
by at least 1 each iteration.

Running Time
Assuming integer edge capacities:

While loop runs at most |𝑓𝑂𝑃𝑇| times.
Find 𝑠 − 𝑡 path…?

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
 P = simple s-t path in Gf
 f’= augment(f, P)
 f = f’
 Gf = Gf’
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

Running Time
Assuming integer edge capacities:

While loop runs at most |𝑓𝑂𝑃𝑇| times.
Find 𝑠 − 𝑡 path (BFS/DFS): 𝑂(|𝐸| + |𝑉|)

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
 P = simple s-t path in Gf
 f’= augment(f, P)
 f = f’
 Gf = Gf’
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

Running Time
Assuming integer edge capacities:

While loop runs at most |𝑓𝑂𝑃𝑇| times.
Find 𝑠 − 𝑡 path (BFS/DFS): 𝑂(|𝐸| + |𝑉|)
augment(f, P): ???

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
 P = simple s-t path in Gf
 f’= augment(f, P)
 f = f’
 Gf = Gf’
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

Running Time
Assuming integer edge capacities:

While loop runs at most |𝑓𝑂𝑃𝑇| times.
Find 𝑠 − 𝑡 path (BFS/DFS): 𝑂(|𝐸| + |𝑉|)
augment(f, P) just traverses edges: 𝑂(|𝐸|)

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
 P = simple s-t path in Gf
 f’= augment(f, P)
 f = f’
 Gf = Gf’
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

Running Time
Assuming integer edge capacities:

While loop runs at most |𝑓𝑂𝑃𝑇| times.
Find 𝑠 − 𝑡 path (BFS/DFS): 𝑂(|𝐸| + |𝑉|)
augment(f, P) just traverses edges: 𝑂(|𝐸|)
Update 𝐺𝑓: ???

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
 P = simple s-t path in Gf
 f’= augment(f, P)
 f = f’
 Gf = Gf’
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

Residual graph for flow 𝑓, 𝐺𝑓:

• ∀𝑒, if 𝑓(𝑒) < 𝑐𝑒, let 𝑐𝑒 = 𝑐𝑒 − 𝑓(𝑒).
• ∀𝑒 = (𝑢, 𝑣), if 𝑓(𝑒) > 0, create
 𝑒’ = (𝑣, 𝑢) with 𝑐𝑒’ = 𝑓(𝑒)

Running Time
Assuming integer edge capacities:

While loop runs at most |𝑓𝑂𝑃𝑇| times.
Find 𝑠 − 𝑡 path (BFS/DFS): 𝑂(|𝐸| + |𝑉|)
augment(f, P) just traverses edges: 𝑂(|𝐸|)
Update 𝐺𝑓 (for each 𝑒 ∈ 𝐺, make 𝑒 and 𝑒’ ∈ 𝐺𝑓): 𝑂(|𝐸|)

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
 P = simple s-t path in Gf
 f’= augment(f, P)
 f = f’
 Gf = Gf’
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

Residual graph for flow 𝑓, 𝐺𝑓:

• ∀𝑒, if 𝑓(𝑒) < 𝑐𝑒, let 𝑐𝑒 = 𝑐𝑒 − 𝑓(𝑒).
• ∀𝑒 = (𝑢, 𝑣), if 𝑓(𝑒) > 0, create
 𝑒’ = (𝑣, 𝑢) with 𝑐𝑒’ = 𝑓(𝑒)

Running Time
Assuming integer edge capacities:

While loop runs at most |𝑓𝑂𝑃𝑇| times.
Find 𝑠 − 𝑡 path (BFS/DFS): 𝑂(|𝐸| + |𝑉|)
augment(f, P) just traverses edges: 𝑂(|𝐸|)
Update 𝐺𝑓 (for each 𝑒 ∈ 𝐺, make 𝑒 and 𝑒’ ∈ 𝐺𝑓): 𝑂(|𝐸|)

Total = 𝑂(𝑓𝑂𝑃𝑇 (3 𝐸 + |𝑉|)) = 𝑂(|𝐸| ∙ |𝑓𝑂𝑃𝑇|)

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
 P = simple s-t path in Gf
 f’= augment(f, P)
 f = f’
 Gf = Gf’
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

Running Time
Assuming integer edge capacities:

While loop runs at most |𝑓𝑂𝑃𝑇| times.
Find 𝑠 − 𝑡 path (BFS/DFS): 𝑂(|𝐸| + |𝑉|)
augment(f, P) just traverses edges: 𝑂(|𝐸|)
Update 𝐺𝑓 (for each 𝑒 ∈ 𝐺, make 𝑒 and 𝑒’ ∈ 𝐺𝑓): 𝑂(|𝐸|)

Total = 𝑂(𝑓𝑂𝑃𝑇 (3 𝐸 + |𝑉|)) = 𝑂(|𝐸| ∙ |𝑓𝑂𝑃𝑇|)

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
 P = simple s-t path in Gf
 f’= augment(f, P)
 f = f’
 Gf = Gf’
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

Good
or

Bad?

Running Time
Assuming integer edge capacities:

While loop runs at most |𝑓𝑂𝑃𝑇| times.
Find 𝑠 − 𝑡 path (BFS/DFS): 𝑂(|𝐸| + |𝑉|)
augment(f, P) just traverses edges: 𝑂(|𝐸|)
Update 𝐺𝑓 (for each 𝑒 ∈ 𝐺, make 𝑒 and 𝑒’ ∈ 𝐺𝑓): 𝑂(|𝐸|)

Total = 𝑂(𝑓𝑂𝑃𝑇 (3 𝐸 + |𝑉|)) = 𝑂(|𝐸| ∙ |𝑓𝑂𝑃𝑇|)

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
 P = simple s-t path in Gf
 f’= augment(f, P)
 f = f’
 Gf = Gf’
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

s t

a

1

c

Running Time
Assuming integer edge capacities:

While loop runs at most |𝑓𝑂𝑃𝑇| times.
Find 𝑠 − 𝑡 path (BFS/DFS): 𝑂(|𝐸| + |𝑉|)
augment(f, P) just traverses edges: 𝑂(|𝐸|)
Update 𝐺𝑓 (for each 𝑒 ∈ 𝐺, make 𝑒 and 𝑒’ ∈ 𝐺𝑓): 𝑂(|𝐸|)

Total = 𝑂(𝑓𝑂𝑃𝑇 (3 𝐸 + |𝑉|)) = 𝑂(|𝐸| ∙ |𝑓𝑂𝑃𝑇|)

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
 P = simple s-t path in Gf
 f’= augment(f, P)
 f = f’
 Gf = Gf’
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

Ford-Fulkerson Algorithm

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
 P = simple s-t path in Gf
 f’= augment(f, P)
 f = f’
 Gf = Gf’
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

Edmonds-Karp Algorithm

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
 P = shortest s-t path in Gf
 f’= augment(f, P)
 f = f’
 Gf = Gf’
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

Shortest, as in smallest
number of edges.

Edmonds-Karp Algorithm

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
 P = shortest s-t path in Gf
 f’= augment(f, P)
 f = f’
 Gf = Gf’
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

Running Time: 𝑂 𝑉 𝐸 2

Edmonds-Karp Algorithm

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
 P = shortest s-t path in Gf
 f’= augment(f, P)
 f = f’
 Gf = Gf’
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

Running Time: 𝑂 𝑉 𝐸 2

 improved to 𝑂 𝑉 |𝐸| [Orlin, 2013]

Edmonds-Karp Algorithm

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
 P = shortest s-t path in Gf
 f’= augment(f, P)
 f = f’
 Gf = Gf’
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

Running Time: 𝑂 𝑉 𝐸 2

 improved to 𝑂 𝑉 |𝐸| [Orlin, 2013]

 improved to 𝑂 𝐸 1+𝑜(1) [Chen et al., 2022]

Edmonds-Karp Algorithm

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
 P = shortest s-t path in Gf
 f’= augment(f, P)
 f = f’
 Gf = Gf’
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

Running Time: 𝑂 𝑉 𝐸 2

 improved to 𝑂 𝑉 |𝐸| [Orlin, 2013]

 improved to 𝑂 𝐸 1+𝑜(1) [Chen et al., 2022]

∈ 𝑶(Max Flow)

Optimality

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
 P = simple s-t path in Gf
 f’= augment(f, P)
 f = f’
 Gf = Gf’
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
 if (u, v) is a back edge
 f((v, u)) -= b
 else
 f((u, v)) += b
 return f

Need to show:
1. Validity.
2. Running time.
3. Finds max flow.

Theorem: The flow returned by the Ford-Fulkerson algorithm is a
maximum flow.

Proof: ...

Optimality

Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

𝑐 𝐴, 𝐵 = 8

𝑨
𝑩

Optimality

Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

𝑐 𝐴, 𝐵 = 8

𝑨
𝑩

Game Plan:

Optimality

Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

𝑐 𝐴, 𝐵 = 8

𝑨
𝑩

Game Plan:
1. Show that value of every flow is ≤ capacity

of every cut.

Optimality

Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

𝑐 𝐴, 𝐵 = 8

𝑨
𝑩

Game Plan:
1. Show that value of every flow is ≤ capacity

of every cut.

Optimality

0

Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

𝑐 𝐴, 𝐵 = 8

𝑨
𝑩

Game Plan:
1. Show that value of every flow is ≤ capacity

of every cut.

Optimality

0 𝑓1 𝑓2 𝑓3

Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

𝑐 𝐴, 𝐵 = 8

𝑨
𝑩

Game Plan:
1. Show that value of every flow is ≤ capacity

of every cut.

Optimality

0 𝑓1 𝑓2 𝑓3 𝐶2 𝐶4 𝐶1 𝐶3

Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

𝑐 𝐴, 𝐵 = 8

𝑨
𝑩

Game Plan:
1. Show that value of every flow is ≤ capacity

of every cut.

Optimality

0 𝑓1 𝑓2 𝑓3 𝐶2 𝐶4 𝐶1 𝐶3𝒇𝟒

𝑪𝟓

Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

𝑐 𝐴, 𝐵 = 8

𝑨
𝑩

Game Plan:
1. Show that value of every flow is ≤ capacity

of every cut.

 Consequence: If we find some flow
whose value equals the capacity of
some cut, it must be the optimal flow.

Optimality

Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

𝑐 𝐴, 𝐵 = 8

𝑨
𝑩

Game Plan:
1. Show that value of every flow is ≤ capacity

of every cut.
2. Given a flow where there are no s-t paths

left in the residual graph, there is a specific
cut whose capacity = flow value.

Optimality

Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

𝑐 𝐴, 𝐵 = 8

𝑨
𝑩

Game Plan:
1. Show that value of every flow is ≤ capacity

of every cut.
2. Given a flow where there are no s-t paths

left in the residual graph, there is a specific
cut whose capacity = flow value.

 Consequence: The algorithm is optimal

Optimality

	Slide 1: Flow Networks CSCI 432
	Slide 2: Ford-Fulkerson Algorithm
	Slide 3: Validity
	Slide 4: Validity
	Slide 5: Validity
	Slide 6: Validity
	Slide 7: Validity
	Slide 8: Validity
	Slide 9: Validity
	Slide 10: Ford-Fulkerson Algorithm
	Slide 11: Flows in Residual Graphs
	Slide 12: Validity
	Slide 13: Validity
	Slide 14: Validity
	Slide 15: Validity
	Slide 16: Validity
	Slide 17: Validity
	Slide 18: Validity
	Slide 19: Validity
	Slide 20: Validity
	Slide 21: Validity
	Slide 22: Validity
	Slide 23: Validity
	Slide 24: Validity
	Slide 25: Validity
	Slide 26: Validity
	Slide 27: Validity
	Slide 28: Validity
	Slide 29: Validity
	Slide 30: Validity
	Slide 31: Validity
	Slide 32: Validity
	Slide 33: Running Time
	Slide 34: Running Time
	Slide 35: Running Time
	Slide 36: Running Time
	Slide 37: Running Time
	Slide 38: Running Time
	Slide 39: Running Time
	Slide 40: Running Time
	Slide 41: Running Time
	Slide 42: Running Time
	Slide 43: Running Time
	Slide 44: Running Time
	Slide 45: Running Time
	Slide 46: Ford-Fulkerson Algorithm
	Slide 47: Edmonds-Karp Algorithm
	Slide 48: Edmonds-Karp Algorithm
	Slide 49: Edmonds-Karp Algorithm
	Slide 50: Edmonds-Karp Algorithm
	Slide 51: Edmonds-Karp Algorithm
	Slide 52: Optimality
	Slide 53: Optimality
	Slide 54: Optimality
	Slide 55: Optimality
	Slide 56: Optimality
	Slide 57: Optimality
	Slide 58: Optimality
	Slide 59: Optimality
	Slide 60: Optimality
	Slide 61: Optimality
	Slide 62: Optimality
	Slide 63: Optimality

