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Ford-Fulkerson Algorithm

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
  P = simple s-t path in Gf
  f’= augment(f, P)
  f = f’
  Gf = Gf’ 
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
  if (u, v) is a back edge
   f((v, u)) -= b
  else
   f((u, v)) += b
 return f

Need to show:
1. Validity.
2. Running time.
3. Finds max flow.

Residual graph for flow 𝑓, 𝐺𝑓:

• ∀𝑒, if 𝑓(𝑒) < 𝑐𝑒, let 𝑐𝑒 = 𝑐𝑒 − 𝑓(𝑒).
• ∀𝑒 = (𝑢, 𝑣), if 𝑓(𝑒) > 0, create 
     𝑒’ = (𝑣, 𝑢) with 𝑐𝑒’ = 𝑓(𝑒)



Theorem: If the edge capacities are integer, the algorithm will terminate.

Proof: 

Validity
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Theorem: If the edge capacities are integer, the algorithm will terminate.

Proof: 
• If the current flow is integer, the bottleneck (and the augmented flow) is 

also integer. Since the flow starts at 0 (integer) the flow values are 
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Proof: 
• If the current flow is integer, the bottleneck (and the augmented flow) is 

also integer. Since the flow starts at 0 (integer) the flow values are 
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• The flow value always increases by at least 1 each iteration (flow value 
must increase and bottleneck is an integer > 0).
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Theorem: If the edge capacities are integer, the algorithm will terminate.

Proof: 
• If the current flow is integer, the bottleneck (and the augmented flow) is 

also integer. Since the flow starts at 0 (integer) the flow values are 
always integer. 

• The flow value always increases by at least 1 each iteration (flow value 
must increase and bottleneck is an integer > 0).

• The Max Flow is finite. (e.g., Bounded by sum of capacities into t.)

Thus, the algorithm will go through at most |Max Flow| iterations.

Validity

Note: This does not hold for general edge capacities (irrational 
edge capacities can lead to non-terminating scenarios).



Ford-Fulkerson Algorithm

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
  P = simple s-t path in Gf
  f’= augment(f, P)
  f = f’
  Gf = Gf’ 
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
  if (u, v) is a back edge
   f((v, u)) -= b
  else
   f((u, v)) += b
 return f

Need to show:
1. Validity.
2. Running time.
3. Finds max flow.

Residual graph for flow 𝑓, 𝐺𝑓:

• ∀𝑒, if 𝑓(𝑒) < 𝑐𝑒, let 𝑐𝑒 = 𝑐𝑒 − 𝑓(𝑒).
• ∀𝑒 = (𝑢, 𝑣), if 𝑓(𝑒) > 0, create 
     𝑒’ = (𝑣, 𝑢) with 𝑐𝑒’ = 𝑓(𝑒)



Flows in Residual Graphs

Let 𝑃 be a simple 𝑠 − 𝑡 path in 𝐺𝑓.

bottleneck(P,f) = minimum residual capacity on any edge in 𝑃.

augment(f, P)
 b = bottleneck(P,f) = 10
 for each edge (u, v) in P
  if (u, v) is a back edge
   f((v, u)) -= b
  else
   f((u, v)) += b
 return f

𝑃 = 𝑠 → 𝑏 → 𝑎 → 𝑡

s t

a

b

20

10

20

𝑓:

s t

a

b

20

10

10

10

20
10

10

𝐺𝑓:
10

10

10

Claim: augment(f, P) 
is a flow in 𝐺.



Validity
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Running Time
Assuming integer edge capacities:

While loop runs at most ???

Max-Flow(G)
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Running Time
Assuming integer edge capacities:

While loop runs at most |𝑓𝑂𝑃𝑇| times.

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
  P = simple s-t path in Gf
  f’= augment(f, P)
  f = f’
  Gf = Gf’
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
  if (u, v) is a back edge
   f((v, u)) -= b
  else
   f((u, v)) += b
 return f

Flow starts at 0, increases 
by at least 1 each iteration.



Running Time
Assuming integer edge capacities:

While loop runs at most |𝑓𝑂𝑃𝑇| times.
Find 𝑠 − 𝑡 path…?

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
  P = simple s-t path in Gf
  f’= augment(f, P)
  f = f’
  Gf = Gf’
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augment(f, P)
 b = bottleneck(P,f)
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Ford-Fulkerson Algorithm
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Edmonds-Karp Algorithm

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
  P = shortest s-t path in Gf
  f’= augment(f, P)
  f = f’
  Gf = Gf’
 return f

augment(f, P)
 b = bottleneck(P,f) 
 for each edge (u, v) in P
  if (u, v) is a back edge
   f((v, u)) -= b
  else
   f((u, v)) += b
 return f

Shortest, as in smallest 
number of edges.
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∈ 𝑶(Max Flow)



Optimality

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
  P = simple s-t path in Gf
  f’= augment(f, P)
  f = f’
  Gf = Gf’ 
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
  if (u, v) is a back edge
   f((v, u)) -= b
  else
   f((u, v)) += b
 return f

Need to show:
1. Validity.
2. Running time.
3. Finds max flow.



Theorem: The flow returned by the Ford-Fulkerson algorithm is a 
maximum flow.

Proof: ...

Optimality



Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The 
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.
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Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
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Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The 
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.
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of every cut.
2. Given a flow where there are no s-t paths 

left in the residual graph, there is a specific 
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